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Purpose: Glucocorticoids (GCs) are common anti-inflammatory agents that can cause ocular hypertension and secondary
glaucoma as a consequence of impaired aqueous humor outflow through the trabecular meshwork (TM). Mechanisms of
GC-signaling are complex and poorly understood. To better understand GC-signaling in the eye, we tested the hypothesis
that common mechanisms of steroid responsiveness exist in TM cells from normal and glaucomatous donors.
Methods: Four primary cultures of human TM cells from normal and glaucomatous donors were treated with or without
dexamethasone (Dex) for 10 days, then cellular proteins were extracted, identified and quantified by liquid
chromatography tandem mass spectrometry (LC MS/MS) iTRAQ (isobaric tags for relative and absolute quantitation)
technology.
Results: A total of 718 proteins were quantified. Dex-treatment significantly altered the abundance of 40 proteins in ≥3
cell samples, 37 of which have not previously been associated with GC-signaling in TM cells. Most steroid responsive
proteins were changed in all four TM cells analyzed, both normal and glaucomatous. GC-induced proteomic changes
support remodeling of the extracellular matrix, disorganization of the cytoskeleton/cell-cell interactions, and
mitochondrial dysfunction. Such physiologic consequences appear common to those induced in TM cells by transforming
growth factor-β2, another putative contributor to ocular hypertension and glaucoma pathology.
Conclusions: The results expand the repertoire of TM proteins involved in GC-signaling, demonstrate common
consequences of GC-signaling in normal and glaucomatous TM cells, and reveal similarities in proteomic changes induced
by steroids and TGFβ2 in normal and glaucomatous TM cells. Finally, the data contributes to a TM quantitative proteomic
database.

Glucocorticoids (GCs) are potent anti-inflammatory
agents used successfully to treat a variety of diseases, but with
several potentially serious side effects. In the eye, GC therapy
can cause ocular hypertension and secondary open-angle
glaucoma [1,2]. About 40% of the general population will
develop elevated intraocular pressure (IOP) within 4–6 weeks
of topical ocular administration of GCs [3]. Such “steroid
responders” are more likely to develop primary open angle
glaucoma (POAG) than non-responders. The trabecular
meshwork (TM), located in the aqueous humor outflow
pathway (Figure 1), regulates IOP through alteration of
aqueous humor resistance via contractile properties,
phagocytosis, cytoskeletal reorganization, cell adhesion,
matrix deposition and ion channel transport [4,5]. The
molecular mechanisms causing GC-induced ocular
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hypertension and impaired TM cell function are not well
understood [5,6].

GC-signaling mechanisms appear to be in part tissue-
specific [7] and highly complex [8], with hundreds of gene
expression changes induced in TM cell cultures by
dexamethasone (Dex) [9-13]. Many of the GC-induced
changes in the TM are similar to those seen in POAG [3]. GC-
induced ocular hypertension occurs in both normal and
glaucoma patients, although a higher percentage of glaucoma
patients are steroid responsive. The GC-induced changes to
the TM, the resulting elevation in IOP, and the clinical
phenotype appear to be similar in these two groups. The goal
of this study was to test the hypothesis that common
mechanisms of steroid responsiveness exist in TM cells from
normal and glaucomatous tissues. Primary TM cells cultured
from carefully dissected TM tissues were used for global
quantitative proteomic analysis of steroid responsiveness
using liquid chromatography tandem mass spectrometry (LC
MS/MS) isobaric tags for relative and absolute quantitation
(iTRAQ) technology. Although cultured TM cells grow very
slowly and have a limited proliferative capacity, we were able
to examine GC-induced changes in protein expression in four

Molecular Vision 2012; 18:2001-2011 <http://www.molvis.org/molvis/v18/a211>
Received 17 May 2012 | Accepted 17 July 2012 | Published 20 July 2012

© 2012 Molecular Vision

2001

http://www.molvis.org/molvis/v18/a211


different primary TM cell cultures, more than any previous
study of GC effects on gene or protein expression in the TM.
The results identfy a significant number of proteins not
previously known to be steroid responsive in TM cells and
show most of the GC-altered proteins were changed in all TM
cell strains analyzed, both normal and glaucomatous.

METHODS
TM cell cultures: All human specimens were post-mortem
tissues collected with adherence to the principles expressed in
the Declaration of Helsinki. Post-mortem human eyes were
obtained from the Lions Eye Institute for Tissue and Research
in Tampa, FL, which is accredited by the Eye Bank
Association of America. TM cells were isolated from TM
tissue explants derived from both open angle glaucoma and
nonglaucomatous control donors. The glaucoma status was
indicated from donor medical histories. The average death to
preservation time was 7.7±3.3 h. Eyes were stored at 4 °C until
the TM was dissected, generally within 24–36 h. Primary
cultures were established and TM cell morphology and purity
were characterized as previously described [14,15]. Human
TM cells were grown in Dulbecco’s modified Eagle’s medium
(HyClone, Logan UT) supplemented with 10% fetal bovine
serum (GIBCO, Grand Island, NY), 1% penicillin-
streptomycin (HyClone) and 1% L-glutamine (Thermo-

Figure 1. Human trabecular meshwork. Aqueous humor (AH) is
actively produced by the ciliary epithelium in the posterior chamber
of the eye and circulates through the pupil to the anterior chamber
where it drains through the TM into Schlemm’s canal and the
episcleral veins. Reproduced with copyright permission from the
Cleveland Clinic. Illustration by David Schumick. All rights
reserved.

Scientific Hyclone, Logan, UT) to confluency in T-25 flasks
or in 6-well plates. Primary cultures of human TM cells from
2 POAG and 2 non-glaucomatous donors were treated with or
without Dex (100 nM) for 10 days, yielding 4 Dex-treated and
4 untreated TM cell cultures (Table 1).

iTRAQ labeling, SCX chromatography, protein identification,
quantitation, and bioinformatics: Detailed methods for
sample preparation, iTRAQ labeling, strong cation exchange
chromatorgraphy (SCX), protein identification and
quantitation and bioinformatics have been described
elsewhere [16-18]. Briefly, for proteomic analyses, proteins
were extracted from TM cells [18], quantified by amino acid
analysis [19], reduced, alkylated, and digested with trypsin
[18]. Tryptic peptides from Dex-treated TM cells were labeled
with iTRAQ tag 117 and mixed with an equal amount of
tryptic peptides from the corresponding untreated cell sample
labeled with iTRAQ tag 115. Each peptide mixture was
fractionated by strong cation exchange (SCX)
chromatography and fractions collected for LC MS/MS. LC
MS/MS was performed with a QTOF2 mass spectrometer
equipped with a Cap LC system (Waters Corporation,
Milford, MA). Protein identification used MASSLYNX 4.1
software (Waters), the Mascot search engine (Matrix Science,
Boston, MA), and the SwissProtein human sequence database
(version 56.0, ~20,000 total sequences). Two unique peptides
per protein and Mascot peptide ion scores ≥25 were required
for all protein identification and quantitation. To estimate
false discovery rates, all peptide MS/MS spectra were
searched (Matrix Science, version 2.2) against a randomized
decoy database constructed from the above SwissProtein
database with a script provided by Matrix Science [16-18].
Protein quantitation from iTRAQ labeling required ion
intensities ≥10 for all iTRAQ tags and was achieved with code
written in the statistical program R. To average results over
multiple samples, protein ratios were normalized to the
protein median per sample, then average protein ratios
(unadjusted), standard errors of the mean (SEM) and p-values
(two sided t-Test for the null hypothesis that the protein
mean=0 in log space) were calculated. Average protein ratios
were adjusted to give greater weight to data with lower SEM
values then adjusted SEMs and p-values were determined
from the adjusted means of the multiple measurements
[16-18]. Bioinformatic analyses were performed with The
Protein ANalysis THrough Evolutionary Relationships
(PANTHER) Classification System, Ingenuity Pathways
Analysis 8.5 (Ingenuity Systems, Redwood City, CA), and the
SwissProtein database.

Western Analyses: Immunoblots were performed as
previously described [18]. Briefly, TM cell cultures were
washed with PBS twice, and proteins were extracted with
Mammalian Protein Extraction Buffer (ThermoScientific)
containing 1% protease inhibitor cocktail (Thermo Fischer
Scientific, Rockford, IL). Protein concentrations in TM

Molecular Vision 2012; 18:2001-2011 <http://www.molvis.org/molvis/v18/a211> © 2012 Molecular Vision

2002

http://uniprot.org/
http://uniprot.org/
http://lerner.ccf.org/eye/crabb/software/2009rfiles.php
http://pantherdb.org/
http://uniprot.org/
http://www.molvis.org/molvis/v18/a211


lysates were determined by the BioRad Dc Protein Assay
(Bio-Rad Laboratories, Hercules, CA). SDS-PAGE was
performed on 10% acrylamide gels with 30 µg protein applied
per lane, and proteins were electrophoretically transferred to
polyvinylidene fluoride membranes (EMD Millipore,
Billerica, MA). Membranes were blocked with 5% non-fat
dry milk in TBST buffer then incubated overnight at 4 °C with

Figure 2. Distribution of protein ratios. The log2 mean distribution
of protein ratios (Dex-treated TM/untreated TM) are shown for all
718 quantified proteins and 341 proteins quantified in ≥3 cell
samples. Median, mean and SD values are indicated; protein ratios
between 1 and 2 SD from the mean are shaded. The distribution of
protein ratios is near-to-normal.

primary antibody. The membranes were washed with TBST
and probed with horseradish peroxidase-conjugated
secondary antibody in 3% non-fat milk in TBST for 1 h at
room temperature. Primary antibodies included mouse
monoclonal anti-activated leukocyte cell adhesion molecule
antigen (CD166; ALCAM; Novacastra/NCL-CD166, diluted
1:40; Abcam, Cambridge, MA) and rabbit polyclonal anti-
Tplastin (Plastin-3; #ab45769, diluted 1:1,000; Abcam).
Rabbit monoclonal anti-glyceraldehyde-3-phosphate
dehydrogenase was used as a loading control (#14C10, diluted
1:1,000; Cell Signaling/Millipore, Billerica, MA). Secondary
antibodies included horseradish peroxidase-conjugated
secondary antibody (goat anti-mouse IgG; #sc2005, diluted
1:10,000; Santa Cruz, Santa Cruz, CA) or goat anti-rabbit IgG
(#7074 diluted 1:10,000; Cell Signaling). Proteins were
detected using enhanced chemiluminescence and a Fluor
ChemTM 8900 imager (Alpha Innotech/ProteinSimple, Santa
Clara, CA). Immunoreactivity was quantified using Image J
software (NIH), and statistical analyses were performed using
the two-sided t-test.

RESULTS
A total of 718 proteins were quantified by LC MS/MS iTRAQ
technology from four primary cultures of human TM cells
treated or not treated with Dex. TM cell sample properties are
defined in Table 1. Quantitative proteomics results from each
sample are presented in Appendix 1, Appendix 2, Appendix
3, and Appendix 4, including protein ratios, SDs, p-values,
number of unique peptides quantified, percent sequence
coverage for each protein, and peptide false discovery rates.
The data from all four TM samples were of comparable quality
and appropriate for averaging based on consistently low
peptide false discovery (average rates, 1.6% identity, 2.7%
homology) and similar distributions of protein ratios. The
average relative abundance of all 718 quantified proteins is
itemized in Appendix 5. The distributions of log2 mean protein
ratios for all proteins, and those quantified in ≥3 TM samples
(n=341), are shown in Figure 2. The normal distributions
(Figure 2) support approximately equal numbers of proteins
increased or decreased by Dex-treatment. Criteria for
determining whether a protein was elevated or decreased by
Dex-treatment included the average adjusted protein ratio and
p-value with only proteins quantified in ≥3 cell samples used

TABLE 1. TRABECULAR MESHWORK CELL SAMPLES.

Experiment Cell culture Donor age and gender Cell passage Protein analyzed µg
1 NTM416-07 78 / M P4 75
2 NTM496-05 82 / F P3 75
3 GTM304-04 75 / F P3 75
4 GTM477-02 85 / F P4 75

        Each of the above primary TM cell cultures was treated with or without Dex then analyzed by LC MS/MS iTRAQ technology.
        NTM, normal trabecular meshwork; GTM, glaucomatous trabecular meshwork; M, male; F, female; P, cell passage.
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for comparative purposes. Proteins exhibiting average protein
ratios (adjusted by SEM) above or below the mean by at least
1 SD (Figure 2) and p-values ≤0.055 were considered of
higher or lower abundance.

The majority of the determined proteome was unchanged
by Dex-treatment: About 94% of all 718 proteins and ~88%
of the 341 proteins quantified in three or more samples appear
to be present in similar amounts in Dex-treated and untreated
cells (Figure 2 and Appendix 5). Accordingly, the determined
proteome largely reflects that of untreated TM cells. The
quantified proteins include ~6% secreted, ~48% cytoplasmic,
~22% membrane and membrane-associated, ~15% nuclear,
and ~11% mitochondrial proteins. These proportions are very
similar to that obtained in quantitative proteomic analysis of
the same TM cells treated with transforming growth factor
beta 2 (TGFβ2) [18]. In the current study, Dex-treatment
decreased the abundance of more secreted proteins (n=3) than
it increased (n=0) and elevated the abundance of more
mitochondrial proteins (n=6) than it decreased (n=2).

TM proteins increased by Dex: Twenty proteins were
elevated ≥1 SD above the mean ratio (p<0.05) in ≥3 samples
by Dex-treatment, including both normal and glaucomatous
TM cells (Table 2). Six proteins were elevated ≥2 SD by Dex
treatment. Elevated proteins were associated with the
cytoskeleton, ECM, mitochondrial metabolism and

carbohydrate metabolism. The majority of these proteins have
not previously been associated with GC-signaling in TM cells.

TM proteins decreased by Dex: Twenty proteins were
significantly decreased ≥1 SD below the mean ratio (p≤0.55)
in ≥3 samples by Dex-treatment, including 4 reduced ≥2 SD
(Table 3), and all were changed in both normal and
glaucomatous TM cells. Decreased proteins were associated
with stress response, cellular defenses, protein processing, the
cytoskeleton, the extracellular Matrix (ECM), and
mitochondrial metabolism. The majority of the Dex-
decreased proteins have not previously been considered
steroid responsive in TM cells.

Independent evidence supporting the iTRAQ protein
quantitation: Western blot analysis (Figure 3) demonstrated
Dex-increased amounts of ALCAM/CD166 antigen (p=0.02)
and Dex-decreased amounts of plastin-3 (p<0.01),
corroborating the iTRAQ protein quantitation. These proteins
were selected only because of their presence in Table 2 and
Table 3 and the availability of antibodies useful for western
analysis. Dex-decreased collagen α1(1) is supported by a
previous proteomic study [20] that reported Dex-down-
regulation of collagen α1(1) in rat TM (Table 3). Dex-
increased amounts of sorbin and SH3 domain containing
protein 2 [12] and filamin B [12] are indirectly supported by

TABLE 2. PROTEINS ELEVATED IN DEXAMETHASONE-TREATED TM CELLS.

SwissProt
accession

Protein Subcellular
source

Sample
frequency

total=4

Mean
protein

ratio

SEM p-value

Cytoskeletal/cell-cell/cell-matrix Interactions
O94875 Sorbin and SH3 domain-containing protein 2 B 4 3.06* 0.10 0.001
Q0ZGT2 Nexilin B 4 2.03* 0.17 0.026
Q13740 CD166 antigen C 4 1.99* 0.12 0.011
O75369 Filamin-B B 4 1.64* 0.11 0.020
Q15942 Zyxin BD 4 1.38 0.04 0.005
Q13418 Integrin-linked protein kinase C 4 1.36 0.09 0.037

Q8WX93 Palladin B 4 1.31 0.08 0.044
P35613 Basigin C 4 1.29 0.04 0.007
Q6NZI2 Polymerase I and transcript release factor BC 4 1.26 0.05 0.020

Carbohydrate Metabolism
P37837 Transaldolase B 4 1.43 0.08 0.019
P52209 6-phosphogluconate dehydrogenase, decarboxylating B 4 1.35 0.07 0.019
P11413 Glucose-6-phosphate 1-dehydrogenase B 3 1.30 0.03 0.015
P60174 Triosephosphate isomerase B 4 1.26 0.06 0.031

Mitochondrial Metabolism
Q9Y6N5 Sulfide:quinone oxidoreductase E 4 1.81* 0.06 0.002
Q9UIJ7 GTP:AMP phosphotransferase E 4 1.56* 0.07 0.007
P42765 3-ketoacyl-CoA thiolase E 4 1.39 0.06 0.011
Q13510 Acid ceramidase B 3 1.35 0.05 0.031
P30049 ATP synthase subunit delta CE 4 1.34 0.07 0.023
P61604 10 kDa heat shock protein E 4 1.33 0.08 0.042
P36957 Dihydrolipoyllysine-residue succinyltransferase component of 2-

oxoglutarate dehydrogenase complex
E 3 1.25 0.03 0.014

        Adjusted mean protein ratios (DEX-treated/Control), standard error of the mean (SEM), p-values and subcellular source are
        shown for abundant proteins (from Appendix 5). Abundant proteins exhibited mean ratios at least 1SD above the mean and p-
        values <0.05 (see Figure 2). All proteins were quantified in ≥3 TM cell samples (median ratio=0.99, mean=1.00, SD=0.22,
        n=341). Asterisks denote ratios at least 2 SD above the mean. Protein subcellular source from the Swiss Protein database: A,
        secreted; B, cytoplasmic; C, membrane; D, nuclear; E, mitochondrial.
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gene expression studies that reported Dex-induced
upregulation of these genes in TM cells.

DISCUSSION
To better understand GC-signaling in TM cells, we quantified
proteins in four primary cultures of human TM cells with and
without Dex-treatment using LC MS/MS iTRAQ technology.

Figure 3. Western analyses. Western blot analysis was used to
evaluate the relative amounts of proteins in Dex–treated and
untreated TM cells (n=4 samples each). Immunoblot intensities were
normalized to GAPDH; average densitometry ratios (Dex–treated/
untreated) and p values (two-sided t-test) for CD166 antigen
(ALCAM) and Plastin-3 support the quantitative data in Table 2 and
Table 3.

The study goal was to test the hypothesis that common
mechanisms of steroid responsiveness exist in TM cells from
normal and glaucomatous tissues. Differences in the levels of
glucocorticoid receptor isoforms between normal and
glaucomatous cells have been suggested to contribute to
steroid responsiveness in TM cells [21,22]. However,
similarities in clinical phenotypes of GC-induced ocular
hypertension in normal and glaucoma patients suggest
common mechanisms may also contribute to steroid
responsiveness. Global proteomic analysis of TM cells from
both donor populations has provided evidence for common
molecular consequences of GC–signaling in non-
glaucomatous and glaucomatous TM cells. Notably, ~72% of
Dex-altered proteins in this study were significantly changed
in all four TM cell strains analyzed. The majority of the 718
quantified proteins were present in similar amounts in Dex-
treated and untreated cells; therefore, the overall determined
proteome reflects that of untreated TM cells. Dex-treatment
significantly altered the abundance of 40 proteins;
immunoblots independently corroborated two of these
changes and literature reports support three other observed
proteomic changes induced by Dex. Thirty-seven of the 40
altered proteins have not been previously recognized as
steroid responsive in TM cells. Major biologic processes
associated with the determined proteome (Figure 4) include

TABLE 3. PROTEINS DECREASED IN DEXAMETHASONE-TREATED TM CELLS.

SwissProt
accession

Protein Subcellular
source

Sample
frequency

total=4

Mean
protein

ratio

SEM p-value

Stress Response, Cellular Defense and Protein Processing
P17931 Galectin-3 ABD 3 0.80 0.05 0.054
P25786 Proteasome subunit alpha type-1 BD 3 0.79 0.06 0.051

Q96AY3 FK506-binding protein 10** C 4 0.78 0.04 0.009
Q14697 Neutral alpha-glucosidase AB C 3 0.77 0.06 0.042
P06703 Protein S100-A6** BCD 4 0.75 0.03 0.003
P27797 Calreticulin** ABC 4 0.73 0.09 0.039
P05388 60S acidic ribosomal protein P0 B 3 0.73 0.02 0.003
O95302 FK506-binding protein 9** C 4 0.71 0.06 0.010
P23284 Peptidyl-prolyl cis-trans isomerase B C 4 0.69 0.11 0.045
P30040 Endoplasmic reticulum protein ERp29 C 4 0.66 0.05 0.004
P50454 Serpin H1** C 4 0.52* 0.07 0.003

Cytoskeletal and ECM Interactions
P13797 Plastin-3** B 4 0.73 0.10 0.048
O15460 Prolyl 4-hydroxylase subunit alpha-2 C 4 0.75 0.09 0.053
Q01995 Transgelin** B 4 0.78 0.07 0.042
P13674 Prolyl 4-hydroxylase subunit alpha-1 C 4 0.78 0.08 0.055
P48681 Nestin B 3 0.62* 0.04 0.007
P02452 Collagen alpha-1(I) chain A 3 0.48* 0.15 0.038

Mitochondrial Metabolism
P30153 Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A

alpha isoform
D 3 0.78 0.01 0.004

P22307 Non-specific lipid-transfer protein BE 4 0.73 0.10 0.049
O75964 ATP synthase subunit gamma CE 3 0.61* 0.12 0.054

        Adjusted mean protein ratios (DEX-treated/Control), standard error of the mean (SEM), p-values and subcellular source are
        shown for less abundant proteins (from Appendix 5). Less abundant proteins exhibited mean ratios at least 1SD below the mean
        and p-values ≤0.055 (see Figure 2). All proteins were quantified in ≥3 TM cell samples (median ratio=0.99, mean=1.00, SD=0.21,
        n=341). Asterisks (*) denote ratios at least 2 SD below the mean. Double asterisks (**) denote CA++ binding proteins. Protein
        subcellular source from the Swiss Protein database: A, secreted; B, cytoplasmic; C, membrane; D, nuclear; E, mitochondrial.
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cellular metabolism (37% of the 718 proteins), signal
transduction (8%), cell structure/motility (10%), intracellular
traffic (7%), and immunity and defense (5%). Ingenuity
Pathway analysis of the proteome implicates protein
synthesis, cell death, and post-translational modification as
the highest scoring networks.

Upregulated GC-responses in normal and glaucomatous
TM cells: Twenty TM proteins were significantly increased
in abundance following Dex-treatment (Table 2), supporting
steroid-induced, upregulated expression of these
polypeptides. Pathway analysis of these proteins highlights
cellular movement, cell death, and cell morphology as one of
the two highest scoring networks. Several cytoskeletal
proteins were elevated, including filamin-B, which connects
the cell membrane with the actin cytoskeleton and promotes
actin filament branching. These findings are consistent with
other studies showing that Dex stimulates an increase in cross-
linked actin networks (CLANs) in cultured human TM cells
[14]. Such morphological networks are also observed in vivo
in both normal and glaucomatous TM [23]. Sorbin and SH3
domain-containing protein 2, elevated about threefold,
interacts with a large number of proteins, linking signaling
complexes with the cytoskeleton. Increased levels of focal
adhesion proteins palladin, zyxin, integrin-linked protein
kinase (ILK) and the adherens junction protein nexilin, are
consistent with GC-stimulated formation of adherens
junctions and tight junctions, previously observed in TM cells
[24] and in mammary tumor cells [25]. Notably, ILK functions
in the regulation of cell-cell and cell-matrix interactions and
appears to have roles in both integrin and growth factor-
signaling. Two other elevated proteins potentially impacting
cell adhesion and cell motility were CD166 antigen
(ALCAM) and basigin. Both are plasma membrane proteins
that promote growth of cellular processes and activate
leuckocytes. CD166 antigen also functions in cellular
interactions in the nervous system [26] and basigin (also
known as tumor cell-derived collagenase stimulatory factor)
stimulates matrix metalloproteinase production and tumor
progression. Finally polymerase 1 and transcript release factor
was elevated ~26% by Dex treatment. This protein is essential
for caveolae formation in mammals, and caveolae function in
cell proliferation, cargo-specific endocytosis, and
mechanosensation [27]. Overall, these 9 elevated proteins
support the hypothesis that GC-treatment can alter TM
cytoskeletal and cell-cell interactions that contribute to AH
outflow resistance and elevated IOP [3].

The other high scoring network from pathway analysis
highlights cell cycle, carbohydrate, and nucleic acid
metabolism. Consistent with GC regulation of
gluconeogenesis [28], four enzymes in the pentose-phosphate
pathway were upregulated ~30%–40%, namely transaldolase,
6-phosphogluconate dehydrogenase, glucose-6-phosphate
dehydrogenase, and triosephosphate isomerase. The
consequences of disrupting the pentose shunt in the TM

remain to be determined, but genetic defects in these 4
enzymes can cause severe disorders elsewhere in the body,
including progressive neuromuscular dysfunction.

Six mitochondrial proteins and a 7th protein that could
significantly alter mitochondrial functions were elevated by
Dex-treatment. These mitochondrial proteins serve a variety
of roles in energy production (ATP synthase δ), signal
transduction (GTP:AMP phosphotransferase), oxidation
reduction (sulfide:quinone oxidoreductase), chaperone
activity (10 kDa heat shock protein), lipid metabolism (3-
ketoacyl-CoA thiolase), and carbohydrate metabolism
(component of 2-oxoglutarate dehydrogenase complex).
These changes could disrupt TM homeostasis by altering
oxidative phosphorylation, regulation of apoptosis by reactive
oxygen species, and maintenance of intracellular calcium
levels [29,30]. Acid ceramidase, the 7th elevated protein, is a
cytosolic protein that functions in the sphingosine-ceramide
salvage pathway in sphingolipid turnover [31]. Ceramides
produced in the salvage pathway in human breast cancer cells
accumulate in mitochondria, promote the relocalization of
mitochondria around the nuclear envelope and have been
linked to apoptosis and mediators of mitochondrial functions
[32]. Impaired mitochondria in TM cells has recently been
implicated in POAG [18,33,34]. The present results provide
clear evidence that GC-signaling can modify mitochondrial
protein expression in both normal and glaucomatous TM cells.
Dysfunctional TM mitochondria could promote oxidative
damage [18,35] and cellular senescence in the aqueous humor
outflow pathway [36].

Down-regulated GC-responses in normal and
glaucomatous TM cells: Twenty TM proteins were
significantly reduced by Dex-treatment (Table 3), suggesting
GC-induced down-regulation, and/or degradation. Pathway
analysis of these 20 proteins highlight gene expression, free
radical scavenging and molecular transport as the highest
scoring networks. TM cells from POAG donors reportedly
contain higher levels of reactive oxygen species and Ca2+ in
the cytosol and the mitochondria [33,34]. Interestingly, ~35%
(n=7) of the TM proteins reduced by Dex-treatment were
calcium-binding proteins (denoted by ** in Table 3),
supporting calcium dysregulation in the TM as possibly
contributing to elevated IOP [33]. About 50% of the decreased
proteins can be associated with cellular defense, stress
response, and processing events, consistent with an anti-
inflammatory response. Several of these exhibit protein-
folding and chaperone functions, including FK506-binding
proteins 9 and 10, calreticulin, peptidyl-prolyl cis-trans
isomerase B, endoplasmic reticulum resident protein 29, and
Serpin H1. Noteworthy, serpin H1 is a stress-induced,
collagen-binding chaperone, and calreticulin functions in the
GC receptor signaling pathway. Two damage-associated
molecular pattern proteins (DAMPs) were also decreased by
Dex, namely advanced glycation endproduct receptor 3
(galectin-3) and protein S100-A6. DAMPs are endogenous
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proteins released by damaged cells that are capable of binding
and activating an inflammatory response through pattern
recognition receptors such as the complement system, toll-like
receptors, and receptor for advanced glycation endproducts
(RAGE). Also decreased was proteasome subunit α type-1,
important in the processing of MHC peptides, regulation of
the cell cycle, and ubiquitin-dependent degradation processes.
Others included the 60S acidic ribosomal protein P0 involved
in translational elongation, and neutral α-glucosidase AB
which functions in conjunction with calreticulin in the release
of mono-glycosylated glycoproteins.

Six proteins impacting the cytoskeleton and/or ECM
were decreased by Dex-treatment. Among this group were
actin-binding proteins transgelin and plastin-3, as well as
nestin, involved in intermediate filament assembly/
disassembly and cellular remodeling. Altered levels of these
proteins could facilitate GC-induced CLAN formation [14].
ECM protein collagen α1(1) was the most significantly
reduced, down ~50%. Two enzymes that catalyze proline
hydroxylation in collagen were also decreased, namely prolyl
4-hydroxylase α1 and α2. Collagen α1(1) fibrils are a major
component of collagen beams in TM in vivo and at
physiologic conditions require hydroxyproline to stabilize the
triple-helical structure. Altered interactions between collagen
fibrils and other ECM components have been reported to
trigger collagen degradation and a loss of tissue-specific
morphology [37,38]. Whether the reduced collagen α1(1)
level we observed in TM cells is due to decreased expression
or to degradation is not clear, but perturbed collagen levels in
vivo would render the ECM more susceptible to collapse and
debris deposition. Collectively, the observed proteomic
changes could disrupt the TM cytoskeleton and associated
ECM in both normal and glaucomatous TM.

Dex-treatment also decreased the abundance of proteins
impacting mitochondrial metabolism (Table 3). Among these
were mitochondrial proteins ATP synthase γ, important in
energy production and non-specific lipid-transfer protein,
functioning in lipid transport across membranes and possibly
serving in steroid biosynthesis. Also decreased was serine/
threonine-protein phosphatase 2A isoform PR65-α, which
appears to be a regulator in cell adhesion, apoptosis and
ceramide-associated processes. As noted, ceramides have
been linked to apoptosis and may accumulate in the
mitochondria [32]. These results are consistent with GC-
inducable mitochondrial dysfunction in both normal and
glaucomatous TM cells.

Comparison with previous studies of GC-signaling in TM
cells: This is the most extensive quantitative proteomic
analysis of GC-signaling in TM cells. A previous 2D-gel
proteomic study of one immortalized TM cell line identified
163 proteins and reported Dex-down regulation of Rho GDP
dissociation inhibitor (RhoGDI) [39]. In the present study,
four different primary TM cell cultures were analyzed and
RhoGDI was not changed by Dex treatment (Appendix 5).
Only one other proteomic study of steroid signaling in the
anterior segment is currently published. Proteomic changes
induced by in vivo topical application of Dex to three rat eyes
was investigated using peptide mass fingerprinting methods
and 2D fluorescence difference gel electrophoresis [20]. Four
Dex-altered TM proteins were reported, including
upregulation of αA-crystallin and βA3-crystallin and down-
regulation of collagens α1(1) and α2(1) [20]. We found Dex-
decreased amounts of collagen α1(1), detected collagen α2(1)
in 2 samples, but did not detect αA- and βA3-crystallins,
although several other chaperones were decreased by Dex-
treatment (Table 2). The earlier report suggested that Dex may

Figure 4. Biologic functions of TM
proteins. Functional analysis of the 718
proteins quantified in human TM cells
was performed using the PANTHER
Classification System.
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induce impaired collagen processing [20] because only
COOH-terminal propeptides were detected. This may occur
but our study quantified seven internal peptides from
throughout the collagen α1(1) sequence, supporting Dex-
induced decreased expression of collagen α1(1).

Hundreds of Dex-induced transcript changes in human
TM cells have been described in five gene-profiling studies
[9-13]; however, only two genes were reported differentially
expressed in all five studies, namely genes encoding myocilin
and insulin-like growth factor binding protein 2 (both
upregulated). We detected myocilin at elevated levels in two
of the four TM cell samples (Appendix 1 and Appendix 3) but
did not detect insulin-like growth factor binding protein 2.
While myocilin is a glaucoma gene, it is not always elevated
at the protein level in TM tissues in open angle glaucoma
[20]. Myocilin is a secreted glycoprotein, which may account
in part for variable TM levels. In our study, myocilin may have
also been in the culture medium, which was not analyzed.
Among transcripts reported differentially expressed in the TM
by Dex [9-13], we found 27 corresponding gene products,
from which reliable quantification was obtained on 11
proteins (ie, proteins found in ≥3 samples). Our proteomic
data support upregulation of sorbin and SH3 domain

containing protein 2 [12] and filamin B [12] but do not support
upregulation of transgelin [11,12] nor the reported down-
regulation of 3-ketoacyl-CoA thiolase β [ 9]. Seven other
transcripts reported to be differentially expressed exhibited no
significant change at the protein level in this study, namely
lactate dehydrogenase A [11], clusterin [10], fibroblast
muscle tropomyosin [9], skeletal β-tropomyosin [9],
fibulin-1C [9], phosphatidylethanolamine binding protein
[9], and thrombospondin [13]. The observed differences
between proteomic and genomic data seem reasonable as only
~20% correlation generally exists between mRNA and
corresponding protein levels in mammals [40,41]. Similar to
our findings from quantitative proteomic analysis of TGFβ2-
signaling in TM cells [18], very few proteases or protease
inhibitors were detected in this study (Appendix 5), perhaps
because they were below detection limits, and none were
found significantly altered by Dex-treatment.

Additional insight to steroid responsiveness in TM cells:
To further probe molecular mechanisms of steroid
responsiveness, we compared Dex-induced proteomic
changes with previously identified protein changes in TM
cells induced by TGFβ2 [18]. TGFβ2 is elevated in the anterior
segment of glaucoma patients, and while the mechanism(s)

TABLE 4. PROTEOMIC CHANGES INDUCED IN TM CELLS BY DEXAMETHASONE AND TGFβ2.

  Dex TGFβ 2

Swiss prot
accession

Protein Ratio p value Ratio p value

Cytoskeletal and Cell-Cell Interactions
Q8WX93 Palladin ↑ 1.3 0.044 ↑ 1.7 0.003
Q9HBL0 Tensin-1 ↑ 1.7 0.119 ↑ 1.7 0.017
P37802 Transgelin-2 ↑ 1.3 0.127 ↑ 1.6 0.012

Q0ZGT2 Nexilin ↑ 2.0 0.026 ↑ 1.4 0.152
Q01995 Transgelin ↓ 0.8 0.042 ↑ 1.7 0.151
P13797 Plastin-3 ↓ 0.7 0.048 ↑ 1.5 0.093

Cell-Matrix and ECM Remodeling
O15460 Prolyl 4-hydroxylase subunit alpha-2 ↓ 0.7 0.053 ↑ 2.1 0.042
P13674 Prolyl 4-hydroxylase subunit alpha-1 ↓ 0.8 0.055 ↑ 1.5 0.057
P07996 Thrombospondin-1 ↓ 0.7 0.147 ↑ 2.4 0.030
P02452 Collagen alpha-1(I) chain ↓ 0.5 0.038 ↑ 1.7 0.263

Mitochondrial Metabolism
P04179 Superoxide dismutase [Mn] ↓ 0.8 0.272 ↓ 0.5 0.002
Q9UIJ7 GTP:AMP phosphotransferase mitochondrial ↑ 1.6 0.007 ↓ 0.7 0.168
P42765 3-ketoacyl-CoA thiolase ↑ 1.4 0.011 ↓ 0.7 0.200

Q9Y6N5 Sulfide:quinone oxidoreductase ↑ 1.8 0.002 ↓ 0.7 0.067
P00367 Glutamate dehydrogenase 1 ↑ 1.3 0.061 ↓ 0.6 0.012
O94925 Glutaminase kidney isoform ↓ 0.8 0.206 ↑ 1.4 0.037

Stess Response and Protein Folding
Q96AY3 FK506-binding protein 10 ↓ 0.8 0.009 ↑ 1.5 0.005
Q15084 Protein disulfide-isomerase A6 ↓ 0.8 0.092 ↑ 1.4 0.041

Regulatory Processes
P50479 PDZ and LIM domain protein 4 ↑ 1.3 0.290 ↑ 1.7 0.036
Q99536 Synaptic vesicle membrane protein VAT-1 homolog ↓ 0.8 0.561 ↓ 0.7 0.004

        Proteins are shown that were quanitified in both this study and a study of TGFβ2-induced proteomic changes in TM cells [18].
        All proteins were quantified in ≥3 TM samples, exhibited ratios at least 1 SD above or below the means, and p-values ≤0.055
        in at least one of the treatments (indicating at least one ratio significantly different than 1.0). Arrows reflect elevated or decreased
        expression.
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responsible for elevated expression is unknown, substantial
evidence implicates TGFβ2 as a contributing factor in ocular
hypertension [3,18]. Our TGFβ2 investigation [18] used the
same normal and glaucomatous TM cell strains and
quantitative proteomic methods as used in the present study.
For comparison of Dex- and TGFβ2-induced proteomic
changes, proteins quantified in ≥3 TM cell samples in both
studies were sought that exhibited: (i) ratios at least 1 SD
above or below the means in both data sets, and (ii) a p-value
≤0.055 in at least one of the treatments (indicating at least one
of the treatments significantly changed the protein ratio).
Twenty proteins meeting the above criteria were identified
(Table 4), including four apparently altered by both TGFβ2

and Dex (palladin, prolyl 4-hydroxylase α1 and α2, and
FK506-binding protein 10). While additional studies with
larger samples sizes are warranted to validate proteins altered
by both Dex and TGFβ2, these two modifiers appear to impact
several common physiologic processes in both normal and
glaucomatous TM cells. These processes include cytoskeletal/
cell-cell interactions, cell-matrix/ECM remodeling, and
mitochondrial metabolism [18]. Such common physiologic
consequences suggest a molecular basis for the increased risk
of ocular hypertension in steroid responders.

Conclusions: Based on our analysIs of a small number of
TM cell samples, the results expand the repertoire of proteins
participating in GC-signaling and support common steroid
response mechanisms in both normal and glaucomatous TM
cells. While we analyzed more cell samples than in previous
studies of GC effects on the TM transcriptome or proteome,
the sample size is limiting and further investigations are
warranted. The observed proteomic changes implicate as
consequences of steroid-treatment remodeling of the
extracellular matrix, disorganization of the cytoskeleton,
disruption of cell-cell interactions, and mitochondrial
dysfunction in the TM. These same physiologic processes
appear impacted by TGFβ2-signaling in both normal and
glaucomatous TM cells. Finally, the results contribute to a
quantitative database of TM proteins.
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Appendix 1. Relative protein abundance: Trabecular meshwork sample
NTM416–07.

To access the data, click or select the words “Appendix
1.” This will initiate the download of a compressed (pdf)
archive that contains the file.

Appendix 2. Relative protein abundance: Trabecular meshwork sample
NTM496–05.

To access the data, click or select the words “Appendix
2.” This will initiate the download of a compressed (pdf)
archive that contains the file.

Appendix 3. Relative protein abundance: Trabecular meshwork sample
GTM304–04.

To access the data, click or select the words “Appendix
3.” This will initiate the download of a compressed (pdf)
archive that contains the file.

Appendix 4. Relative protein abundance: Trabecular meshwork sample
GTM477–02.

To access the data, click or select the words “Appendix
4.” This will initiate the download of a compressed (pdf)
archive that contains the file.

Appendix 5. Average relative protein abundance over all DEX-treated TM
cell Samples.

To access the data, click or select the words “Appendix
5.” This will initiate the download of a compressed (pdf)
archive that contains the file.
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