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SGLT2 Inhibitors and Kidney Protection: Mechanisms Beyond
Tubuloglomerular Feedback

Ashish Upadhyay

Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce the risk for kidney failure and are a key component of guideline-
directed therapy for CKD.While SGLT2 inhibitors’ ability to activate tubuloglomerular feedback and reduce hyperfiltration-
mediated kidney injury is considered to be the central mechanism for kidney protection, recent data from experimental
studies raise questions on the primacy of this mechanism. This review examines SGLT2 inhibitors’ role in tubuloglomerular
feedback and summarizes emerging evidence on following of SGLT2 inhibitors’ other putative mechanisms for kidney
protection: optimization of kidney’s energy substrate utilization and delivery, regulation of autophagy and maintenance of
cellular homeostasis, attenuation of sympathetic hyperactivity, and improvement in vascular health and microvascular
function. It is imperative to examine the effect of SGLT2 inhibition on these different physiologic processes to help our
understanding of mechanisms underpinning kidney protection with this important class of drugs.
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Introduction
Sodium-glucose cotransporter 2 (SGLT2) inhibitors block
glucose reabsorption in the proximal convoluted tubule
of the kidney and increase glycosuria. Canagliflozin,
dapagliflozin, and empagliflozin are commonly used
SGLT2 inhibitors in clinical practice. While initially de-
veloped to lower blood sugar in patients with diabetes
mellitus (DM), SGLT2 inhibitors reduce the risk of kidney
failure and other major kidney outcomes by 30%–40%
over 2–3 years in clinical trials including individuals with
CKD, with or without DM.1–3 Given these consequential
results, SGLT2-inhibitors are now a cornerstone of CKD
therapy.
In addition to its role on CKD, SGLT2 inhibitors may

also lower the risk of AKI.4 AKI risk reduction, however,
varies between different classes of SGLT2 inhibitors.
Clinical trials show a favorable AKI benefit with empa-
gliflozin and dapagliflozin but not with canagliflozin.2,5,6

Similarly, empagliflozin but not canagliflozin reduce his-
tologic markers of tubular damage and biomarkers of
AKI in AKI rat models.7 The mechanisms underlying
these differences may involve variabilities in SGLT2 in-
hibitors’ off-target effects and SGLT2 selectivity.7

As clinical trials show a modest blood glucose lowering
with SGLT2-inhibitors, their effect on reducing intraglo-
merular pressure through tubuloglomerular feedback
(TGF) activation is speculated to play a central role in
kidney protection.8,9 SGLT2 inhibitors, however, have

pleotropic effects on physiology, and multiple mechanisms
likely underpin their clinical benefits. This review examines
SGLT2 inhibitors’ role in TGF and summarizes evidence on
following of SGLT2 inhibitors’ other putative mechanisms
for kidney protection: optimization of kidney’s energy sub-
strate utilization and delivery, regulation of autophagy and
maintenance of cellular homeostasis, attenuation of sym-
pathetic hyperactivity, and improvement in vascular health
and microvascular function.

TGF and SGLT2 Inhibitors
TGF is an adaptive mechanism that regulates single-

nephron GFR (SNGFR) in response to tubular fluid salt
concentration at macula densa.10 Macula densa releases
ATP from the basolateral membrane in proportion to the
luminal solute concentration sensed by apical Na1-K1-2Cl2

cotransporters (NKCC2). ATP binds to P2 purinergic re-
ceptors on afferent arterioles or cleaves to release adenosine.
ATP’s action on P2 purinergic receptors and adenosine’s
action on adenosine A1 receptors result in afferent arteriolar
vasoconstriction. In addition, adenosine-mediated effects
on juxtaglomerular cells decrease renin secretion and re-
duce renin-angiotensin-aldosterone (RAAS)–mediated ef-
ferent arteriolar vasoconstriction. Increased afferent arterial
tone and decreased efferent arterial tone leads to the low-
ering of intraglomerular pressure and the reduction in
SNGFR.
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Hyperfiltration, or elevated SNGFR, is an important
factor in the initiation and progression of kidney diseases.
Hyperfiltration is accentuated in DM because hyperglyce-
mia increases SGLT2 expression leading to enhanced prox-
imal reabsorption and maladaptive inhibition of TGF.11

SGLT2 inhibitors increase distal solute delivery, activate
TGF, decrease intraglomerular pressure, and reduce
hyperfiltration-mediated kidney damage (Figure 1).8,9

This results in an average drop in eGFR of 3–6 ml/min per
1.73 m2 within few weeks of SGLT2 inhibitor initiation
with stabilization and slowing of GFR decline over time.12

The magnitude of early GFR drop, however, differs greatly
among individuals.12 This may be because of the signif-
icant variability in the degree of hyperfiltration among
patients with DM.13 SGLT2 inhibitors reduce GFR when
hyperfiltration is present but may not affect GFR in the
absence of hyperfiltration.9 Therefore, the level of hyper-
filtration may determine SGLT2 inhibitors’ ability to mod-
ulate TGF.
TGF activation with SGLT2 inhibition is more consis-

tently observed in animal models of diabetic kidney dis-
eases (DKDs) than in models of non-DKDs (Table 1).14–29

Similarly, in the dapagliflozin heart failure trial, partici-
pants without DM were more likely to be among 30% of
participants who did not have a decline in GFR within 14
days of dapagliflozin initiation.30 As kidney benefits of
SGLT2 inhibitors are similar in individuals with and with-
out DM in clinical trials, mechanisms other than TGF ac-
tivation must be predominant because TGF activation alone
would have more favorably affected patients with DM than
those without DM.1,3

The relationship between SGLT2 inhibition and TGF may
be different in type 1 and type 2 DM. In individuals with

type 1 DM, empagliflozin significantly lowers hyperfiltra-
tion and increases renovascular resistance, as expected
with the activation of TGF.9 On the contrary, in individ-
uals with type 2 DM, dapagliflozin reduces hyperfiltration
without increasing renovascular resistance, suggesting the
role of efferent arteriolar vasodilation rather than afferent
arteriolar vasoconstriction.31 The differences in the sever-
ity of preglomerular vascular disease between individuals
with type 1 and type 2 DM may have led to this variant
observation.31

Salt intake may influence SGLT2 inhibitors’ role on TGF
(Figure 2). SGLT2 inhibitors reduce GFR, lower protein-
uria, and increase urinary adenosine excretion (a marker of
TGF activation) in rodents on a normal salt diet, but not
on a high salt diet.27,29 Interestingly, empagliflozin does
not affect urinary adenosine excretion but still significantly
lowers kidney fibrosis in experiments involving high salt
diet rat models of CKD.28 These observations suggest
that a high salt diet blunts TGF activation, and benefits
of SGLT2 inhibition in a setting of high salt diet likely
involve other mechanisms.
The activation of TGF is affected by macula densa’s

responsiveness to tubular solute concentration. For exam-
ple, high protein diet can blunt TGF activation by increas-
ing the expression and activity of nitric oxide synthase in
macula densa.32 Similarly, as NKCC2 mediates TGF sens-
ing, blocking of NKCC2 by furosemide also blunts SGLT2
inhibition’s effect on TGF.33 Data from clinical trials, how-
ever, show that neither dietary protein intake nor the use
of diuretics significantly alter benefits observed with
SGLT2-inhibitors.1,34 Concomitant use of RAAS blockers,
agents that potentiate TGF, may have helped to balance
the potential effect of high protein diet and loop diuretics
on TGF.
Some TGF adaptation may occur over time with SGLT2

inhibition. In animal models, dapagliflozin, as expected,
acutely activates TGF, but there is a partial relaxation of
TGF tone after 10–12 days of dapagliflozin exposure.17

Luminal solute concentration at the macula densa that
drive TGF activation may diminish over time because
SGLT2 inhibition’s blocking of proximal reabsorption is
accompanied by a compensatory rise in SGLT1-mediated
glucose reabsorption and vasopressin, aldosterone, and
uromodulin-mediated solute and water reabsorption in
the downstream nephron segments.35,36 In addition,
SGLT1’s sensing of SGLT2 inhibition–mediated increase
in luminal glucose at the macula densa promotes the activity
and expression of nitric oxide synthase, which improves
nitric oxide availability and blunts the TGF-induced af-
ferent vasoconstriction.37

While the influence of SGLT2 inhibitors on TGF is likely
important in selected settings, it is essential to explore other
potential mechanisms for kidney protection with SGLT2
inhibitors given the magnitude of benefits observed across
broad patient subgroups.

Optimization of Kidney’s Energy Substrate Utilization
and Delivery
While.90% of glucose reabsorption in the kidney occurs

through SGLT2, pharmacologic SGLT2 blockade only in-
hibits 30%–50% of glucose reabsorption because of the

Chronic hyperglycemia
without SGLT2-inhibition

Chronic hyperglycemia
with SGLT2-inhibition

��SGLT2 expression in PCT, and
��Na and glucose reabsorption

��Na and glucose reabsorption
in PCY

��Macula densa Na delivery ��Macula densa Na delivery

Blunting of TGF mechanism Activation of TGF mechanism

��Intra-glomerular pressure ��Intra-glomerular pressure

��Progressive kidney injury ��Progressive kidney injury

Figure 1. SGLT2 inhibitors and TGF. Chronic hyperglycemia in-
creases SGLT2 expression in PCTs leading to enhanced proximal
reabsorption of sodium (Na) and glucose and blunting of TGF.11

SGLT2 inhibitors block Na and glucose reabsorption in PCT, increase
Na and glucose in macula densa, activate TGF, decrease intra-
glomerular pressure, and reduce hyperfiltration-mediated progressive
kidney injury.8,9 PCT, proximal convoluted tubule; SGLT2, sodium-
glucose cotransporter 2; TGF, tubuloglomerular feedback.
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Table 1. Animal studies of SGLT2 inhibitors assessing markers of tubuloglomerular feedback

Author, Study Year Animal Model Intervention to Induce
SGLT2 Inhibition Markers Examined to Assess TGF Summary of Findings Related to TGF

Summary of Findings
Related to Changes in

Kidney Histology

Vallon et al., 199914 Rat models of STZ-induced
diabetes

Phlorizin SNGFR and distal tubular concentration
of electrolytes using micropuncture
techniques

Phlorizin reduced SNGFR and
increased distal tubular
concentration of sodium,
chloride, and potassium

N/A

Arakawa et al., 200115 Mice models of obese type 2
diabetes

T-1095 Albuminuria T-1095 reduced albuminuria T-1095 suppressed the expansion
of glomerular mesangial area

Malatiali et al., 200816 Rat models of STZ-induced
diabetes

Phlorizin GFR, proteinuria Phlorizin prevented
diabetes-associated ↑ in
GFR and proteinuria

Phlorizin prevented kidney
hypertrophy, but not
glomerular hypertrophy

Thompson et al., 201217 Rat models of STZ-induced
diabetes

Dapagliflozin SNGFR and distal tubular chloride
concentration using micropuncture
techniques

Dapagliflozin lowered SNGFR;
SNGFR and distal tubular
chloride concentration were
inversely correlated

N/A

Vallon et al., 201318 Mice models of STZ-induced
diabetes

Gene-targeted SGLT2
knockout

GFR SGLT2 knockout prevented
diabetes-associated ↑ in GFR

N/A

Vallon et al., 201419 Akita mice models of
diabetes

Empagliflozin GFR, albuminuria Empagliflozin prevented
diabetes-induced ↑ in
GFR and reduced albuminuria
in proportion to hyperglycemia

Empagliflozin attenuated the
increase in glomerular size

Tahara et al., 201420 Mice models of STZ-induced
diabetes

Ipragliflozin GFR, albuminuria Ipragliflozin reduces
diabetes-associated ↑ in
GFR and albuminuria

N/A

O’Neill et al., 201521 Rat models of STZ-induced
diabetes and control rats
without diabetes

Phlorizin GFR, renal plasma flow, renal
vascular resistance

Phlorizin reduced GFR in
diabetic rats but not in control
rats. Phlorizin did not affect renal
vascular resistance or renal
plasma flow but increased
urinary sodium and glucose
excretion

N/A

Zhang et al., 201622 Five/six nephrectomy rat
models of CKD

Dapagliflozin GFR, albuminuria Dapagliflozin did not alter GFR
or albuminuria

Dapagliflozin did not attenuate
glomerulosclerosis or
tubulointerstitial fibrosis

Ansary et al., 201723 Five/six nephrectomy rat
models of CKD

Luseogliflozin Renal blood flow and creatinine
clearance

Luseogliflozin did not alter renal
blood flow or creatinine
clearance but increased
urinary sodium and glucose
excretion

N/A

Cassis et al., 201824 C57BL/6N mice with
unilateral nephrectomy and
protein overload proteinuria
induced by bovine serum albumin

Dapagliflozin Albuminuria Dapagliflozin lowered albuminuria Dapagliflozin prevented podocyte
depletion induced by bovine
serum albumin

Kidokoro et al., 201925 Akita mice models of diabetes Empagliflozin SNGFR and afferent arteriolar diameter
using multiphoton microscope,
albuminuria, urinary adenosine excretion

Empagliflozin lowered SNGFR,
decreased afferent arteriolar
diameter, and increased
urinary adenosine concentration.
Adenosine A1 receptor antagonist
abolished the effects of empagliflozin

N/A
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Table 1. (Continued)

Author, Study Year Animal Model Intervention to Induce
SGLT2 Inhibition Markers Examined to Assess TGF Summary of Findings Related to TGF

Summary of Findings
Related to Changes in

Kidney Histology

Thomson and Vallon, 202126 Rat models of STZ-induced
diabetes

Ertugliflozin GFR, glomerular capillary pressure, and
proximal reabsorption using micropuncture
techniques

Ertugliflozin reduced GFR, glomerular
capillary pressure, and proximal
reabsorption tubular reabsorption

N/A

Tauber et al., 202127 Unilateral nephrectomy mice
models of CKD on normal
and high salt diet

Empagliflozin GFR Empagliflozin reduced GFR in mice
models of normal salt diet but
not in mice models of high salt diet

Empagliflozin did not affect
renal fibrosis in mice models
of high salt diet

Zeng et al., 202228 Five/six nephrectomy rat
models of CKD on a high
salt diet

Empagliflozin Urinary adenosine excretion Empagliflozin did not affect urinary
adenosine excretion

Empagliflozin reduced renal
fibrosis

Chen et al., 202329 Five/six nephrectomy rat
models of CKD

Empagliflozin Creatinine clearance, albuminuria,
urinary adenosine excretion

Empagliflozin decreased albuminuria
and increased urinary adenosine
concentration. Empagliflozin,
however, increased creatinine
clearance

Empagliflozin improved renal
interstitial fibrosis and
glomerulosclerosis

N/A, not available; STZ, streptozocin; SNGFR, single-nephron GFR; TGF, tubuloglomerular feedback.
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compensatory rise in distal glucose reabsorption.36 There-
fore, SGLT2 inhibitors result in 50–90 g of glucose or
200–360 kcal of energy loss per day in individuals filtering
approximately 180 g of glucose daily. Energy loss is higher
with higher GFR and blood glucose concentration. This
energy loss leads to a state akin to calorie restriction and
triggers physiologic processes that promote the efficient
utilization of energy substrates.
Ferranni and colleagues first proposed a thrifty substrate

hypothesis in 2016 to explain SGLT2 inhibitors’ observed
cardiorenal benefits.38 The central rationale for this hypoth-
esis is that SGLT2 inhibitors promote lipolysis by inducing
negative energy balance and stimulate ketogenesis by in-
creasing hepatic delivery of free fatty acids and lowering
insulin-to-glucagon ratio (Figure 3).38 Ketones then serve as
an efficient energy source for organs under stress. An in-
crease in plasma concentration of b-hydroxybutyrate, a
ketone body, is observed with SGLT2-inhibition,39 and
kidneys and heart have a large capacity for using b-hydrox-
ybutyrate as an energy source.40

Organs under stress take up b-hydroxybutyrate through
an insulin-independent transport mechanism.38 Inside cells,
mitochondrial b-hydroxybutyrate dehydrogenase converts
b-hydroxybutyrate to acetyl coenzyme A through multiple
catalytic steps.38 Acetyl coenzyme A enters into the tri-
carboxylic acid cycle for oxidative phosphorylation lead-
ing to the generation of ATP.38 Compared with pyruvate,
the product of glucose metabolism, b-hydroxybutyrate
oxidation requires less oxygen and provides better mito-
chondrial efficiency.38 In addition, b-hydroxybutyrate
serves as a signaling molecule that activates adaptive
stress response pathways, suppresses oxidative stress,
and lowers inflammation.41,42 Therefore, in a state of kid-
ney stress, b-hydroxybutyrate may play a role in mitigat-
ing kidney injury.
In addition to improving energy substrate utilization

through ketogenesis, SGLT2 inhibitors may also increase
energy substrate delivery, lower oxygen consumption, and
reduce hypoxia-induced kidney damage (Figure 4). In clin-
ical trials, SGLT2 inhibitors increase hematocrit by 2%–4%,
likely by stimulating erythropoietin secretion.44 Higher he-
matocrit may improve tissue oxygen delivery, and higher

erythropoietin may improve mitochondrial function, pro-
mote angiogenesis, and reduce inflammation.45–47 A media-
tion analysis of a large clinical trial showed that changes in
hematocrit mediated .50% of the favorable effect of empa-
gliflozin on cardiovascular mortality.48 Interestingly, how-
ever, improvement in renal cortical oxygenation occurred
without an increase in cortical perfusion or oxygen de-
livery in a trial involving participants with type 1 DM.43

This observation suggests that SGLT2 inhibition may be
improving kidney oxygenation in this trial by blocking
high oxygen-consuming proximal solute reabsorption
rather than by increasing oxygen supply. Because chronic
hypoxia promotes inflammation and fibrosis, SGLT2 in-
hibitors may be providing kidney protection by amelio-
rating deleterious effects of chronic hypoxia.
SGLT2 inhibitors may also improve metabolism and

energy utilization through its effect on leptin-adiponectin
ratio. Leptin is an adipokine that is associated with in-
sulin resistance, inflammation, and oxidative stress.49

Adiponectin is an anti-inflammatory adipokine that en-
hances insulin sensitivity.49 A high leptin-adiponectin
ratio is associated with CKD,49 and adiponectin reduces
CKD risk.50 SGLT2-inhibitors significantly decrease lep-
tin and increase adiponectin levels in clinical trials
involving patients with type 2 diabetes.51 Mechanisms
underlying these findings have not been fully elucidated.

Regulation of Autophagy and Maintenance of Cellular
Homeostasis
Autophagy is a lysosome-dependent pathway for the

degradation and recycling of cytosolic components that

SGLT2-inhibition

– +

Activation of TGF mechanism

��Salt intake
��Protein intake
Furosemide

��Salt intake
��Protein intake
RAAS-inhibitors

Figure 2. Salt intake, protein intake, and medication SGLT2 in-
hibitor’s effect on TGF. SGLT2 inhibitors may activate TGF
mechanism.8,9 High salt intake, high protein intake, and furosemide
may blunt SGLT2 inhibitor’s effects on TGF.27–29,32,33 Low salt in-
take, low protein intake, and RAAS inhibitors may potentiate SGLT2
inhibitor’s effects on TGF. RAAS, renin-angiotensin-aldosterone.

SGLT2-inhibitors

���Glycosuria

��Ketogenesis

��Blood glucose
Negative energy

balance

��Lipolysis

��Free fatty acid��Glucagon
��Insulin

Figure 3. SGLT2 inhibitors and ketogenesis. SGLT2 inhibitors in-
crease glycosuria, lower blood glucose, and create a negative energy
balance.38 These mechanisms stimulate hepatic ketogenesis by
promoting lipolysis, lowering pancreatic insulin secretion, and in-
creasing pancreatic glucagon secretion.38,39
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provides new building blocks necessary for tissue repair.
Autophagy deficiency contributes to kidney damage.52 In
recent years, there is an emerging understanding that
SGLT2 inhibitors activate autophagy by favorably influenc-
ing mammalian target of rapamycin (mTOR), 59adenosine
monophosphate-activated protein kinase (AMPK), sirtuin 1
(SIRT1), and hypoxia-inducible factor (HIF) signaling path-
ways (Figure 5).54–56

mTOR protein complex 1 (mTORC1) is a serine-
threonine kinase protein complex that integrates nutrient

signals, including from glucose and amino acid, to stim-
ulate anabolism and suppress autophagy in a state of
calorie excess.59 Proximal tubular mTORC1 is believed to
play a significant role in DKD.60 SGLT2 inhibitors reduce
the activity of mTORC1 in proximal tubular cells and
prevents tubulointerstitial fibrosis.60 AMPK, unlike mTOR,
is a sensor of low intracellular energy (low ATP to
59adenosine monophosphate ratio) that stimulates catab-
olism and activates autophagy by inhibiting mTORC1 in a
state of calorie deficit.61 The catabolic process stimulated

SGLT2-inhibitors

���mTORC1

��Kidney damage
��Inflammation

and fibrosis

��AMPK ��HIF-1�

��HIF-2�

��Autophagy

��SIRT1

Stimulation of nutrient
deprivation sensors

Figure 5. SGLT 2 inhibitors and autophagy. SGLT2 inhibitors create negative energy balance which stimulates nutrient deprivation sensors in
tissues.53 Tissues respond to nutrient deficiency by inducing pathways that inhibit mTORC1 and stimulate AMPK and SIRT1.54–56 SIRT1
stimulates AMPK and HIF-2a and suppresses HIF-1a.53,57,58 These pathways ultimately contribute to the reduction in kidney damage by
improving autophagy and lowering inflammation and fibrosis. AMPK, 59adenosine monophosphate-activated protein kinase; HIF, hypoxia-
inducible factor; mTORC1, mammalian target of rapamycin protein complex 1; SIRT1, sirtuin 1.

SGLT2-inhibitors

���Proximal tubular
sodium-glucose

cotransport

��Erythropoietin

��Hematocrit

��Tissue oxygenation

��Angiogenesis

��O2 delivery

��Mitochondrial function

��Proximal tubular
O2 usage

��chronic hypoxia-associated
inflammation, extracellular tissue

remodeling and fibrosis

Figure 4. SGLT 2 inhibitors and tissue oxygenation. SGLT2 inhibitors improve tissue oxygenation in kidneys by decreasing proximal tubular
oxygen (O2) usage.

43 SGLT2 inhibitors potentially increase O2 delivery through erythropoietin-mediated increase in hematocrit, angiogenesis,
and mitochondrial function. Improvement in tissue oxygenation lowers hypoxia-associated kidney damage.44–47
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by AMPK then supplies ATP to energy-deficient cells.
Canagliflozin, likely by augmenting calorie loss, activates
AMPK-mediated autophagic stimulation independent of
insulin or glucagon signaling.62 Multiple studies demon-
strate that SGLT2 inhibitors stimulate autophagy through
mTOR-AMPK–mediated mechanisms and contribute to
kidney protection in a wide variety of kidney insults.63–65

SIRT1 is a nicotinamide adenine dinucleotide–dependent
deacetylase that acts as a nutrient deprivation sensor.66

SIRT1 deacetylates tumor protein 53, which accelerate
autophagy activating pathways.67 During glucose depri-
vation, SIRT1 and AMPK stimulate each other to augment
autophagy and mitochondrial biogenesis.57 SIRT1 also
suppresses mTORC1 independent of AMPK.68 SIRT1 de-
ficiency accelerates kidney damage, and SIRT1 activation
alleviates kidney injury.69,70 Experimental studies show that
SIRT1 expression increases in animal models exposed to
SGLT2 inhibitors.71,72

HIFs are a family of transcription factors that regulate
cellular responses to hypoxia. HIF-1a and HIF-2a are iso-
forms of HIF that are upregulated by hypoxia and promote
gene expressions that enhance oxygen delivery and reduce
oxygen consumption.53 Specifically, HIF-1a activation in-
creases inflammation, fibrosis, angiogenesis, and autopha-
gic clearance of mitochondria whereas HIF-2a activation
decreases inflammation and fibrosis and increases erythro-
poietin production and autophagic clearance of peroxi-
somes.53 In diseases of over nutrition, such as DM and
obesity, HIF-1a is overactive, and HIF-2a is suppressed in
kidney tissues promoting inflammation and fibrosis.53,73

SGLT2 inhibition suppresses hypoxia-induced HIF-1a ex-
pression in human proximal tubules and reduces tubular

injury and interstitial fibrosis.74 In addition, SGLT2 inhib-
itors may also increase HIF-2a expression through SIRT1-
dependent mechanism.58 Thus, SGLT2 inhibitors may be
providing kidney protection by restoring the balance be-
tween HIF-1a and HIF-2a expressions in kidney cells.
SGLT inhibitors may have a role in maintaining podo-

cyte homeostasis. Albumin overload increases SGLT2
expression on podocyte surface and leads to the remod-
eling of F-actin and a-actinin-4 filaments and loss of
b1-integrins, proteins that are vital for podocyte integrity
and function.24 SGLT2 inhibition directly ameliorates
albumin overload–induced cytoskeletal rearrangement
and decreases podocyte dysfunction and loss.24 SGLT2
inhibition may also alleviate podocyte injury and loss by
dampening inflammation and activating autophagy
through the inhibition of mTORC1 signaling.75

SGLT2 inhibition may favorably influence the role of
macrophages in kidney injury and repair. During acute
injury, chemokines and complement components re-
leased by damaged cells promote monocyte recruitment
and monocyte’s differentiation into proinflammatory M1
macrophages.76 During chronic repair phase, monocytes
primarily differentiate into anti-inflammatory M2 macro-
phages and M1 macrophages polarize to M2 macro-
phages.76 While M2 macrophages are anti-inflammatory,
their polarization may also result in profibrotic M2 sub-
types.76 SGLT2 inhibitors impede macrophage infiltration
in kidney tissues, promote M1–M2 polarization, and inhibit
the polarization of M2 macrophages into profibrotic
subtypes.77,78

SGLT2 inhibitors may help maintain cellular redox
homeostasis and reduce oxidative stress in kidney tissues

SGLT2-inhibitors

CKD

���Afferent sympathetic signal

��Heart rate
��LVH
��NH1 activity
��CVD

��SGLT2 expression
��NH3 activity
��Na reabsorption
��Oxidative stress
��CKD progression

��Natriuresis
��BP
��NH3 activity
��Arterial stiffness
��Endothelial
dysfunction

Improves
Heart and
Kidney Health

��BP
��Arterial stiffness
��Endothelial dysfunction

��Central sympathetic
outflow

Figure 6. CKD, SGLT2 inhibitors, and sympathetic tone. There is an increase in sympatho-excitatory afferent signals from damaged kidneys to
the brain in CKD.81,82 This leads to an increase in central sympathetic outflow. Increased sympathetic outflow increases heart rate and BP,
contributes to LVH and CVDs, increases SGLT2 expression in the PCT, activates NH1 and NH3, increases sodium retention, increases
oxidative stress, contributes to arterial stiffness, and worsens endothelial function.81–89 SGLT2 inhibitors mitigate these adverse effects of
increased sympathetic tone by promoting natriuresis, lowering BP, inhibiting NH3 activity, improving arterial function, and improving
endothelial function.87,90–96 CVD, cardiovascular disease; LVH, left ventricular hypertrophy; NH1, Na1/H1 exchanger isoform 1; NH3,
Na1/H1 exchanger isoform 3.
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by activating the Kelch-like ECH-associated protein
1–nuclear factor erythroid 2-related factor 2 (Keap1-
Nrf2) pathway.79 Keap1-Nrf2 activation is postulated
to reduce arteriolar tone and improve nitric oxide bio-
availability.79 Consistent with these hypotheses, Keap1-
Nrf2 activation increases GFR and renal blood flow in
animal studies,79,80 an effect that is opposite to what is
expected through TGF activation. While Keap1-Nrf2 ac-
tivation may increase GFR without affecting intraglomer-
ular pressure,80 more mechanistic studies are needed to
better understand how SGLT2 inhibitor’s effect on
Keap1-Nrf2 system modulates its effect on glomerular
hemodynamics through TGF.

Attenuation of Sympathetic Hyperactivity
Hyperactivity of sympathetic nervous system (SNS) is

associated with CKD, contributes to CKD progression,
and is a marker of poor prognosis (Figure 6).83 Abnormal
RAAS activation, sympatho-excitatory afferent signals
from damaged kidneys, inhibition of nitric oxide’s
sympatho-inhibitory and vagotonic effects, and increase
in oxidative stress are some of the mechanisms for in-
creased sympathetic tone in CKD.81,82 SNS stimulation
promotes proximal tubular sodium reabsorption, upre-
gulates SGLT2 expression, and increases translocation of
SGLT2 to cell membrane.84,85 SNS stimulation also acti-
vates luminal Na1/H1 exchanger isoform 3 (NH3) in
proximal tubules.86 SGLT2 and NH3 are linked, and the
natriuretic effect of SGLT2-inhibitors is partially through
its inhibition of NH3-mediated sodium reabsorption.87

SGLT2 inhibitors, therefore, mitigate sodium retention
that accompanies SNS activation.
SGL2 inhibitors may also attenuate cardiac risks from

sympathetic hyperactivity by directly conferring favor-
able ion homeostasis in cardiomyocytes. SGLT2 inhibi-
tors inhibit Na1/H1 exchanger 1, late sodium channel
current during action potential, and calcium/calmodulin-
dependent protein kinase-II, leading to a reduction in
sodium and calcium overload in cardiomyocytes.88,89

Lower intracellular sodium and calcium enhances mito-
chondrial function, decreases the risks for arrhythmias,
and improves systolic and diastolic function.
SGLT2 inhibitors lower systolic BP without increasing

heart rate in clinical trials, contrary to what is expected for
drugs that cause natriuresis.97 This observation led to the
hypothesis that SGLT2 inhibitors, in addition to causing
natriuresis, may be alleviating aberrant SNS stimulation,
because low heart rate is associated with low sympathetic
tone.98 Consistent with this hypothesis, SGLT2 inhibitors
lower the markers of SNS activity like norepinephrine,
neuropeptide Y and tyrosine hydroxylase levels, norepi-
nephrine turnover, arterial pressure lability, and salt sen-
sitivity in animal studies.90–92 Similarly, limited data also
suggest the favorable effect of SGLT2 inhibition on SNS
activity in human participants.93 These observations indi-
cate that SGLT2 inhibitors may partly be contributing to
heart-kidney protection through the attenuation of sympa-
thetic hyperactivity seen in CKD.

Improvement in Vascular Health and Microvascular
Function
Arterial stiffness and endothelial dysfunction, impor-

tant mechanisms for vascular diseases, correlate with
kidney dysfunction and albuminuria.99–101 SGLT2 inhib-
itors have been shown in clinical trials to modestly lower
pulse wave velocity, a measure of arterial stiffness, and
improve brachial artery flow mediated dilation, a mea-
sure of endothelial dysfunction.94–96 In addition, there
may be a connection between SGLT2 inhibitors and
endothelin-1, a potent vasoconstrictor. Post hoc analyses
of clinical trials suggest that SGLT2 inhibitors may lower
endothelin-1 level and mitigate fluid retention seen with
endothelin receptor antagonists.102,103

Favorable effect on vascular function noted in SGLT2
inhibitor clinical studies is consistent with data from basic
science research. Mice studies show that SGLT2 inhibitors
improve endothelial function and reduce molecular signals
that aggravate arterial stiffness.104 SGLT2 inhibitors may
improve endothelial function and promote vasorelaxation
by inhibiting the secretion of endothelial proinflammatory
cytokines, reducing mitochondrial and cytoplasmic reactive
oxygen species, and increasing endothelium-derived nitric
oxide level.105–107 SGLT2 inhibitors may also induce vaso-
dilation directly by activating protein kinase G, voltage-
gated potassium channels, and the intrarenal angiotensin-
(1–7)/angiotensin-converting enzyme 2/Mas axis.108–110

The activation of angiotensin-(1–7)/angiotensin-convert-
ing enzyme 2/Mas axis results in vasodilation through the
release of bradykinin, prostaglandin, and endothelin-
dependent nitric oxide.109,110

SGLT2 inhibitors may also improve vascular function by
mobilizing bone marrow-derived CD34-positive circulating
progenitor cells and restoring the vascular repair system.111

Using a series of experiments in samples from participants
with DM and recent myocardial infarction, Hess and col-
leagues showed that empagliflozin increases circulating
provascular progenitor cells and reduces systemic oxidative
stress creating a microenvironment that is more permissive
to blood vessel regeneration.111 Additional studies are
needed to confirm this intriguing hypothesis.

Conclusion
SGLT2 inhibitors reduce the risk for kidney failure and

are now a cornerstone of CKD therapy. In addition to
activating TGF, lowering intraglomerular pressure and low-
ering hyperfiltration-mediated kidney damage, SGLT2 in-
hibitors promote multiple other favorable physiologic path-
ways that contribute to kidney health. Optimization of
energy substrate utilization and delivery, promotion of
cellular renewal through the activation of autophagic path-
ways, attenuation of sympathetic tone, and improvement in
vascular function are some of the potential mechanisms for
SGLT2 inhibitors’ observed benefits in CKD. Future re-
search is needed to understand whether these favorable
physiologic changes are sustained with chronic treatment
and whether SGLT2 inhibitors have a role in preventing
CKD in at-risk individuals.
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