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On the generalization of tones: A 
detailed exploration of non-speech 
auditory perception stimuli
Michael Schutz   1,2 ✉ & Jessica Gillard2

The dynamic changes in natural sounds’ temporal structures convey important event-relevant 
information. However, prominent researchers have previously expressed concern that non-speech 
auditory perception research disproportionately uses simplistic stimuli lacking the temporal variation 
found in natural sounds. A growing body of work now demonstrates that some conclusions and models 
derived from experiments using simplistic tones fail to generalize, raising important questions about 
the types of stimuli used to assess the auditory system. To explore the issue empirically, we conducted 
a novel, large-scale survey of non-speech auditory perception research from four prominent journals. A 
detailed analysis of 1017 experiments from 443 articles reveals that 89% of stimuli employ amplitude 
envelopes lacking the dynamic variations characteristic of non-speech sounds heard outside the 
laboratory. Given differences in task outcomes and even the underlying perceptual strategies evoked 
by dynamic vs. invariant amplitude envelopes, this raises important questions of broad relevance to 
psychologists and neuroscientists alike. This lack of exploration of a property increasingly recognized as 
playing a crucial role in perception suggests future research using stimuli with time-varying amplitude 
envelopes holds significant potential for furthering our understanding of the auditory system’s basic 
processing capabilities.

When designing research studies, scientists strive to minimize confounds potentially confusing experimental 
outcomes. The most famous cautionary tale of failing to control for extraneous variables can be found in Hans 
the counting horse, who delighted early 20th century audiences by appearing to answer basic arithmetic ques-
tions through sequential taps of his hoof. Subsequent investigation revealed the true source of his seemingly 
remarkable talent—rather than calculating, ‘Clever Hans’ merely recognized the reactions of humans who moved 
with excitement after seeing the correct number of taps1. Although disappointing for his fans, it provided such 
an invaluable lesson in experimental control that it is still routinely discussed in introductory psychology text-
books2,3—a century after Hans’s debut.

Today, researchers take great pains to avoid confounding factors through carefully designed paradigms 
employing tightly controlled stimuli. Although this approach has undoubtedly contributed to psychology’s suc-
cess in explaining many complex phenomena, overuse of simplified tones in experiments can lead to inaccurate 
perspectives on perceptual processing. Here we examine this issue of broad importance through an in-depth 
study of the stimuli used to assess non-speech auditory perception, an exploration holding important implica-
tions for interpreting a wide body of perceptual research.

Controlled auditory stimuli
Sounds synthesized with temporal shapes (“amplitude envelopes”) consisting of rapid onsets followed by sus-
tain periods and rapid offsets afford precise quantification and description—qualities of obvious methodological 
value. However as William Gaver argued in a different context, fixating on simplistic sounds can lead researchers 
astray when attempting to explore the processes used in everyday listening4,5. For example, a sound’s amplitude 
envelope is rich in information, allowing listeners to discern the materials involved in an event6,7, or even an 
event’s outcome—such as whether a dropped bottle bounced or broke8. However, this cue is largely absent in 
synthesized tones with abrupt offsets, as their short decays provide no information about sound-producing events 
and materials. Therefore the simplistic structures of tone beeps, buzzes, and clicks do not necessarily trigger the 
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same perceptual processes as natural sounds—potentially complicating attempts to generalize from experimental 
outcomes to our processing of sounds outside the laboratory.

The ecological relevance of auditory stimuli outside of speech has ironically grown more problematic as the 
field evolves. Early experiments employed natural sounds such as balls dropping on hard surfaces and hammers 
striking plates9. However with the invention of the vacuum tube and then modern computers, many researchers 
eagerly traded natural sounds for precisely controlled tones10. Concern with this decision is hardly novel, as 
colleagues have previously expressed worry that much of auditory psychophysics “lack[s] any semblance of eco-
logical validity”10 given the dearth of amplitude invariant (i.e. “flat”) tones in the natural world11. Although some 
have articulated the merits of using stimuli with more varied amplitude envelopes12, to the best of our knowledge 
there has been no large-scale formal exploration of non-speech auditory perception stimuli—a useful step in 
understanding the current state of the field so as to improve future approaches.

Amplitude Envelope’s Crucial Role in Perceptual Organization.  Although amplitude envelope’s 
importance in timbre is widely recognized13–15, its role in other perceptual constructs and processes has often 
received less attention. Consequently many experiments are conducted with a single type of amplitude enve-
lope—the temporally simplistic flat tone. Their artificial characteristics embody the concern clearly articulated by 
Gaver4,5 and others10 warning of a divide between the auditory system’s use in everyday listening and its assess-
ment in the laboratory. The following series of experiments on audio-visual integration illustrates one specific 
example of problems endemic with over-using a single type of stimulus to pursue a generalized understanding of 
psychological processes.

Videos of a renowned musician using long and short striking movements illustrate that vision can strongly 
affect judgments of musical note duration16. This illusion persists when using impact (but not sustained) sounds 
from other events17, point-light simplifications of the movements18, and even a single moving dot19. Curiously 
however, it breaks with widely-accepted thinking that vision exerts little influence on auditory judgments of event 
duration20–22. This conflict has its roots in the dynamically decaying amplitude envelope (i.e. “sound shape”) of 
sounds created by natural impacts such as those produced by the marimba (Fig. 1). Further explorations demon-
strate that pure tones shaped with the amplitude envelopes characteristic of impacts integrate with visual infor-
mation, whereas the same pure tones shaped with flat amplitude envelopes (i.e., traditional “beeps”) do not23. This 
illustrates that conclusions derived from experiments with flat tones do not necessarily generalize to real-world 
tasks, as their simplified temporal structures fail to trigger the same perceptual processes as natural sounds.

Amplitude envelope’s effect on audio-visual integration can be seen in other tasks. For example, a click simul-
taneous with two disks overlapping after moving across a screen increases the probablity of perceiving a ‘bounce’ 
rather than the circles passing through one another24. However, damped tones (i.e. decreasing in intensity over 
time) elicit stronger bounce percepts than ramped tones (i.e. increasing in intensity over time), presumably as 
they are event-consistent25. These two studies illustrate that in addition to amplitude envelope affecting vision’s 
influence on audition16,17 it can affect audition’s influence on vision25.

Repeated findings of amplitude envelope’s role in audio-visual integration17,23,25,26 complement a growing body 
of work on differences in the processing of tones with rapid increases vs. decreases in intensity (i.e., “ramped” 
or “looming” vs. “damped” or “receding”) in auditory processing. Although merely time-reversed and there-
fore spectrally matched, these sounds are perceived as differing in duration27–31, loudness32–34, and loudness 
change35,36. These observations of differences in the perception of tones distinguished only by amplitude envelope 
shape raise questions about whether the disproportionate use of flat tones as experimental stimuli could lead to 
broader problems with generalization. For example, the durations of amplitude invariant tones can be evaluated 
using a ‘marker strategy’—marking tone onset and offset. This approach is consistent with Scalar Expectancy 

Figure 1.  Flat and percussive amplitude envelopes. The rapid onset segment (1) is often similar in flat and 
percussive tones. The sustain segment (2) constitutes a large percentage of a flat tones, but is non-existent in 
percussive tones. Conversely the offset segment (3) is typically brief in flat tones whereas it constitutes the 
majority of percussive tones.
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Theory (SET), a widely accepted timing framework37,38. However such a strategy would be problematic for sounds 
with decaying offsets, as their moment of acoustic completion is ambiguous (Fig. 1).

What sounds are used in auditory perception research?.  In order to explore the types of stimuli used 
to study non-speech auditory perception, we analyzed a representative sample of experiments drawn from several 
decades of four well-respected journals (two focused on general psychological research, and two with a specific 
auditory focus). This approach builds on our team’s previous survey of Music Perception, which revealed surpris-
ingly that over one-third of its studies omitted definition of amplitude envelope39. That survey focused heavily 
on musical stimuli and examined only experiments using single tones or isolated series of tones. Furthermore, 
it drew unequally from different time periods, making it difficult to discern trends. In order to broaden our 
approach, here we conducted a survey (a) exploring a variety of non-speech auditory perception tasks, (b) incor-
porating diverse paradigms, (c) assessing multiple stimulus properties (i.e. spectral structure, duration), and (d) 
involving multiple journals widely recognized for their rigor and prestige. Consequently, this project offers useful 
insight into sounds used to explore the auditory system—the stimuli upon which numerous theories of perceptual 
processing are built.

Methods
In order to obtain a representative sample of experiments we used databases indexing articles in four highly 
regarded journals regularly publishing auditory perception research on human subjects. We initially began with 
two journals focused on general psychological processing: Attention, Perception & Psychophysics (henceforth 
referred to as APP) and Journal of Experimental Psychology: Human Perception & Performance (JEP)—both 
of which are indexed by PsycInfo. Later when expanding the survey to include the auditory-focused Hearing 
Research (HR) we turned to Web of Science, as HR is not indexed by PsycInfo. Although adequate for HR, Web of 
Science only indexes Journal of the Acoustical Society of America (JASA) back to 1976. Therefore we used Web of 
Science for articles published in or after 1976 to align as much as possible with our approaches to HR, and used 
JASA Portal for earlier articles.

Selection of articles to classify.  Differences in each journal’s scope necessitated slightly different search 
terms in order to obtain a consistent focus. For example, although our searches of APP and JEP naturally resulted 
in papers focused on human participants, an equivalent focus in HR required filtering out non-human animal 
studies. Similarly, whereas the wide range of psychophysical studies in APP and JEP necessitated use of the search 
term “audition”, this was unnecessary for JASA. However, JASA’s broad acoustical focus, including issues such as 
underwater sound transmission40,41 instead compelled use of “psychophysic*”—a term obviously unnecessary for 
APP. Complete terms used are displayed in Table 1.

Journal Database Search Terms

APP (1966–2017) PsycInfo

Attention, Perception & Psychophysics (Publication Name)
AND Auditory (Identifier)
NOT Speech (Identifier)
NOT Language (Identifier)
NOT Phonetic (Identifier)
NOT Dialect (Identifier)

JEP (1975–2017) PsycInfo

Journal of Experimental Psychology: Human Perception &
Performance (Publication Name)
AND Auditory (Identifier)
NOT Speech (Identifier)
NOT Language (Identifier)
NOT Phonetic (Identifier)
NOT Dialect (Identifier)
NOT Word (Identifier)

HR (1978–2017) Web of Science

Hearing Research (Publication Name)
AND Auditory (Topic)
NOT Speech (Topic)
NOT Language (Topic)
NOT Phonetic (Topic)
NOT Dialect (Topic)
Article (Document Type)
Social Sciences & Arts Humanities (Categories)
EXCLUDE Zoology (Subject Area)
EXCLUDE Veterinary Sciences (Subject Area)
EXCLUDE Plant Sciences (Subject Area)
EXCLUDE Agriculture (Subject Area)
EXCLUDE Food Science Technology (Subject Area)

JASA
(1950–1975) JASA Portal

Psychophysic* (full bibliographic record)
NOT Speech (abstract/title/keyword)
NOT Animal (abstract/title/keyword)

JASA
(1976–2017) Web of Science

Journal of the Acoustical Society of America (Publication Name)
AND Psychophysic* (topic)
NOT Animal (topic)
NOT Speech (topic)

Table 1.  Summary of Search Terms.

https://doi.org/10.1038/s41598-020-63132-2


4Scientific Reports |         (2020) 10:9520  | https://doi.org/10.1038/s41598-020-63132-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

This process resulted in a pool of 4622 potential articles. In order to select a manageable number we used a 
stratified quota sampling technique42, taking the first two to four articles per journal per year. This balanced com-
peting desires for a sample representative of that journal’s history and rough equivalence in the number of articles 
per journal. For example, we selected a maximum of two articles per year from JASA (dating back to 1950), but 
up to four per year for JEP (established in 1975). Adapted for our purposes based on best practices for accurate 
sampling in public opinion polls and market research43, this approach yielded a final corpus of 443 papers split 
relatively evenly amongst the four journals (see Table 2).

Analysis and classification of individual experiments.  We coded all experiments (n = 1017) indi-
vidually within the 443 articles, classifying only the auditory components of multisensory stimuli. Due to the 
diversity of designs encountered, we fractionally distributed one point amongst all sound categories within each 
experiment—refining our team’s earlier approaches. For example, if an experiment used two sound categories 
(i.e. a target and distractor), each sound category received a half point. In an experiment with four types of targets 
and two types of distractors, each target and distractor received 0.125 and 0.25 points respectively (sample point 
weightings appear in Table 3). This avoided over-emphasizing individual experiments using a large number of 
stimuli—such as the 64 different sounds employed by Gygi and Shafiro (2011).

Classification of Amplitude Envelope.  We initially grouped sounds into one of five categories based on 
the descriptions given in the article and online links: (i) flat, (ii) percussive, (iii) click train, (iv) other, and (v) 
undefined. Our “flat” category included sounds with a period of invariant sustain and defined rise/fall times, such 
as “a 500-Hz sinusoid, 150 msec in duration…gated with a rise-decay time of 25 msec”44. Similarly, we classi-
fied sounds described as “rectangularly gated”45, having a “rectangular envelope”46, “trapezoidal envelope”47,48, 
“square-gate”49, “fade-ins and fade-outs to avoid clicks”50 or “abrupt onsets and offsets”51 as flat. Samples of sounds 
falling into this category appear in the top row of Fig. 2.

Our second category, “percussive,” encompassed sounds with sharp onsets followed by gradual decays with no 
sustain period (i.e. impact sounds). This included sounds from cowbells52, bongos53, drums54, chimes and bells55, 
marimbas56, vibraphones57, and pianos (in which hammers impact strings)—both natural58 and synthesized52,59. 
Environmental impact sounds such as hand claps55, footsteps60, dropped61 and struck objects62,63 also fell into this 

Journal
Article 
Pool (N) Selection

Sample 
(N)

Experiments 
(N)

APP (1966–2017) 466 First 2 articles from each year 104 228

JEP (1975–2017) 210 First 4 articles from each year 113 392

HR (1978–2017) 1820 First 3 articles from each year involving human subjects 114 180

JASA (1950–2017) 2126 First 2 articles from each year 112a 217

Total 443 1017

Table 2.  Summary of Article Selection and Number of Experiments. aWeb of Science returned 2005 articles 
(1975–2017), and the JASA Portal 121 (1950–1975).

Article Exp. #
Sound
Categories

Functional
Category

Point
Weight

Envelope
Category

Pfordresher, 2008135

Three experiments, each using a
single sound

1 1 auditory feedback 1.00 percussive

2 1 auditory feedback 1.00 percussive

3 1 auditory feedback 1.00 percussive

Kirby, Browning, Brennan, Spratford, & 
McCreery, 2015136

One experiment using two sounds

1 2 reference 0.50 undefined

target 0.50 undefined

Stilp, Alexander, Kiefte, & Kluender, 201082

Two experiments, each using three types
of sounds

1 3 target A 0.333 other

1 target B 0.333 other

1 precursor 0.333 other

2 3 target A 0.333 other

2 target B 0.333 other

2 precursor 0.333 other

Møller & Jho, 1989137

One experiment, using three types of
sounds

1 3 signal A 0.111 flat

signal A 0.111 flat

signal A 0.111 flat

signal B 0.167 click train

signal B 0.167 click train

masker 0.333 undefined

Table 3.  Examples of Point Weighting Distributions. Note: Each experiment received a single point, which we 
distributed equally amongst the functional categories of the sounds used.
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category. In addition to natural sounds, this category included synthesized tones with ‘damped’ envelopes64–69. 
For example, we considered a “target tone (5-ms rise time)…[that] terminated with a 95-ms linear offset ramp”68 
to be a percussive ‘damped’ tone. Waveforms of stimuli categorized as percussive are shown in the second row of 
Fig. 2 and are summarized in detail in Supplemental Table 1.

Our third category of “click/click train” contained sounds described as clicks or a series of repeated stimuli 
over a short duration (refining our earlier approaches39). This included sounds explicitly identified as “clicks”70,71 
or “transients”72, as well as as “click trains”73, “pulse trains”74,75, “pulses in a train”76, or stimuli “presented in rapid, 
successive bursts”77. We also included click trains of variable rates78 within this category (see third line of Fig. 2 
for examples).

Our fourth category of “other” initially contained all sounds with defined amplitude envelopes other than 
those previously described. We subsequently split this category based upon referentiality—whether or not the 
sounds originated from real world events. Referential sounds included environmental sounds79–81, record-
ings of animals such as dogs and/or chickens54,55, and collections of sounds such as those heard at bowling 
alleys, beaches, and construction sites54. This also included a variety of non-percussive musical sounds such as 
brass55,82,83, string81,82, and woodwind instruments57,84, including instrument sounds later shortened85,86 or fil-
tered82. Additionally, excerpts of popular music87 as well as choral singing88 fell into this category. We named this 
new group OMAR as it encompassed Other Musical And Referential sounds (i.e. referential sounds other than 
those included in the percussive category). Despite its broad nature this category ultimately contained the small-
est percentage of sounds (fourth row of Fig. 2).

The other category also included non-referential sounds, i.e. those lacking a real-world referent. This includes 
amplitude modulated tones89, pedestal tones90,91, tones with defined rise/fall times and no sustain; both sym-
metric (e.g. 50 ms rise/fall time)92–95 and asymmetric (e.g. 15 ms rise 45 ms fall)96, as well as reversed-damped 
or ‘ramped’ tones64,66,68,69,97. We named this subcategory SESAME—Sounds Exhibiting Simple Amplitude 
Modulating Envelopes. These sounds include some amplitude variation beyond onset/offset, yet lack real world 
referents (note that although rising tones are often regarded as mimicking approaching sounds35,36, this only 
holds if the approaching sounds are flat98). Although this category’s definition is somewhat broad, it ultimately 
contained the second fewest number of stimuli (after OMAR). Depictions of these stimuli appear in the final line 
of Fig. 2, and Supplemental Table 1 provides a detailed breakdown of sounds classified under this category.

Finally, we used a fifth category of “undefined” for sounds whose amplitude envelopes could not be discerned 
from the information provided. For example, we classified the amplitude envelope of sounds described as ‘a 
500 ms, 1000 Hz tone’ as undefined. We treated this as a category of last resort, using it only when unable to dis-
cern any information regarding temporal structure. For example, when authors stated they used stimuli defined 
in other papers99–102 or included links to online repositories55,103, we obtained and analyzed the supplementary 
information. This avoided labeling stimuli as undefined when authors had merely been judicious with space.

Definition of six crucial properties.  We also coded stimulus duration, as well as the presence or absence of 
information on additional characteristics such as spectral structure and intensity, and technical equipment details 
such as delivery device (i.e. headphone/speaker) and tone generator make/model. This expanded our team’s previ-
ous approach39 of classifying these properties only for stimuli with undefined amplitude envelopes.

We created three categories for coding these properties: Specific, Approximate or Undefined (see Table 4 for 
examples). For example, we coded the intensity of stimuli described at “70 dB” as Specific, those “at a comfort-
able level” as Approximate, and those lacking any information on intensity as Undefined. Similarly, we coded 
delivery device information of “Sennheiser HD265 headphones” as Specific, general mention “headphones” as 
Approximate, and the lack of any information about sound delivery as Undefined. This helps contextualize our 
exploration of amplitude envelope by providing useful comparators for levels of definition of five other properties.

Flat

Percussive

Click/
 Click Train

OMAR

SESAME

Time (s)

Figure 2.  Examples of defined amplitude envelope categories: (a) various Flat tones, (b) Percussive sounds 
including a bell, hand claps, and bongo as well as a pure tone synthesized with a linear offset, (c) Clicks (left) 
and Click trains (right), (d) OMAR stimuli such as a dog barking, chicken clucking and bird chirping, and (e) 
SESAME stimuli including an amplitude modulated tone, two pedestal tones, a speedbump tone, rising tone.
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Results and discussion
Our analysis illustrates a surprising lack of attention to the reporting of amplitude envelope, with 37.6% of stimuli 
from 1017 experiments omitting any information about their temporal structure (Fig. 3). This varied somewhat 
by journal: 53.1% (APP), 35.7% (JEP), 35.1% (HR), 26.9% (JASA), providing useful perspective on our team’s 
previous survey of the journal Music Perception, which fell within this range39. As the lack of definition is fairly 
consistent across duration categories (Fig. 4), it is not driven by the use of extremely short sounds in which ampli-
tude changes would be imperceptible.

To contextualize the under-reporting of amplitude envelope, we compared its definition to that of other stim-
ulus properties (spectral structure, duration, and intensity), as well as technical equipment information—such 
as the exact make and model of delivery device (e.g., Sennheiser HD265 headphones, Sony SRS-A91 Speakers) 
and sound generating equipment (e.g., Grason-Stadler 455 C noise generator, Hewlett-Packard Model 200 ABR 
oscillator) used. As shown in Table 5, we observed significantly less detail about amplitude envelope than most 
surveyed properties. Authors omitted duration information for only 16.7% of stimuli, and spectral structure for 
a mere 4.1%. This contrasts with amplitude envelope’s lack of definition for 37.6% of stimuli—the highest of all 
properties surveyed. Curiously, we found authors significantly more likely to include the exact model of delivery 
device than any information about amplitude envelope (χ2 = 5.87, p = 0.015).

Interpreting the undefined tones (and illuminating the larger problem).  Although the lack of 
definition regarding amplitude envelope is surprising, we believe the more important issue illuminated by this 
suvey is the heavy focus on flat tones in non-speech auditory research. As shown in the grand summary of all four 
journals (pie chart in Fig. 3), flat tones formed the largest group in the survey—39.2% of sounds encountered. 
Clicks/Click trains formed the second largest group of defined stimuli (6.85%). Percussive sounds formed the 
third largest group (6.64%), followed by SESAME tones (5.63%) and OMAR sounds (4.08%). The use of flat tones 
outnumbered that of all other classifications combined—62.8% of defined stimuli. Furthermore, we strongly 
suspect that the vast majority of undefined stimuli are in fact flat.

Given the prominence of both the authors and journals surveyed, we find it unlikely that researchers neglected 
to disclose amplitude changes in their synthesized sounds. Additionally, based on feedback from conferences 
flat tones appear to serve as a go-to stimulus for assessing hearing, and we have often encountered surprise from 
colleagues when realizing that descriptions of a “short tone” could refer to anything else. Furthermore although 
their prevelance ranged considerably amongst journals, Fig. 3 shows remarkable consistency in “presumed flat” 
tones—a combination of the flat and undefined categories: 82.4% (APP), 74.2% (JEP), 73.9% (HR), 77.9% (JASA). 
For these reasons we strongly suspect that undefined tones are in fact flat. Therefore presumed flat tones con-
stitute over three quarters (76.8%) of surveyed stimuli, with the majority of the remaning non-flat tones either 
Clicks/Click Trains or SESAME sounds.

The role of temporal complexity and referential sounds.  In the process of defining stimulus cat-
egories for this project, we realized the utility of grouping sounds based on their referentiality—whether they 
refer to physical events. Both Percussive and OMAR sounds (Fig. 2) originate from real-world events outside 
the laboratory. Percussive sounds are created by musical instruments (drums, pianos) or natural impacts such as 
footsteps60, as well as synthesized tones mimicking receding69, departing66 damped64 or “dull”68 sounds. OMAR 
sounds include musical tones produced by blowing or bowing (including synthesized versions), as well as sound-
scape recordings of the beach and/or forest54 and specific events such as animal vocalizations80,83, and water 
poured into a glass54. We also consider sounds produced by helicopters79 trains55 and car engines104 to be referen-
tial, as they are derived from physical events.

Property Undefined Approximate Specific

Amplitude Envelope No information provided
Trapezoidal envelope,
MIDI Cowbell,
Recording of bird song,
Click train

25 ms rise/fall time and 200 ms sustain,
Train of five rectangular pulses (0.2 ms wide, 
10 ms interval) presented bilaterally every 2 s

Spectral Structure
Tone,
Signal,
Stimulus

500 Hz Tone (i.e. tone with 
specified fundamental)

Sinusoid/Pure Tone,
Broadband White Noise,
Piano,
Bird Chirp

Duration No information provided
Continuous,
Variable,
60 ms-1000 ms (range)

400 ms,
1.5 s,
20 μs

Intensity No information provided Comfortable listening level,
30 dB above absolute threshold

70 dB SPL,
88 dB

Delivery Device No information provided
Headphones
Loudspeaker
Computer monitor speaker

TDH-49 headphones,
Sennheiser HD265 headphones,
Sony Speakers (Model SRS-A91)

Sound
Generator/Source No information provided

Digital recordings of 
Instruments,
Pure-tone oscillator,
8-bit digital-to-analog converter

Grason-Stadler 455 C noise generator,
IBM Thinkpad 560X with an audiocard 
(TDK DMC9000),
Hewlett-Packard Model 200 ABR oscillator

Table 4.  Examples of Undefined, Approximate and Specific Descriptions of Properties.
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Despite its broad definition, only 10.7% of the total stimuli encountered are referential (20.7% JEP; 9.0% APP; 
3.2% JASA; 0.3% HR). Therefore 89.3% of these auditory stimuli have no connection to real-world events. As this 
sample is likely representative of non-speech auditory perception research as a whole, we consider this an impor-
tant insight, given that everyday listening is so grounded in its utility for understanding the environment—such 
as using sound to inform our understanding of objects and events4,5.

How have stimulus selections changed historically?  In order to examine changes in stimulus selec-
tion over time, we grouped our data into five-year bins starting in 2017 and going back to 1950 (Fig. 5). This 
illustrates growth in the use of referential sounds, particularly in the last two decades. Although encouraging, it 
indicates less an embrace of complex sounds than a broadening of research questions. For example, this includes a 

Figure 3.  Amplitude envelope distribution. Bars indicate distribution within each journal, with width 
indicating the journal’s relative points. JEP contained more multi experiment papers and therefore contributed 
the most points (see Table 2 for a detailed breakdown). Pie chart shows the grand summary across all stimuli.

Figure 4.  Distribution of stimuli by duration. The lack of definition is not confined to short sounds. The lowest 
row groups stimuli less than 25 ms, with each row doubling in duration. The top three rows indicate envelope 
distribution for stimuli with undefined durations (~17% of observed stimuli), as well as those with defined 
durations that varied, or sounded continuously (i.e., background noise). Bar width reflects relative number of 
points, with specific points (and percentages of total points) to the right of each bin.
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2013 study of how music affects tinnitus87, a 2015 exploration of how airplane sound affects the taste of food105, 
and a 2015 study of how street noise affects perception of naturalistic street scenes106. Other tasks with referen-
tial sounds include a 2009 study of animal identification55, and a 2008 study of identifying a walker’s posture60. 
Therefore this increased use of referential sounds appears to indicate an expansion of the types of questions 
investigated, rather than a reassessment of basic theories and models derived, tested, and refined with an over-
whelming focus on temporally constrained stimuli.

Conclusions and Implications.  Amplitude envelope’s significance23 in explaining why a novel audio-visual 
illusion breaks with accepted theory16 sparked our interest in understanding its importance in other aspects of 
auditory processing. Our team’s findings regarding its role in audio-visual integration16,17,19,107 duration assess-
ment26, musical timbre108, associative memory109, and even perceived product value110 complement a growing lit-
erature with others documenting its importance in perceptual organization24,25,111, as well as evaluations of event 
duration27–31, loudness32–34, and loudness change35,36. Together, these studies suggest that research focused heavily 
on flat tones might overlook and/or misrepresent the capabilities and capacities of the auditory system. In several 
instances their disproportionate use has demonstrably led to faulty conclusions—for example misunderstanding 
the role of vision in duration estimation16,17,19,107.

Despite long-standing speculation amongst leading figures in auditory perception5,10 and explicit notes of 
concern in the literature11,12,112, to the best of our knowledge there has not previously been a detailed survey of 
this nature. Consequently our examination of over one thousand auditory experiments from four highly regarded 
journals offers three insights of broad relevance: (1) under-reporting of amplitude envelope, (2) defaulting to the 
use of flat tones for non-speech research, and (3) relatively little attention to the importance of referential aspects 
of sounds. We will now discuss each point in turn, placing them in the context of ongoing areas of inquiry.

Lack of attention to the reporting of amplitude envelope.  The lack of attention to the reporting of 
amplitude envelope is our most surprising outcome. Well-respected authors publishing in highly regarded jour-
nals neglected to define amplitude envelope for 37.6% of stimuli. It is one thing to find a particular property to be 
under-researched; it is quite another to realize its importance has been so underappreciated that manuscripts fail 
to convey information about it in over one third of prominent auditory experiments. Although some may argue 
that descriptions such as “a 500 ms tone” imply flat tones, this ambiguous description fits a wide range of sounds. 
For example, all of the SESAME and flat stimuli shown in Fig. 2 are in fact 500 ms tones.

This lack of definition does not result from mere technicalities such as the prominence of very short tones 
(Fig. 4), or general inattention to methodological detail (Table 5). Curiously, our data suggest authors, reviewers 
and editors gave more emphasis to definition of the exact model of headphones used to deliver tone beeps, clicks, 
and bursts than any information regarding amplitude envelope. As every article included in this survey passed 
peer review in highly regarded journals, we see this oversight less as a failing of individual papers than as a cau-
tionary note for the discipline as a whole. Among other concerns, this observation raises important questions 
regarding best scientific practice as researchers replicating these studies would in theory lack information needed 
to definitively recreate the sounds used. Our goal in clearly articulating this oversight is not to dismiss previous 
insights into the the auditory system, but merely to draw attention to the fact that this is an area in which we can 
improve as a discipline. Science progresses through critical reflection leading to refinement of best practices, and 
we are hopeful this survey will spark useful discussions about documention in future research studies.

Encouragingly, we note a slight increase in the amount of specification of amplitude envelope over time, with 
fewer undefined stimuli in more recent years (Fig. 5). We are hopeful this trend will continue, as definition of this 
property can only help to further clarify our understanding of its important role.

Challenges with the use of flat tones as a default stimulus.  More important than the lack of defini-
tion is the fact that flat tones account for over three quarters (77%) of stimuli encountered (when treating unde-
fined tones as flat). As the survey drew upon on a representative selection of auditory research from four major 
journals, we believe this is indicative of standard approaches to auditory perception research. Flat tones hold 
certain methodological benefits such as avoiding potential confounds from associations with referential sounds, 
offering tight control, and/or minimizing variation between research teams. However, as they are processed dif-
ferently than temporally varying sounds in a variety of contexts24–36,107,109–111 they should not be assumed to fully 

Comparisons of defining amplitude envelope vs. other properties

Property
Undefined Raw 
Points Undefined Percentage Chi Squared Test

Spectral Structure 42.15 4.1% χ2 = 272.91, p < 0.001

Duration 170.33 16.7% χ2 = 81.51, p < 0.001

Delivery Device 200.17 19.7% χ2 = 57.12, p < 0.001

Intensity 204.38 20.1% χ2 = 54.13, p < 0.001

Sound Generator/Source 353.00 34.7% χ2 = 1.19, p = 0.275

Amplitude envelope 382.63 37.6% N/A

Table 5.  Definition levels of six properties. All other properties of sound coded were defined at significantly 
higher rates than amplitude envelope.
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assess the limits or even the basic capabilities of the auditory system. Consequently, an over-reliance on flat tones 
poses serious problems for building a generalized picture of the auditory system’s capabilities.

To draw a lesson from other areas of perceptual inquiry, visual researchers have long recognized that we can-
not fully appreciate object recognition by assessing vision using only static, 2D images113. Although unmoving 
stimuli are methodologically convenient (simple to generate and easier to equate than moving images), overreli-
ance on them overlooks the crucial importance of movement114. Consequently, a full understanding of the visual 
system requires stimuli exhibiting cues posing challenges for experimental control. In many ways temporal var-
iation in amplitude is “auditory movement,” and previous research documents that amplitude envelope plays an 
important role in signalling both the materials involved in an event6,7 as well as the event’s outcome. For example, 
amplitude envelope is helpful in understanding whether a dropped bottle bounced or broke8, as well as in deter-
mining an object’s hollowness115. Research focused disproportionately on sounds lacking the kinds of complex 
dynamic properties found in natural sounds may overlook crucial aspects of auditory processing—much as visual 
research using only static images can overlook motion’s role in visual processing.

The literature on duration assessment provides a useful example of potential problems arising from the over-
use of flat tones (beyond numerous previously discussed examples in audio-visual integration). As mentioned in 
the Introduction, research on SET (Scalar Expectancy Theory)37,38 explores the perceptual processing of duration, 
positing in essence the use of a marker strategy– marking tone onset and offset and calculating the difference. 
However this strategy would be ill-suited for sounds with decaying offsets, which might instead be processed 
with a prediction strategy estimating tone completion from decay rate. A direct experimental test of duration 
assessment strategies found evidence consistent with the idea that different underlying strategies are used for 
sounds with flat tones and sounds with natural decays26, which might help explain why flat tones elicit different 
experimental outcomes than sounds with time varying amplitude envelopes in various perceptual organization 
tasks23,25. Although further research is needed to fully explore the issue, a bias towards the use of flat tones in 
assessing SET could lead to problematic situations where numerous experiments converge on and confirm one 
particular theoretical perspective for duration processing—which then fails to explain how duration is actually 
processed in natural sounds which often lack abrupt offsets.

Problems with the pervasive nature of non-referential sounds.  In many ways we see the most 
important outcome of this survey to be that so few non-speech auditory stimuli—just over 10%—emerge from 
real world events. Intriguingly, closer exploration of these referential sounds reveals that the vast majority are 
used in experiments requiring real-world referents. For example, studies exploring the recognition of animal 
vocalizations55, how street noise affects perception of street scenes106, and whether a walker’s posture can be 
identified by their footsteps60 simply could not be conducted without animal vocalizations, street sounds, and 
walkers’ footsteps respectively. Studies using referential sounds for traditional tasks such as sound localization85,86 
and auditory-haptic interactions58 constitute only a small fraction of the 10.7% of referential sounds encountered.

It appears that non-referential (and in particular flat) tones serve as the default auditory stimuli for non-speech 
research. Tone beeps, clicks and SESAME tones are used for the vast majority of research on core theoretical 
issues, such as the perception of loudness32–34,116 and duration117 as well as sound-in-noise detection48,89,118 

Figure 5.  Changes in stimulus distribution over time. Researchers have used more diverse sounds in recent 
decades. However, note that even in the latest time bin, over half of stimuli surveyed are either flat or presumed 
flat, and less than 25% use referential sounds. Bar width indicates number of points associated with a given bin. 
Specific information on the number of papers appears to the right, with the number of points derived from 
these papers (i.e. the total number of experiments) in parenthesis. The earliest years are more sparsely sampled 
in part as they contain only JASA prior to 1966.
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localization119, and stream segregation120,121. This raises important questions about the stimuli best suited for 
exploring auditory processing—for although beeps and clicks offer precise control, the lack of real-world referents 
presents the perceptual system with sounds that differ in crucial ways from those encountered outside the lab108.

Given that the perceptual system evolved in an environment where sounds emanate from events (i.e. rocks 
falling) and actors (i.e. animal vocalizations), the disproportionate use of non-referential sounds in its assess-
ment can lead to problematic conclusions regarding fundamental processes. For example, research on the ‘unity 
assumption’122 and/or ‘identity decision’123 explores the degree to which the kinds of supra-modal congruence 
cues pervasive in natural events affect cross-modal binding, a process essential for our ability to function in a 
multi-sensory world. This includes but is not limited to semantic congruencies124,125, synesthetic correspond-
ences126, and learned associations between arbitrarily-paired stimuli127. Understanding binding in this context 
requires the use of co-occurring sights and sounds (which are by definition referential). As this makes the tight 
control desirable for experiments challenging, research on the unity assumption serves as a useful domain for 
illustrating problems with the relative paucity of naturalistic sounds used in psychophysical experiments.

To apply controlled methodology to a domain that has long been studied with less rigorous methods, Vatakis 
and Spence documented stronger integration of gender-matched (vs. mis-matched) faces and voices, providing 
important evidence for the unity assumption in a tightly controlled psychophysical context124. Subsequent expan-
sions assessed whether non-speech events could trigger the unity assumption—such as notes played on the piano 
vs. classical guitar128. They found videos of a piano key being depressed integrated similarly with the sound of a 
piano as well as a guitar (and that the guitar plucking gesture also integrated similarly with both sounds). Vatakis 
and Spence interpreted these data as indicating that event unity (i.e., the pairing of gestures and sounds emanat-
ing from the same event) had no meaningful effect on multi-modal binding. These outcomes along with others 
using non-musical impact sounds such as noises from objects being struck vs. dropped128 and vocalizations by 
humans vs. monkeys129 led to their conclusion that the unity assumption did not extend beyond speech.

Curiously, Vatakis and Spence’s experiments overlooked the crucial role of amplitude envelope. Notes pro-
duced by the piano and guitar share similar temporal structures, with a sharp attack and immediate decay result-
ing from either a hammer striking a string (piano) or the plucking of a string (guitar). Our team replicated their 
paradigm using notes from instruments with different amplitude envelopes—either percussive (marimba) or sus-
tained (cello). In doing so, we found clear evidence for the unity assumption in a non-speech task107, in contrast to 
its absence in a similar task involving piano/guitar pairs128. This discrepancy is consistent with a broader literature 
on the importance of cross-modal congruency in the binding of impact sounds—particularly with respect to the 
role of amplitude envelope17,19,25,111.

Although oversight of amplitude envelope’s crucial role in the unity assumption by an internationally 
renowned research team is surprising, it is consistent with the relative lack of attention to natural sounds. If only 
~10% of stimuli have real-world referents, it is understandable that important distinctions within this category 
have gone overlooked. This illustrates one challenge with disproportionately using non-referential stimuli such 
as beeps, buzzes, and clicks. Sounds with temporal variations constitute the majority of our everyday listen-
ing—as well as the entirety of our evolutionary history. Yet they appear to be avoided whenever possible in basic 
non-speech auditory perception research. Although their complexity comes with obvious challenges, avoiding 
them risks overlooking the ways in which this same complexity is routinely and effectively used by the auditory 
system in basic processing—similar to problems using only static stimuli to understand object recognition114 
which are gaining increasing attention in visual research113.

Final thoughts.  Although most relevant to those working in audio-visual integration, there are at least three 
reasons why this survey holds important messages for the field of auditory perception as a whole. First, amplitude 
envelope is recognized as playing a role in shaping perception of musical timbre13–15,108 as well as duration26–31 
loudness32–34, loudness change35,36 and even associative memory109. Consequently there is good reason to believe 
its importance could extend widely beyond the context in which it has been most clearly shown to play a role—
audio-visual integration16,17,19,24,25,107,111. Second, further evidence of amplitude envelope’s effects on key theories 
and models can only be discovered by recognizing the value of broadening our stimulus toolset. As contemporary 
sound synthesis programs can easily faciliate the precise generation of tones with more amplitude variation130, 
the primary barrier to their use is no longer technical but historical—choosing flat tones by default. Consequently 
this survey illustrates trends difficult to observe from any single experiment, and provides unique insight into 
challenges with current approaches. Third, the use of time varying envelopes holds tremendous immediate poten-
tial for use in applied work. For example the International Electrotechnic Commission mandates the use of flat 
tones in many auditory alarms131, which is one (of several) well documented problems132,133. Alternative ampli-
tude envelope shapes can improve their suitability for wide-spread use134 yet have been rarely explored to date. 
Therefore efforts to raise awareness of this issue are pertinent for the auditory community as a whole, and for 
projects both theoretical and applied. To aid with this issue we have also created an online tool offering interactive 
visualizations of our survey data at www.maplelab.net/survey.

In conclusion, we strongly encourage both (a) the greater specification of amplitude information and (b) 
the use of a more diverse stimulus set in future studies. To be clear, we do not think flat tones should be avoided 
entirely, nor should non-referential tones be eliminated from our repertoire. Both offer certain benefits, and in 
some situations are adequate or even ideal—particularly when a lack of previous associations is desirable. Our 
concern is not that such sounds are used in auditory research, but rather that they are used so disproportionally. 
Greater consideration of how experimental outcomes might vary with sounds exhibiting natural amounts of 
temporal complexity would help address concerns from leading researchers that the world is “[not] replete with 
examples of naturally occurring auditory pedestals [i.e., flat amplitude envelopes]”11 and that more attention is 
needed to sounds with amplitude envelopes “closer to real-world tasks faced by the auditory system”12.
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