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Acute kidney injury (AKI) is a significant health 
problem that is characterized by rapid kidney function 
decline, and an incidence of roughly 14 per 1000 ad-
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Summary: Renal ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury 
(AKI), which could induce the poor prognosis. The purpose of this study was to characterize 
the molecular mechanism of the functional changes of CD11b+/Ly6Cintermediate macrophages 
after renal IRI. The gene expression profiles of CD11b+/Ly6Cintermediate macrophages of the sham 
surgery mice, and the mice 4 h, 24 h and 9 days after renal IRI were downloaded from the 
Gene Expression Omnibus database. Analysis of mRNA expression profiles was conducted to 
identify differentially expressed genes (DEGs), biological processes and pathways by the series 
test of cluster. Protein-protein interaction network was constructed and analysed to discover the 
key genes. A total of 6738 DEGs were identified and assigned to 20 model profiles. DEGs in 
profile 13 were one of the predominant expression profiles, which are involved in immune cell 
chemotaxis and proliferation. Signet analysis showed that Atp5a1, Atp5o, Cox4i, Cdc42, Rac2 
and Nhp2 were the key genes involved in oxidation-reduction, apoptosis, migration, M1-M2 
differentiation, and proliferation of macrophages. RPS18 may be an appreciate reference gene 
as it was stable in macrophages. The identified DEGs and their enriched pathways investigate 
factors that may participate in the functional changes of CD11b+/Ly6Cintermediate macrophages 
after renal IRI. Moreover, the vital gene Nhp2 may involve the polarization of macrophages, 
which may be a new target to affect the process of AKI.
Key words: renal ischemia-reperfusion injury; macrophage; differentially expressed genes; se-
ries test of cluster; functional enrichment analysis; protein-protein interaction

missions[1–3]. The mortality could rise to 11% one week 
after the occurrence of AKI, and to 38.1% at five years 
in severe AKI patients[4, 5]. Renal ischemia-reperfusion 
injury (IRI), including hypotension or shock in devel-
oped countries and dehydration in other countries, is a 
major cause of AKI[5].

IRI can result in tubular vacuolization, edema, in-
farction, cast formation, and neutrophil infiltration[6]. 
Some immune cells can affect the progression of 
AKI[7–9]. For example, macrophages could cause renal 
injury, facilitate renal repair, and cause fibrosis after 
IRI. Within 24 h after IRI, monocytes are recruited to 
the kidney and differentiate into macrophages[10]. M1 
macrophages accumulate soon after IRI, promoting a 
proinflammatory milieu and worsening the level of tu-
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bule injury. A subsequent switch to M2 macrophages 
can suppress the inflammatory response and induce a 
proliferative repair phase[11]. M2 macrophages are in-
volved in producing extracellular matrix components, 
but may also contribute to the tissue fibrosis, should 
this process become dysregulated[12]. 

The marker of macrophages may be diverse in 
different organs, therefore defining macrophages 
according to their function has become challenging[13]. 
According to the whole genome microarray 
analysis data, the CD11b+/Ly6Chigh population was 
associated with the onset of renal injury and produced 
proinflammatory cytokines. In addition, the CD11b+/
Ly6Cint population demonstrated a wound healing 
phenotype[14]. Dragomir et al reported that CD11b+/
Ly6Clo cells were larger than CD11b+/Ly6Chi cells, and 
more irregularly shaped. Moreover, CD11b+/Ly6Clo 
cells contained a highly vacuolated cytoplasm and an 
increased cytoplasm:nuclear ratio. RT-PCR analysis 
revealed that mRNA expression levels related to 
proinflammatory proteins (for example, TNF-α, iNOS, 
and the chemokine receptor CCR2) were significantly 
higher in CD11b+/Ly6Chi cells than in CD11b+/
Ly6Clo cells. In contrast, the mRNA expression level 
of anti-inflammatory cytokine IL-10 was reduced 
in CD11b+/Ly6Chi cells when compared to CD11b+/
Ly6Clo cells[15]. Clements et al investigated the genes 
that were uniquely expressed in each population. It is 
necessary to consider of genes that were regulated in 
each phenotype over time[14]. 

The purpose of our study was to evaluate the 
proportion of macrophages that changed at different 
time points after IRI. We used microarray analysis to 
identify the differentially expressed genes (DEGs) in 
CD11b+/Ly6Cint macrophages of C57BL/6 mice and 
mice undergoing sham surgery or IRI for 4 h, 24 h or 9 
days. We used The Series Test of Cluster (STC) analy-
sis, STC-Gene Ontology analysis and pathway analysis 
to identify changes in function and pathways in mac-
rophages in the different groups. The protein-to-pro-
tein interaction (PPI) network was applied to select key 
genes by degree, which may help explain how macro-
phages were influenced at different time points. Our 
study may provide further insight into a new target that 
affects the process of AKI by changing the macrophage 
function.

1 MATERIALS AND METHODS

1.1 Data Pre-processing 
Gene expression analysis was performed on an 

Affymetrix Mouse Genome 430 2.0 Array platform 
(Affymetrix, USA) for which the transcription profile 
GSE75808 from the Gene Expression Omnibus 
(GEO) database, an open-access functional genomics 
data repository was downloaded. Twenty-five male 

C57BL/6 mice (8 to 10 week-old) were divided into 
several groups and underwent either bilateral renal IRI 
for 28 min or sham surgery followed by reperfusion. 
For RNA isolation and amplification for cDNA 
production, macrophage populations were sorted on 
a BD FACSARIA II cell sorter (BD Bioscience,usA) 
based on CD11b+/Ly6Chigh, CD11b+/Ly6Cint or CD11b+/
Ly6Clow as previously described[14]. We analysed the 
expression of CD11b+/Ly6Cint macrophages of the 
sham (GSM1968232 and GSM1968235), 4-h IRI 
(GSM1968226, GSM1968228 and GSM1968230), 24 h 
IRI (GSM1968216, GSM1968217 and GSM1968218) 
and 9 day IRI (GSM1968219, GSM1968221 and 
GSM1968223) groups to identify genes that are 
associated with this subset of macrophages.
1.2 DEGs Analysis

The probe-level data were converted into expres-
sion measures so that by taking the average expression 
value, the expression values of all probes for a given 
gene in each sample were reduced to a single value[16]. 
Next, the principal component analysis (PCA) was 
performed and DEGs were identified as previously de-
scribed[17]. In our study, we used the effective statisti-
cal method for small samples to identify differentially 
expressed mRNAs among the four groups of macro-
phages by GCBI (https://www.gcbi.com.cn/gclib/html/
index). These values include false discovery rate-ad-
justed P values and were considered significant when 
P<0.05.
1.3 STC Analysis

To validate the most probable set of clusters of 
four-time series, we used the STC algorithm of gene 
expression dynamics to profile the gene expression 
time series as previously described[18]. The STC algo-
rithm identified which profiles have a significant num-
ber of genes assigned and the result may indicate the 
change rule of samples at different time points. 
1.4 STC-Gene Ontology Analysis

To identify functional changes in macrophages, we 
analysed the role of DEGs in each significant expres-
sion profile. Analyses were based on the Gene Ontolo-
gy (GO) database in Funrich 3.0 software as previously 
described[19]. The DEGs of each significant expression 
profile was classified into a group of biological process 
categories from GO annotation. GO terms were consid-
ered significant at P<0.05.  
1.5 Pathway Analysis

We identified the significant pathways that were 
changed in CD11b+/Ly6Cint macrophages. To identify 
the main biological function of CD11b+/Ly6Cint mac-
rophages, pathways of genes with similar expression 
trend were analysed. Analyses were based on the Re-
actome database in Funrich. The threshold of signifi-
cance was considered as P<0.05.
1.6 PPI Network Construction Analysis

We created a PPI network to analyse the key genes 
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which regulate other genes. Based on the 927 DEGs in 
profile 13, PPI was analysed by STRING 10.5 and the 
cytoHubba app of Cytoscape software (version 3.5.1) 
as previously described[20]. The combined score of the 
PPI value was>0.4. Genes that showed a high degree  
were identified as key genes as previously described[21]. 

CytoHubba is an approach that has frequently 
been used to select hub genes, and provides 11 
topological analysis methods, including Degree, 
Maximum Neighborhood Component, Edge 
Percolated Component, Maximal Clique Centrality, 

Density of Maximum Neighborhood Component, 
and six centralities (Bottleneck, EcCentricity, 
Closeness, Betweenness, Radiality, and Stress) 
based on the shortest paths[22]. Genes that appeared in 
the top 50 genes by more than 6 ways in CytoHubba 
were identified. The top 50 hub forming genes were 
output by each of the ranking methods as a measure 
of significance. Genes were considered significant 
when they were identified by both methods. We 
especially focused on the genes of the top 20 degrees 
in the PPI network as previously described[23]. 

Fig. 1 Data processing before filtering differentially expressed genes (DEGs)
A and B: box-plot of expressed data before and after normalization. Vertical axis represents expression values and horizontal 
axis represents the sample name. The line in the box represents the data median in each group, whose distribution represents the 
degree of standardization of data; C: principal component analysis (PCA) scores plot of four groups

Fig. 2 Series test of cluster (STC) analysis for DEGs of CD11b+/Ly6Cint macrophages derived from sham operated mice and from mice
 4 h, and 1 and 9 days after renal ischemia-reperfusion injury (IRI)

2 RESULTS

2.1 Identification of DEGs 
In this study, we analysed DEGs from CD11b+/

Ly6Cint macrophages, which were isolated from 
kidneys of mice undergoing sham surgery (n=2), and 
IRI at 4 h, 24 h, and 9 days (n=3 per group). Figure 1A 
and 1B present the data before and after normalization. 
In fig. 1C, the PCA score plots of the four groups 

are shown. A total of 6738 normalized DEGs were 
identified (P<0.05 and q<0.05) at different time points.
2.2 Cluster Analysis

To identify target genes among the 6738 genes, 
twenty expression profiles were evaluated by cluster 
analysis. Each profile contained genes with a similar 
expression pattern after IRI. Among the 20 profiles of 
genes, nine profiles (profile 13, 5, 10, 2, 4, 7, 11, 1 and 3) 
were significantly different (P<0.05) (fig. 2 and table 1).
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Table 1 Differentially expressed genes grouped into 
  expression profiles by cluster analysis

Profile number Genes 
expected#

Genes 
assigned* P value

Profile13 (0, 0, 0, -1) 1191 415.58   1.63E-224

Profile5 (0, -1, -1, -1) 1430 798.83 1.24E-99

Profile10 (0, 0, -1, -2) 262 120.33 1.58E-29

Profile2 (0, -1, -2, -2) 311 170.96 1.80E-22

Profile4 (0, -1, -1, -2) 271 154.67 9.05E-18

Profile7 (0, -1,0, -1) 721 529.29 2.21E-16

Profile11 (0,0, -1, -1) 451 324.71 8.85E-12

Profile1 (0, -1, -2, -3) 120   60.63 9.64E-12

Profile3 (0, -1, -2, -1) 277 195.17 1.44E-08
#: the expected number of genes that are randomly assigned 
to the model profile. *: the actual number of genes that are 
assigned to the model profile. P values indicate the sig-
nificance levels between expected and actual numbers of 
genes.

2.3 STC-Gene Ontology Analysis
As shown in table 2, GO terms that were 

downregulated after renal IRI included cell cycle, 
inflammatory response, apoptosis, oxidation-reduction 
process, autophagy, and cell proliferation. Profile 13 
consisted of genes that were stable at early time points 
and then rapidly decreased at later time points. To get 
insights into the biological effects of the genes in profile 
13, we analysed the involved GO terms using the GO 
annotation in Funrich 3.0 (the threshold of GO terms 
was P<0.05). Biological processes such as transport 
and apoptosis showed the most notable enrichment 
of the target genes. Moreover, chemotaxis of several 
immune cells was also decreased at day 9 after IRI. 
Among the cellular component, extracellular vesicular 
exosome and mitochondrion showed a maximum 
enrichment, whereas protein binding and RNA binding 
showed the highest enrichment of molecular function 
(fig. 3).

Fig. 3 Series test of cluster-Gene Ontology analysis of differentially expressed genes in profile 13
A: biological process; B: cellular component; C: molecular function

2.4 Pathway Analysis 
We analysed the pathway enrichment using 

Reactome database for DEGs of profile 13. P<0.05 
was considered for pathway analysis. The highest 

enrichment of pathway was demonstrated for neutrophil 
degranulation (P=1.01e-41) and respiratory electron 
transport (P=1.47e-17) (fig. 4).

Fig. 4 Pathway enrichment analysis of differentially expressed genes in profile 13
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2.5 Network Analysis
STRING analysis was used to obtain the PPI of 

the 927 DEGs in profile 13. The minimum required 
interaction score was 0.4. We gained a total of 6903 
edges and 902 nodes, accounting for 97.30% of all 
DEGs. Results demonstrated that Gapdh (degree: 
138), Hsp90aa1 (degree: 110), Actb (degree: 90), 
Actg1 (degree: 81), Atp5a1 (degree: 74), Atp5o 
(degree: 69), Cdc42 (degree: 68), Pcna (degree: 
66), Uqcr11 (degree: 65) and Cox4i1 (degree: 60), 
which all have a high degree, were identified as hub 
genes in the PPI network (fig. 5). Moreover, Rhoa, 
Rac2, Nhp2, Rplp0, Rpl5, Rpl7, Ppp2ca, Mrpl2, and 
Rps6 were among the top twenty degrees in the PPI 
network.

Table 2 Brief introduction of fundamental functional categories in
 significantly different expression patterns

Profile 
13

Profile 
5

Profile 
10

Profile
 2

Profile 
4

Profile 
11 Profile

Cell cycle,       
    inflammatory
    response,  
    apoptosis and  
    oxidation-reduction 
    process

√ √ √ √ √ √ √

Autophagy √ √ √ √ √ √
Cell proliferation √ √ √
Cell death √ √ √
SnRNA
    pseudouridine
    synthesis

√ √

G1/S transition of 
    mitotic cell cycle √ √
Cell migration and 
    monocyte chemotaxis √

Fig. 5 Interaction network analysis of differentially expressed genes in profile 13
Cycle nodes represent genes. The edges between two nodes are thicker when  the combined score is higher identified by 
experiments. We chose genes of the top 100 degrees to visualize the protein-to-protein interaction (PPI) 
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In addition to STRING analysis, key genes were 
also identified by CytoHubba. Table 3 presents genes 
that were considered to be the top 50 key genes in more 
than 6 ways of the 11 topological analysis methods de-
scribed above. Because the changes of the genes with 
either a high degree or selected by Cytohubba could 
regulate the expression of multiple genes, they were 
identified as key genes for further study.

3 DISCUSSION

As AKI could result in high mortality, it is import-
ant to take back to homeostasis by a suitable way[4]. 
The CD11b+/Ly6Cint population is identified as wound 
healing population, which carries membrane recep-
tors and chemokines associated with inflammation at 
the same time[14]. Understanding how the population 
changes may provide a new way to treat AKI by mod-
ulating the immune system.

In our study, we identified nine gene profiles, most 
of which were downregulated after IRI. The proportion 
of CD11b+/Ly6Cint macrophages was at a maximum 
one day after IRI and was markedly reduced at day 9 
after IRI. Taking this into consideration, the genes in 
the profile 13 were involved in infiltration and pro-
liferation. GO analysis of profile 13 showed that the 
genes related to the extracellular vesicular exosome 
were significantly changed, which was consistent with 
the finding that CD11b+/Ly6Cint macrophage could se-
crete anti-inflammation cytokines[15]. GO and pathway 
analysis indicated that immune cell chemotaxis (for ex-
ample, neutrophil, leukocyte, lymphocyte, monocyte, 
and macrophage) and G1/S progression were down-
regulated at later time points. In mitochondria, the 
oxidation-reduction process and respiratory electron 
transport were significantly involved after IRI as At-
p5a1, Atp5o, and Cox4i1 are also key genes in the PPI 
network. It would be required to further assess the vi-
tality, switch and infiltration ability of CD11b+/Ly6Cint 
macrophages, given that Cdc42 and Rac2 were found 

Table 3 Lists of genes representing the top 50 key genes in
 more than 6 ways

Genes

A total of 
ways for 
selecting 
the gene

Genes

A total of 
ways for 
selecting 
the gene

Genes

A total of 
ways for 
selecting 
the gene

Rpl10 10 Atp5o 8 Tlr2 7
Actb 9 Cd40 8 Uqcr11 7
Atp5a1 9 Cdc42 8 Atp5c1 7
Cox4i1 9 Hspa1b 8 Calm1 7
Cycs 9 Nfkbia 8 Fos 7
Gapdh 9 Pcna 8 Hspe1 7
Hsp90aa1 9 Ppp2ca 8 Rpl29 7
Rplp0 9 Rac2 8 Rpl5 7
Rps6 9 Rhoa 8
Actg1 8 Rps3a 8

to have an effect on apoptosis, migration, and M1-M2 
differentiation[24, 25].

Protein phosphatase 2A (Pp2a) is a bona fide tu-
mor suppressor gene that is involved in mitosis and 
apoptosis[26]. Homologues Ppp2ca (Pp2ac) and Ppp2cb 
are the catalytic subunits of Pp2a[27]. Previous studies 
have shown that upregulation of Ppp2ca in systemic 
lupus erythematosus decreased IL-2[28], resulting in 
the generation of effector and memory T cells and the 
maintenance of regulatory T cells[29]. Moreover, it was 
suggested that reduction of Ppp2ca may play a role in 
anti-inflammatory progression by increasing osteo-
protegerin (OPG) expression and decreasing receptor 
activator of nuclear factor κB ligand (RANKL) expres-
sion[30]. In prostate cancer cells, loss of Ppp2ca facil-
itated epithelial-to-mesenchymal transition[31]. Taken 
together, the reduction of Ppp2ca in profile 13 may be 
a reason why CD11b+/Ly6Cint macrophages decreased 
inflammation.

Rpl5 can induce the cell cycle, and the down-
regulation of Rpl5 at day 9 after IRI may provide an 
explanation of the reduction of CD11b+/Ly6Cint mac-
rophages. Moreover, the depletion of Rpl5 strongly 
suppresses cell cycle progression in primary human 
lung fibroblasts[32]. Rpl5 and Rpl11 promote apoptosis 
and reduce cellular proliferation in tumor in vitro[33]. 
However, it has also been reported that a heterozygous 
deletion or mutated Rpl5 occurred in 11% of glioblas-
toma, 28% of melanoma and 34% of breast cancer cas-
es[34]. 

Nhp2, one of the key nodes in PPI, was signifi-
cantly decreased when 1-day and 9-day CD11b+/Ly-
6Cint macrophages were compared. Nhp2 is a part of 
H/ACA ribonucleoprotein particles (RNPs), contain-
ing four common proteins, including the pseudouri-
dine synthase Cbf5, Nhp2, Nop10, Gar1a and a sub-
strate-specific H/ACA RNA. H/ACA is considered 
to play a role in the biogenesis of spliceosomal small 
nuclear RNA (snRNA) and ribosomal RNA (rRNA)[35]. 
Depletion of Nhp2 reduced all H/ACA snoRNAs and 
impaired global rRNA pseudouridylation, which play a 
role in the uridine selection or isomerization processes 
as they are required for the synthesis and stability of 
particles[36, 37]. 

Nhp2 is highly expressed in spleen, thymus, small 
intestine, testis, ovary, prostate, colon (mucosal lining), 
skeletal muscle, kidney, heart, pancreas, placenta, and 
brain, whereas the expression levels in the liver are 
low[38]. Nhp2 mRNA was barely detectable in periph-
eral blood leukocytes and lung. During the differenti-
ation of U937 cells into monocytes and macrophages 
induced by 12-O-tetradecanoylphorbol-13-acetate 
(TPA), the expression of Nhp2 mRNA was markedly 
decreased, but was upregulated during the retro-dif-
ferentiation[38]. Nhp2, hTR, hTERT and Nop10 could 
control telomere homeostasis, which is important for 
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apoptosis and cell-cycle arrest[39, 40]. Thus, Nhp2 may 
affect the polarization of macrophage.

Finally, it is important to identify which genes 
could serve as reference genes. We analysed the ex-
pression levels of Gapdh, Actb, Β2m, Hmbs, Hprt, 
Rplp0, Tbp, Gusb, Ppia, Oaz1, Nono, Tfrc, Eef2, Hs-
b90ab1, Rps18, Sdha, Ywhaz, Ubc, Rps17, Rplp0, Rp-
l37a, Pum1, Psmc4, Pop4, Pgk1, Pes1, Mrpl9, Ipo80, 
Gadd45a, Elf1, Eif2b1, Cdkn1b, Cdkn1a, Casc3, Abl1, 
and Pol2a which are widely used[41–43]. The data showed 
that RPS18 may be an appropriate reference gene as its 
expression was stable in macrophages after renal IRI.

In our study, a total of 6738 DEGs were found. 
We analysed the genes that were stable at early time, 
but were abruptly downregulated at late time, inves-
tigated the function and molecular pathways that they 
were involved, and studied the critical genes involved. 
A possible explanation why CD11b+/Ly6Cint macro-
phages were reduced on day 9 may be due to the fact 
that genes involved in the chemotaxis and prolifera-
tion were decreased. On the other hand, one of the key 
genes, Nhp2, may be involved in the polarization of 
macrophages. Taken together, our study will increase 
insight into the functional changes of macrophages; 
therefore, identifying the critical genes involved may 
provide novel targets for regulating the quantity and 
phenotype of macrophages.
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