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ABSTRACT Here, we report the draft genome sequences of Alternaria alternata, iso-
lated from seedless grapes, and Alternaria arborescens and Alternaria atra, isolated
from Red Delicious apples, all from the Washington, DC, area.

Fungi belonging to the genus Alternaria are the primary molds contaminating cereal
crops, rape seed, tomato, apples, citrus fruits, and fruit juices (1–3) and are of

increasing environmental concern, as more than 70 Alternaria toxins have been re-
ported (4–6). There is strong evidence that Alternaria mycotoxins may be mutagenic
and carcinogenic to human and animals (4, 7, 8). Here, we present whole-genome
sequences of isolate MOD1-FUNGI5 (Alternaria alternata) from seedless grape and
isolates MOD1-FUNGI6 (Alternaria arborescens) and MOD1-FUNGI7 (Alternaria atra) from
Red Delicious apples. Although limited data are available about the presence of
Alternaria toxins in food and feed products, comparative genomics should allow us to
catalog the biochemical pathways for mycotoxin synthesis and predict the pathogenic
potential of these fungi.

Red Delicious apples and seedless grapes were purchased from local supermarkets
in the Washington, DC, area at weekly intervals. The grapes and the apples were tested
for fungal contamination as follows: they were placed in several sterilized beakers
covered with a double layer of aluminum foil and incubated at room temperature
(�21°C) for 2 to 4 weeks. Any visible growth was transferred and purified on peptone-
dextrose agar (PDA) agar. Pure mold cultures were further subcultured on Czapek yeast
extract agar (CYA), malt extract agar (MEA), and 25% glycerol nitrate agar (G25N) at 5°C,
25°C, and 37°C for microscopic examination and identification (9–13). DNA libraries
were prepared with an Illumina Nextera XT DNA library preparation kit (Illumina, Inc.,
San Diego, CA) and were sequenced on the Illumina NextSeq platform with the NextSeq
500/550 v2 midoutput reagent cartridge (no. of samples, 8) and with 2 � 150-bp
paired-end sequencing. The average insert size was 210 bp. Low-quality reads were
trimmed with a quality threshold of Q � 30 using Trimmomatic (14) with the NexteraPE
adapter file, and the trimmed reads were subjected to de novo assembly using the
SPAdes assembler v3.12.0 (15). Quality assessment of the assembly was performed with
QUAST (16) (Table 1). All software programs were run using default settings unless
otherwise noted. The reads were assembled to 1,170 contigs for Alternaria alternata,
520 contigs for Alternaria arborescens, and 948 contigs for Alternaria atra, and the
coverages were 27�, 115�, and 104�, respectively. The three genomes were analyzed
using BUSCO for assessing genome assembly completeness (17) using the lineage data
set fungi_odb9; MOD1-FUNGI5 had 3 missing and 3 fragmented benchmarked univer-
sal single-copy orthologs (BUSCOs) out of 290, MOD1-FUNGI6 had 2 missing and 2
fragmented, and MOD1-FUNGI7 had 3 missing and 4 fragmented.

Initial identification of the Alternaria species was performed by k-mer and BLAST
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matching of the contigs against whole-genome sequences available in GenBank. BLAST
matching of the contigs to a collection of multilocus sequence typing (MLST) genes,
which included elongation factor 1 alpha, calmodulin, glyceraldehyde 3-phosphate
dehydrogenase, actin, and 18S rRNA genes from 141 Alternaria species, helped
identify the sequence of MOD1-FUNGI7 as Alternaria atra and confirmed the
identity of the other two isolates.

Data availability. The draft genome assemblies were deposited in DDBJ/ENA/
GenBank under BioProject number PRJNA482816, and the complete genome se-
quences are available in GenBank under the accession numbers SJDQ00000000,
SJDP00000000, and SJDO00000000. The FASTQ files are available in the SRA under the
accession numbers SRS3811035, SRS3811040, and SRS3811041. The genome sequences
reported in this announcement are the first versions.
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TABLE 1 Quality assessment of assemblies using QUAST

Sample
No. of 150-bp
reads

No. of contigs
>500 bp long

Total no.
of contigs

Length (bp) of:

GC content
(%) N50 (bp)

Coverage
(�)

Largest
contig

Smallest
contig

Total
assembly

MOD1-FUNGI5 35,876,557 1,170 1,170 315,762 500 33,510,320 51.2 71,241 27
MOD1-FUNGI6 56,961,781 520 664 1,990,081 200 33,792,118 51.1 319,518 115
MOD1-FUNGI7 52,878,830 948 1,862 815,703 200 34,791,487 51.0 161,367 104
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