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ABSTRACT: A key metric to assess molecular docking
remains ligand enrichment against challenging decoys. Whereas
the directory of useful decoys (DUD) has been widely used,
clear areas for optimization have emerged. Here we describe an
improved benchmarking set that includes more diverse targets
such as GPCRs and ion channels, totaling 102 proteins with
22886 clustered ligands drawn from ChEMBL, each with 50
property-matched decoys drawn from ZINC. To ensure
chemotype diversity, we cluster each target’s ligands by their
Bemis−Murcko atomic frameworks. We add net charge to the
matched physicochemical properties and include only the most
dissimilar decoys, by topology, from the ligands. An online
automated tool (http://decoys.docking.org) generates these
improved matched decoys for user-supplied ligands. We test
this data set by docking all 102 targets, using the results to improve the balance between ligand desolvation and electrostatics in
DOCK 3.6. The complete DUD-E benchmarking set is freely available at http://dude.docking.org.

■ INTRODUCTION
While molecular docking screens routinely leverage protein
structure to discover new ligands,1−4 quantitative assessment of
their performance remains problematic.5 Although prospective
assessment of docking performance is irreplaceable,6,7 it is both
time-consuming and expensive. Because a general correlation
between docking scores and affinities is beyond current
methods,8,9 the field relies on ligand enrichment in docking
hit lists to evaluate retrospective performance.10−14 “Enrich-
ment” measures how known ligands rank versus a background
of decoy molecules and so depends not only on the nature of
the ligands but also on the background decoys. Thus to
compare docking enrichments, a benchmarking set of ligands
and decoys is needed.
The original Directory of Useful Decoys (DUD) was

designed to meet this benchmarking need while controlling
for decoy bias on enrichment.15,16 Given a random drug-like set
of decoys, Verdonk et al. showed that targets which bind high
molecular weight ligands naturally get higher enrichments due
to correlation between larger molecules and better docking
scores.17 In contrast, actual ligand binding affinities correlate
with molecular size only for very small molecules.18 Unable to
separate the true correlations of simple molecular properties
that aid prospective ligand discovery from the artifical
correlations that arise from biases, it is informative to ask
what value molecular docking adds beyond these properties. To
this end, DUD decoys are matched to the physical chemistry of
ligands on a target-by-target basis: by the properties of

molecular weight, calculated logP, number of rotatable bonds,
and hydrogen bond donors and acceptors. To fulfill their role as
negative controls, decoys should not actually bind, so DUD
used 2-D similarity fingerprints to minimize the topological
similarity between decoys and ligands. In short, DUD decoys
were chosen to resemble ligands physically and so be
challenging for docking but at the same time be topologically
dissimilar to minimize the likelihood of actual binding.
Through intense use,19−26 weaknesses in the original DUD

set have appeared in both the ligands and decoys. Good and
Oprea noted that a handful of chemotypes dominate many
ligand sets, allowing high ranks for one scaffold to cause good
overall enrichment.27 One way to circumvent this problem is
using chemotype retrieval metrics,28 but another is to remove
the “analogue bias” from the database by clustering on ligand
scaffolds. After clustering the 40 targets, Good’s subset of DUD
contains only 13 targets with over 15 ligands, indicating a need
for more targets with more ligands. Another important goal is
to increase target diversity, for example, by adding membrane
domain proteins, none of which are represented in DUD.
As there were weaknesses in the DUD ligands, this was also

true of the decoys. Several investigators29−31 observed that
despite property matching on logP, net formal charge is still
imbalanced in DUD; 42% of all ligands are charged versus only
15% of decoys. Property matching of decoys to ligands could
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also be tightened by choosing decoys more embedded in ligand
property space.32,33 Despite a 2-D chemical dissimilarity filter to
prevent decoys from being active, some original DUD decoys
still appear to bind, and these false decoys artificially reduce
docking enrichment.32 Addressing both false decoys and decoy
property embedding, Vogel et al. released DEKOIS for the
original 40 DUD targets. Gatica and Cavasotto generated ligand
and decoy sets for 147 G protein-coupled receptors (GPCRs)
while adding net charge to property matching.34 Very recently,
a python GUI application was announced to generate property-
matched decoys.35 By ignoring synthetic feasibility, Wallach and
Lilien generate virtual decoy sets for the original DUD targets
with tighter property-matching.33 Instead of generating
computational decoys, the MUV set selects decoys for 17
targets that were negative in public high-throughput screens.36

Instead of generating decoys at all, REPROVIS-DB assembles
ligand and database data from earlier successful virtual screens
which are deemed reproducible.37

Here we describe a new version of DUD that addresses these
liabilities and develops new functionality. By drawing on
ChEMBL09,38 each DUD-Enhanced (DUD-E) ligand has a
measured affinity supported by a literature reference. Though
ligands are now typically clustered by Bemis−Murcko atomic
frameworks39 to reduce chemotype bias, there are still on
average 224 ligands per target. The target list is expanded from
40 to 102, favoring targets with many ligands and multiple40

structures. The additions include several drug relevant
membrane proteins: five GPCRs, two ion channels, and two
cytochrome P450s. Meanwhile, false decoys are reduced by
more stringent filtering of topological dissimilarity. Where
possible, measured experimental decoys are included. Finally,
we consider how DUD-E performs as a benchmark versus the
original DUD and explore its use as a tool for evaluating and
optimizing molecular docking.

■ RESULTS
The ideal target for a benchmarking set would be well studied,
with many measured ligand affinities and multiple, diverse
cocrystal ligand structures. To this end, the enhanced DUD
database (DUD-E) is largely based on the intersection of
ChEMBL,38 for ligand annotations and affinities, and the RCSB
PDB,40 for structures. As we sought targets to enlarge the set,
the 40 original DUD targets were first priority, 38 of which we
included. Platelet-derived growth factor receptor β was
dropped, as it was a homology model. Estrogen receptor α
(ESR1) is a single target in DUD-E, whereas it was split into
agonists and antagonists previously. To enlarge the bench-
marking set, we used three main criteria. First, we favored new
target classes with pharmacological precedence. Second, we
sought targets with many ligands and crystal structures, as they
likely reflect a combination of target relevance and ease of
study. Third, we preferred targets that could modestly enrich
known ligands using fully automated docking, as these may be
both easy to prepare and amenable to docking. Conversely,
targets with mostly covalent ligands were deprioritized.
DUD-E targets are defined by their UniProt41 gene prefix,

with data from each species being combined into a single data
set. While ChEMBL annotates ligands to a particular UniProt
accession code, the ligand overlap between orthologous targets
is surprisingly small. For example, among 1555 unique ligands
with affinities below 1 μM for the human dopamine D3
receptor and 744 ligands for the rat orthologue, only 85 ligands
are in both sets. These two orthologues share 97% trans-

membrane sequence identity (79% overall), so this low overlap
suggests to us that ChEMBL ligand annotations are sparse and
do not typically reflect species specificity. Therefore, we pooled
the data for all species, defining a DUD-E target as a UniProt
gene prefix (such as DRD3), and not the full gene_species pair
(such as DRD3_HUMAN or P35462).
The 102 targets span diverse protein categories, including 26

kinases, 15 proteases, 11 nuclear receptors, five GPCRs, two ion
channels, two cytochrome P450s, 36 other enzymes, and five
miscellaneous proteins (Figure 1). Altogether 66695 raw

ligands, defined as those with annotated affinities better than
1 μM to their target, molecular weights less than 600 and fewer
than 20 rotatable bonds were extracted from ChEMBL09 (or
the AmpC β-lactamase literature) (Table 1). That is an average

of 654 ligands per target with a minimum of 40 and a maximum
of 3090. Though negative binding is rarely reported, we also
found 9219 experimental decoys (i.e., no measurable affinity up
to 30 μM), with a maximum of 1070 for cyclo-oxygenase-1
(PGH1).
With targets selected, we chose a single X-ray structure to

represent each target in docking studies (Table 2, Supporting
Information Table S1). To find the structure most amenable to
docking, we used an automated docking campaign to screen
3690 PDB structures against their clustered ligands and
property-matched decoys (see below). Preference was given
to higher resolution, to higher automated enrichment, and to
the human orthologue. We avoided mutant structures,
unresolved active site loops, extraneous bound peptides, or
structures too constrained for many of that target’s ligands.
Where we had domain knowledge, the most representative
structure was preferred, for example a DFG-in structure for

Figure 1. DUD-E target classification. Number of the 102 targets that
belong to eight broad protein categories.

Table 1. Characteristics of DUD-E

total ChEMBL manual

no. targets 102 101 1
total average minimum maximum

no. raw ligands 66695 653.9 40 3090
no. clustered ligands 22886 224.4 40 592
no. experimental decoys 9219 90.4 1 1070
no. clustered ligands unique
charge states

28377 278.2 46 1030

no. computational decoys 1411214 13835 2300 51500
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kinases or an antagonist structure for estrogen receptor α
(ESR1). For 57 out of 102 targets, a DOCK Blaster42 prepared
structure was used for DUD-E, directly from the automated
tool chain. Another 45 targets required manual intervention,
most due to simple errors in automated preparation (e.g.,
incomplete metal atom preparation, missing cofactors, or
nonstandard amino acids). A select few needed expert
intervention to arrive at modest enrichment, such as adding
crystallographic waters, changing histidine protonation, flipping
ambiguous side-chains such as asparagine, or increasing a local
dipole moment on a specific residue (a technique we often use
prospectively to improve polar complementarity43,44). In five
targets, we incorporated prior docking preparations used for
prospective ligand discovery: adenosine A2A receptor
(AA2AR),44 β1 adrenergic receptor (ADRB1), AmpC β-
lactamase (AMPC), C-X-C chemokine receptor type 4
(CXCR4),3 and dopamine D3 receptor (DRD3).

45

To increase scaffold diversity and to make smaller, more
manageable ligand sets, we clustered the raw ChEMBL ligands
by their Bemis−Murcko atomic frameworks.39 These atom-type

based frameworks include ring systems of the molecule and
connecting linkers, minus any side fragments. For example, the
seventh largest Murcko cluster in kinesin-like protein 1
(KIF11) has seven ligands, all close analogues (Figure 2A). If
at least 100 frameworks were present, then we included only
the highest affinity ligand from each framework. If fewer were
available, we raised the number of ligands selected from each
framework until we obtained more than 100 molecules, trading
diversity for quantity. Returning to kinesin-like protein 1, we
extracted only 70 Murcko frameworks (Figure 2B). Out of 276
raw ligands, the five largest Murcko clusters contained 146
ligands (53%). Selecting the two or three highest affinity
ligands from each framework results in 98 and 118 ligands,
respectively, so we stopped at three ligands per framework. In
the process we still managed to remove 158 lower affinity
compounds from highly redundant clusters. In a few targets,
more than 600 ligands remained even after clustering, so we
reduced the affinity threshold below 1 μM in the sequence
(300, 100, 30, 10, and 3 nM), until fewer than 600 frameworks
were found. For example, in adenosine A2A receptor, there are

Table 2. Overview of Representative Targets

target class gene ID description
total
ligands

clustered
ligands

experimental
decoys

matched
decoys PDB

LogAUC
(%)

ROC
EF1

AUC
(%)

cytochrome
P450

CP2C9 cytochrome P450 2C9 145 120 176 7450 1R9O 7 3 60

CP3A4 cytochrome P450 3A4 302 170 267 11800 3NXU 7 2 63

GPCR AA2AR adenosine A2a receptor 3057 482 192 31550 3EML 28 22 83
ADRB1 β-1 adrenergic receptor 648 247 69 15850 2VT4 19 11 76
CXCR4 C-X-C chemokine receptor

type 4
40 40 14 3406 3ODU 36 18 90

ion channel GRIA2 glutamate receptor ionotropic
AMPA 2

476 158 201 11845 3KGC 23 23 71

GRIK1 glutamate receptor ionotropic
kainate 1

136 101 235 6550 1VSO 35 27 86

kinase AKT1 serine/threonine-protein kinase
AKT

585 293 53 16450 3CQW 27 29 72

MK10 c-Jun N-terminal kinase 3 199 104 23 6600 2ZDT 24 11 82
MK14 MAP kinase p38 α 2205 578 73 35850 2QD9 17 10 74

miscellaneous KIF11 kinesin-like protein 1 272 116 29 6850 3CJO 34 35 77
XIAP inhibitor of apoptosis protein 3 100 100 7 5150 3HL5 52 55 88

nuclear
receptor

ESR1 estrogen receptor α 1297 383 136 20685 1SJ0 18 15 67

MCR mineralocorticoid receptor 201 94 2 5150 2AA2 −4 2 36
THB thyroid hormone receptor β-1 246 103 29 7450 1Q4X 36 38 79
PPARD peroxisome proliferator-activated

receptor δ
699 240 79 12250 2ZNP 32 20 89

other enzymes FNTA protein farnesyltransferase
type I α

1430 592 132 51500 3E37 16 7 76

HDAC8 histone deacetylase 8 309 170 73 10450 3F07 29 24 80
HIVINT HIV type 1 integrase 167 100 268 6650 3NF7 8 2 64
KITH thymidine kinase 57 57 68 2850 2B8T 15 0 80
PARP1 poly (ADP-ribose) polymerase-1 1031 508 12 30050 3L3M 25 21 79
PUR2 GAR transformylase 50 50 12 2700 1NJS 51 50 92

protease DPP4 dipeptidyl peptidase IV 1939 533 167 40950 2I78 41 41 87
FA10 coagulation factor X 3090 537 176 28325 3KL6 39 36 87
LKHA4 leukotriene A4 hydrolase 343 171 21 9450 3CHP 18 4 82
MMP13 matrix metallo-proteinase 13 1632 572 26 37200 830C 12 5 71
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3096 raw ligands resulting in 1099 frameworks at 1 μM, but we
can reduce the number of frameworks to 483 using a 30 nM
affinity threshold (Figure 2C).
To examine the effect of clustering on docking enrichments,

we docked the three targets with the highest and lowest fraction
of clustered to raw ligands from those with enough ligands to
pick one ligand per Murcko cluster. To measure docking
performance we used LogAUC, an aggregate metric that gives
early enrichment more weight. As described previously,31

LogAUC is completely analogous to AUC but in the
transformed space after you have zoomed in on early
enrichment by taking the semilog of the x-axis. In tryptase β1
(TRYB1), the target with the highest clustered fraction,
clustering substantially decreases the LogAUC by 6%, whereas
in the other five targets clustering increases the LogAUC
(Supporting Information Table S2). The mean absolute
deviation over the six targets is 3.7% LogAUC, but in all

cases the raw and clustered ROC curves have similar shapes
(data not shown). Overall, we believe the clustered sets provide
a better measure of docking performance with lower docking
effort and will be used in the remainder of this work.
A key problem with the original DUD decoys was that they

sometimes closely resembled the ligands, occasionally even
being confirmed as binders. Enforcing 2-D topological
dissimilarity between decoys and ligands should eliminate this
problem in principle, but in practice critical ligand binding
“warheads” often remain in the decoy set selected from
ZINC,46 e.g., amidine groups in factor Xa (FA10). By
identifying these warheads in three targets (Figure 3A), we
investigated how to eliminate false decoys. In the original DUD,
CACTVS fingerprints were used to select decoys with
Tanimoto coefficients (Tc) to ligands below 0.9, which is
roughly similar to using Daylight fingerprints with Tc below
0.7.15 In recent work,31 we used Daylight fingerprints with a

Figure 2. Ligand clustering. (A) The seventh largest Murcko cluster of kinesin-like protein 1 (KIF11), showing both the scaffold (left) and all seven
member ligands. (B) Number of ligands in each of the 70 KIF11 Bemis−Murcko atomic frameworks. We removed lower affinity compounds over-
represented clusters (above the line), while retaining 100 ligands. (C) Number of adenosine A2A receptor (AA2AR) Murcko clusters is plotted
against affinity threshold. Fewer than 600 clusters are present using a 30 nM affinity threshold.
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more restrictive Tc < 0.5. Using this filter on the enhanced
DUD ligand sets, we still saw 39%, 53%, and 96% of possible
warhead bearing molecules passing through in factor Xa
(FA10), glycinamide ribonucleotide transformylase (PUR2),
and thymidine kinase (KITH), respectively (Figure 3B). Using
Daylight with Tc < 0.325, we reduced FA10 warheads below 1%
but still saw 14% and 34% in PUR2 and KITH. Clearly different
targets and even different ligands require different absolute
thresholds. To circumvent this, we removed a percentage of the
most similar decoys for each ligand, sorted by maximum Tc to
any ligand. This allowed the effective absolute threshold to vary.
Removing 50% of the decoys with Daylight was better in
KITH, while removing 50% with ECFP4 was better in FA10
and PUR2. The final procedure of using ECFP4 fingerprints
and removing 75% of the decoys, resulted in 0.2%, 0%, and
5.8% of warheads remaining, substantially reducing the number
of false decoys. Having refined the decoy dissimilarity

procedure on three targets where we could define a warhead,
we then applied it to all generated decoys. To help ensure that
the resulting decoys were, in fact, substantially different,
topologically, from the ligands, we compared the two by a
metric partially orthogonal to topology, asking how many
decoy molecules shared the same scaffold as a ligand. Of the
805136 decoy scaffolds over all of DUD-E, only 692 (0.086%)
were found among the 25503 ligand scaffolds, consistent with
substantial topological differences among the two sets despite
their close physical property matching.
In addition to reducing false decoys, the DUD-E decoy

generation procedure was extensively revised. Each decoy
derived from a particular ligand, where decoy property ranges
around the ligands properties adjusted to seven possible widths.
This adapted to local chemical space around each ligand,
allowing more closely matched decoys. Also, net charge was
added to the property matching, as it is critical in electrostatics

Figure 3. Decoy generation. (A) Three key “warhead” groups from factor Xa (FA10), glycinamide ribonucleotide transformylase (PUR2), and
thymidine kinase (KITH). (B) Fraction of warheads remaining is plotted against the dissimilarity method. The dissimilarity methods consist of a
fingerprint (Daylight or ECFP4) and either a hard cutoff or a fraction of the most dissimilar decoys to be retained. (C) Property distributions of
estrogen receptor α (ESR1) for both the 383 ligands (blue) and the 20685 property-matched decoys (red).
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and desolvation. The improved property-matching can be seen
in the property histograms for estrogen receptor α (ESR1)
(Figure 3C) as well as the averages and standard deviations for
all the targets (Supporting Information Table S3). Using
ZINC46 for the potential decoy pool made them purchasable,
enabling experimental testing for actual binding to the target.
As a result of this work, this enhanced decoy procedure has
been fully automated and is available online to generate DUD-E
style decoys for any user supplied list of input ligands at http://
decoys.docking.org.
The original DUD paper15 showed that a property-matched

decoy set is more challenging for docking than a random
collection of molecules. Therefore, we compared enrichments
using property-matched decoys to those using a random drug-
like background, which consisted of all ChEMBL12 ligands
with affinities better than 10 μM. Switching from a drug-like
background to DUD-E property-matched decoys does reduce
average enrichment over the 102 targets, from 26.8% to 24.4%
LogAUC (Supporting Information Table S4). Yet for three
targets, the property-matched sets unexpectedly led to much
better enrichment, by more than 15% LogAUC. In both
glutamate receptor ionotropic kainate 1 (GRIK1) and purine
nucleoside phosphorylase (PNPH), the ligands have low
molecular weights (Supporting Information Table S3) and
thus scored poorly against the generally larger ChEMBL12
molecules, just as Verdonk17 suggests. In urokinase-type
plasminogen activator (UROK), the top of the drug-like
docking hit list is dominated by decoys with amidine
“warheads”. Because these are likely binders, the increased
property-matched enrichment resulted from fewer false decoys
in that set. Indeed, the 2.4% LogAUC reduction that occurs
upon switching to property-matched decoys arises from these
two competing factors: property matching the decoys reduces
enrichment, and reduction of false decoys increases enrichment.
Overall, enrichment as measured by average LogAUC is 1.5

fold higher in DUD-E compared to the original DUD. To
understand this, we first isolated the change due to the revised
decoy generation procedure. Using the original DUD ligands
and target preparations, but switching from original decoys to
these revised decoys substantially increased the average
enrichment over the 37 directly comparable targets from
14.8% to 19.7% LogAUC (Table 3, Supporting Information

Table S5). With the new adaptive property-matching procedure
incorporating net charge, the revised decoys might have been
expected to lower enrichment, but instead we saw an overall
increase. Inspecting the docking hit lists, we observed a
dramatic decrease in high scoring decoys that resemble ligands
to a degree that they might actually bind. Indeed, all three
targets with identifiable warheads that we used to tune the

dissimilarity procedure showed large increases in enrichment:
FA10 increases from 13% to 28% LogAUC, PUR2 from 40% to
62% LogAUC, and KITH from 1% to 32% LogAUC. If we now
isolate the switch from original ligands and revised decoys to
both DUD-E ligands and decoys, we see a moderate decrease in
average enrichment from 19.7% to 16.4% LogAUC. We
attribute this decrease to the larger, more diverse clustered
ligand lists in DUD-E. Lastly, switching the target preparation,
and the choice of the particular PDB structure used to
represent a target, substantially increases enrichment from
16.4% to 22.8% LogAUC between DUD and DUD-E
(Supporting Information Table S5). The overall effect with
SEV ligand desolvation in DOCK 3.6 is to increase average
enrichment from 14.8% LogAUC against DUD to 22.8%
LogAUC against the DUD-E benchmark.
A central motivation for any benchmarking set is to test, at

least retrospectively, new methods. We wanted to explore how
our recent context-dependent ligand desolvation method31

behaved against the DUD-E benchmark. We therefore used it
to re-examine the utility of solvent-excluded volume (SEV)
ligand desolvation versus using no desolvation term (None) or
using the full transfer free energy from water to hexadecane
(Full). In our initial study of these terms on the 40 original
DUD targets, SEV improved upon None by just 0.7% average
LogAUC. Conversely, over the 102 DUD-E targets, SEV
substantially outperformed None by 3.8% LogAUC on average,
with average LogAUC values of 20.6, 14.3, and 24.4% for None,
Full, and SEV desolvation methods, respectively (Figure 4,
Supporting Information Table S4). Despite these average
trends, ROC curves on individual targets can vary significantly
among the various methods (Figure 5). As in the original
desolvation analysis, some targets are more amenable to full
desolvation, such as catechol O-methyltransferase (COMT)
and purine nucleoside phosphorylase (PNPH), while others are
more amenable to no desolvation, such as factor X (FA10) and
glycinamide ribonucleotide transformylase (PUR2). Against the
DUD-E benchmark, SEV desolvation not only outperforms the
other methods, but performs well in both types of targets. This
suggests that over a more comprehensive set of targets, and
what we argue is a better set of ligands and decoys, the
advantage of the more physically correct SEV ligand desolva-
tion treatment becomes more pronounced.
Electrostatic interaction with the protein is a large term that

opposes ligand desolvation, with their relative balance being
critical for binding. Because we do not know the binding pose
of putative ligands prior to docking, we need to approximate
the region of low dielectric the ligand might occupy to
precompute electrostatic grids. Previously, we used the negative
image of the receptor (computed by SPHGEN) to construct
this low dielectric region, but manual tweaking was often
required. In the large open binding pocket of CXCR4, we
observed that using a thin layer of low-dielectric around just the
edge of the protein allowed ligands to interact with it while
reducing the bulk dielectric perturbation at the center of its
large binding pocket.3 Here we explored using an automated
thin dielectric layer strategy across the entire DUD-E set.
Visually, these new automated thinner dielectric layers are more
physically realistic, even in the rare case when they are
effectively thicker than the previous layers (due to a water
probe being able to penetrate that layer). With these thin low-
dielectric layers (Thin), the average LogAUC over the 102
targets improved from 24.4% to 24.9% (Figure 4, Supporting
Information Table S4). Six targets used manually prepared

Table 3. Decomposition of Enrichment Changes between
DUD and DUD-E

incremental
change

all
original

new style
decoys

switch to new
ligands

switch target
preparation

decoys DUD DUD-E DUD-E DUD-E
ligands DUD DUD DUD-E DUD-E
receptor
preparation

DUD DUD DUD DUD-E

average
LogAUCa

14.8 19.7 16.4 22.8

aOver the 37 common targets (target-by-target data in Supporting
Information Table S5).
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dielectric layers (AA2A2, ADRB1, AMPC, CDK2, CXCR4, and
DRD3) and thus do not directly reflect the difference between
automated dielectric layers. Excluding those six enlarges the
average difference from 0.5% to 1.0% LogAUC. Admittedly,
these are moderate differences, but they exemplify how DUD-E
may be used to test new docking methods and hint that as we
progress docking models, enrichment will improve.
Here we present three representative targets in greater detail

to display a magnified view of DUD-E.
Mineralocorticoid Receptor (MCR). MCR has the lowest

enrichment in DUD-E. Across all 11 automatically docked
structures, enrichment of DUD-E ligands to its decoys was
negligible. Thus we selected the same PDB structure as the
original DUD, 2AA2 at 1.95 Å resolution. While enrichment
using the new DUD-E sets was worse than random at −4%
LogAUC and 36% AUC (Table 2), using the original DUD
ligands and decoys gave 45% LogAUC and 76% AUC. Despite
poor enrichment in DUD-E, building and docking the crystal

ligand from scratch, ignoring crystallographic information,
resulted in good pose agreement (Figure 6A). Taken together,
we can rationalize the enrichment differences, as 13 of 15
original ligands shared a polycyclic scaffold with the well-
docked crystal ligand, while the 94 new ligands had much more
scaffold diversity. Thus the reduced enrichment in DUD-E
reflects increased chemotype diversity as a result of including
more ligands and clustering them by Bemis−Murcko atomic
frameworks. Of the four lowest enriching targets in DUD-E,
three are nuclear hormone receptors, with glucocorticoid
receptor (GCR) and androgen receptor (ANDR) joining
MCR. These receptors all have hydrophobic pockets with
flexible binding site residues such as methionine and leucine so
that a single rigid receptor may be incapable of docking all of
their ligands. Thus these targets may be good tests of flexible
receptor docking methods.

Thyroid Hormone Receptor β1 (THB). THB produced
good enrichment when a structure with an open subpocket was

Figure 4. Retrospective enrichment comparing ligand desolvation and electrostatics methods. Docking results over DUD-E as measured by
LogAUC. “None” has no ligand desolvation term, “SEV” uses solvent-excluded volume ligand desolvation, “Thin” employs a thin low-dielectric layer
in the electrostatic calculations.
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selected. Enrichment for the 16 automatically docked structures
varies significantly, ranging from 13% (1NQ0) to 37% LogAUC
(1Q4X). The lower enriching structures have larger cavities
near Arg320 (right side of Figure 6B), opening to solvent in
1NQ0; the higher enriching structures have larger cavities at
the other end of the binding site near Met420 (left side),
opening to solvent in 1Q4X. We selected the automated
preparation of 1Q4X despite its modest 2.80 Å resolution
because Thr273 is pushed away by the crystal ligand, making
the left subpocket larger. Using SEV desolvation then yields

enrichment statistics of 36% LogAUC, 79% AUC, and a
receiver operating characteristic curve based enrichment factor
at 1% (EF1) of 38 (Table 2). The redocked crystal ligand has
excellent pose agreement (Figure 6B).

Serine/Threonine-Protein Kinase AKT (AKT1). AKT1 is
a newly added kinase that demonstrates several considerations
during PDB structure selection. Whereas 10 PDB structures
were automatically docked, four got worse than random
enrichment. All four correspond to structures of the Pleckstrin
homology (PH) domain instead of the kinase domain. The

Figure 5. Representative ROC plots. ROC plots using no desolvation (None), solvent-excluded volume ligand desolvation (SEV), the thin low-
dielectric layer (Thin), or a drug-like background that consists of all ChEMBL12 ligands with affinities better than 10 μM (Drug-like). The black
dotted line represents the results expected from docking ligands randomly. LogAUC percentages are reported in the legend text.
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structure with the best normal AUC, 3O96, corresponds to an
allosteric site at the interface of the PH and kinase domains, not
the traditional ATP binding pocket. While the best enriching
structure by LogAUC, 3CQW at 2.00 Å, corresponds to the
canonical site, its nonstandard phosphothreonine amino acid
evades the automated protocol. Preparing that residue manually
results in 27% LogAUC, 72% AUC, and 29 EF1 (Table 2).
Nevertheless, the redocked ligand (green) fails to generate the
crystal ligand pose (magenta) (Figure 6C). The ligand,
however, is quite small, with one central rotatable bond, and
requires a specific rotation about that bond to fit in the binding
site. Lowering the rmsd threshold for ligand conformation
generation allows that rotation to be sampled, restoring the
correct ligand binding pose (tan) (Figure 6C).

■ DISCUSSION
Docking continues to be judged by hit rates in prospective
studies, and by enrichment in retrospective recall studies,
because it cannot now hope to calculate affinities or even
monotonic rank order. Like protein structure prediction,
docking thus remains an empirical, although we would argue
also a pragmatic field. Its reliance on enrichment has driven the
development of benchmarking sets, first explored by Rognan11

and Jain,12 recently investigated by Boeckler32 and Cavasotto;34

the most widely used and cited of these remains the Directory
of Useful Decoys (DUD).15 Despite its widespread adoption,
DUD retains serious liabilities, including a lack of ligand
diversity, lack of property-matching to net charge, and a
substantial number of false decoys. The enhanced DUD
(DUD-E) described here was developed to address these
shortcomings and to expand the target list to be more
reprentative of pharmacologically relevant space.
Balancing Ligands and Decoys for Enrichment. An

important problem with DUD arose from the ligands and
decoys originally chosen. The former sometimes over-
represented in a few chemotypes, and the latter were
sometimes not decoys but actually ligands. Moreover, the
mapping of specific ligands to their matched decoys had been
lost in the released set. In the 102 ligand and decoy sets that
comprise DUD-E, ligand diversity in any given set is

substantially increased, reducing the bias that can come from
a single chemotype ranking well. With at least 40 ligands for
every target and a preference to maximize chemotype diversity,
DUD-E allows for more representative tests of docking screens.
Correspondingly, property-matching decoys to each ligand
individually, while more stringently removing false decoys (i.e.,
ligands), allows investigators to directly match specific ligands
to their decoy molecules and reduces what had been
artifactually low enrichment for some targets in DUD. Adding
net charge as a property to match between ligands and decoys
resolves a discrepancy between them in DUD, where the
ligands had tended to be more charged, on average, than the
decoys, which had the effect of skewing our evaluation of
physical forces like desolvation.
The impact of these changes on docking performance is

substantial and clarifying. In isolation from other effects,
clustering the ligands for diversity reduces enrichment, as one
might expect because high-performing, over-represented sets
have been largely removed. Conversely, the new decoys increase
enrichment compared to the DUD performance. At first this
seemed counterintuitive, because one imagines that a better-
balanced, more stringent decoy set will be a greater challenge
for a docking program. However, this is more than balanced by
the removal of what had been false decoys (ligands), which
artifactually reduced enrichment in DUD because, as ligands,
they had often ranked well but counted as decoys they diluted
the annotated ligands. Finally, the new target preparations,
carefully selected from a docking campaign to over 3500
structures, also increased enrichment. Overall, the increased
enrichment in DUD-E should provide more sensitivity for
benchmarking docking algorithms, giving it greater responsive-
ness to modifications that reduce enrichment as well as those
that increase it.

Online Tools for Automated Generation of Further
Ligand and Decoy Sets. DUD-E is built to be a better
platform for refinement and extension of ligand and decoy sets.
Targets are independent of one another, both in ligands and
decoys, allowing target addition, deletion, or replacement. The
protocol to generate decoys for DUD-E is made available
online to generate decoys for any target given only a list of

Figure 6. Representative docking poses. The crystallographic ligand was rebuilt and docked from scratch. (A−F) The crystal pose (magenta) is
compared to the resulting docked pose (green). In (C), more ligand conformations are generated and the redocked pose is also shown (tan). Key
hydrogen bonds are shown by black dotted lines, and the partially transparent protein surface is colored by atom type.
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ligand structures, which enables extension of DUD-E to new
targets of interest by individual investigators. The decoy server
pulls directly from a purchasable subset of the ZINC database,
inheriting its improvements and purchasing updates.46 The final
decoy selection from the applicable pool of decoys is random
where possible, allowing the generation of multiple decoys sets
to test overfitting to the canonical DUD-E decoys. Each decoy
belongs to one and only one ligand, so if one wants to filter a
ligand, then the corresponding decoys can be easily removed.
For example, we provide raw ligand and decoy sets before
clustering by Bemis−Murcko atomic frameworks. If a different
clustering method was desired, which selected a different subset
of the raw ligands, then the corresponding decoys could be
retained (furthermore, we provide the python script used to
generate clustered subsets from raw sets). We also include extra
data that allows some design decisions to be altered, for
instance, we include the marginal ligands which are active above
our 1 μM cutoff.
Applications to Docking Optimization and Testing.

DUD-E should provide a more robust benchmarking set for
exploring new docking methods, so we were keen to test it
against new methods that we had been investigating. When
tested against the older DUD set, we had found that a new
solvent-excluded volume (SEV) ligand desolvation method had
had a disappointingly small effect on enrichment despite what
was clearly a better physical model. However, when measured
against the DUD-E benchmark, the differential performance
between the old and new method increased substantially in the
latter’s favor. Similarly, against the DUD-E benchmark, a more
physically realistic dielectric layer, used to calculated the
electrostatic interaction term from static Poission−Boltzmann
maps, also led to improved enrichments that had been largely
masked in the DUD set, owing to the problems described
above.
Certain cautions merit airing. Most importantly, DUD-E is a

large data set synthesized from several source databases, each of
which is continuously evolving and improving. Thus individual
errors are expected, though usually traceable to the source
database at the time DUD-E was constructed. Although we
only show docking results using DOCK 3.6 with solvent-
excluded volume ligand desolvation, DUD-E was designed to
be a general benchmarking set. Thus some arbitrary choices
and simplifying assumptions were made in the effort to provide
one canonical data set useful to compare docking algorithms.
For instance, we assume a single PDB code can represent the
target, but some targets are highly flexible or they contain both
orthosteric and allosteric binding pockets. Fundamentally,
DUD and DUD-E are designed to measure value-added
screening performance of 3-D methods over simple 1-D
molecular properties. Decoys that might bind are removed
using 2-D ligand similarity, so DUD-E is inappropriate to test
2-D methods. Through its construction, ligands light up against
DUD-E decoys using these 2-D similarity methods, which
create an artificially favorable enrichment bias for them. A final
caution is that to filter more false decoys in DUD-E, we keep
only a quarter of the most highly dissimilar decoys. However,
while we show that this increased dissimilarity removes false
decoys, it could also contribute to artificial increases in docking
enrichment.
Notwithstanding these caveats, DUD-E is substantially

improved over the original DUD. It is a larger, more diverse
data set with better matched decoys that resemble ligands less,
correcting many flaws in its predecessor. Although we

anticipate that it will be most widely used in the instantiation
we describe here, it was developed with the idea that it could be
flexibly extended and evolved; the tools to do so are even
provided online (http://dude.docking.org). We hope that it
and its descendants will provide a useful tool for docking
evaluation in the community until such time as a more
fundamental measurement of docking performance is possible.

■ METHODS
ChEMBL and RCSB PDB Data Extraction. This enhanced DUD

database has been constructed by combining ligand data from
ChEMBL38 and structural data from RCSB PDB40 (Supporting
Information Figure S1A). Ligands assigned to protein targets
(ChEMBL confidence score ≥4) with affinities (IC50, EC50, Ki, Kd,
and log variants thereof) of 1 μM or better were extracted from the
ChEMBL09 database.38 Similarly, we assigned experimental decoys as
molecules with no measurable affinity at 30 μM or higher (greater than
relation only). The remaining ligands with affinities above 1 μM, and
decoys with no measurable affinity below 30 μM, are included for
completeness and dubbed “marginal”. Via ChEMBL, ligands are
associated with a particular target sequence by UniProt41 accession
code, and then mapped47 from UniProt accession codes to protein
data bank (PDB) structures (X-ray only) using http://www.uniprot.
org/docs/pdbtosp.txt, obtained on February 23, 2011.

Target Selection Docking. Preliminary docking calculations were
performed on each PDB structure that mapped to ChEMBL ligands
and contained a single, unambiguous cocrystal ligand as prepared by
DOCK Blaster.42 Property-matched computational decoys were
generated by the automated decoy generation procedure below,
using Daylight fingerprints with a Tanimoto coefficient (Tc) threshold
below 0.5. These decoys were docked and compared to their cognate
ligands using DOCK 3.6 with solvent-excluded volume (SEV) ligand
desolvation.31 Balancing the parallel goals of diversity, drug relevance,
many ligands and structures, and at least modest automated docking
enrichment, we selected 119 tentative targets for the new DUD. This
list was reduced to the final 102 targets by factors such as ligand and
PDB duplication between targets (e.g., FNTB duplicates FNTA), low
resolution structures (RAF1), sterically constrained binding sites
(NR1H2, THA), or over-representation (MK08, MTOR).

Target Preparation. For each target, we assembled all UniProt
accession codes (species) with any raw ChEMBL compounds (ligands,
decoys, marginal ligands, or marginal decoys). For only those
accession codes, structures were extracted using the ChEMBL to
PDB mapping, except P07700 was manually added to ADRB1 to
include six more rare structures for that GPCR. This procedure
neglects those PDB structures that belong to an accession code having
no ChEMBL compounds. For example, 1KIM is the PDB structure of
thymidine kinase (KITH) in the original DUD. This KITH structure is
from herpes virus (UniProt P03176), an accession code with no raw
compounds extracted from ChEMBL, and is thus not included in the
ChEMBL/PDB intersection used to construct the new DUD. Still,
5025 PDB codes were sent to an updated DOCK Blaster pipeline for
automated docking preparation (Supporting Information Figure S1D).
In some cases, an unambiguous ligand could not be found to indicate
the binding site, but we were able to assign 565 additional ligands by
manually inspecting over 1300 structures. Ultimately, 3692 structures
completed input grid preparation, and all but two finished docking and
enrichment analysis. Clustered ligands sets were docked to property-
matched decoys (both described below) using ECFP4 fingerprints and
removing the most similar 75% of queried decoys. DOCK 3.6 was run
using SEV ligand desolvation (as below). For each target, enrichment,
resolution, and organism were collected and sorted by enrichment in
pdb_analyze.txt, available online at http://dude.docking.org. Crude
notes on the selection process are recorded in pdb_selection.txt, and
the picked structure is listed in pdb_blessed.txt. AA2AR and DRD3
docking preparations were provided by Jens Carlson,44,45 CXCR4
partially by Dahlia Weiss,3 ADRB1 by Peter Kolb (personal
communication), and AMPC by Sarah Barelier, Oliv Eidam, and
Inbar Fish (unpublished results).
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Ligand Preparation. To prepare ligand sets for each target,
ChEMBL affinities and log variants were first normalized to nM units
(Supporting Information Figure S1B). Salts were removed, charges
were normalized, and properties were calculated using Molinspiration’s
mib package (www.molinspiration.com). Ligands with 600 Da or
higher molecular weight or with 20 or more rotatable bonds were
removed. Smiles were put in canonical form using OpenEye’s
OEChem software.48 Ligand sets from each species were combined,
sorted by ascending normalized affinity, and then made unique based
on canonical smiles. The same procedure was used to collate the
experimental decoys, marginal ligands, and marginal decoys. For
AmpC β-lactamase (AMPC), an original DUD target, the ChEMBL09
ligands are covalent in nature. To identify noncovalent ligands, we
manually compiled ligands6,43,49,50 with affinities below 5 mM and
experimental decoys43,51 from the literature.
Ligand Clustering. To reduce the sometimes large number of

ChEMBL ligands down to a manageable size while also increasing
scaffold diversity as suggested by Good and Oprea,27 we clustered the
ligands by their Bemis−Murcko atomic frameworks,39 as generated by
Molinspiration’s mib. If there were 100 or more frameworks, we chose
only the highest affinity ligand from each. If there were fewer than 100
Murcko frameworks, we increased the number of highest affinity
ligands taken from each until we achieved at least 100 ligands (or until
all ligands were included). Conversely, if there were more than 600
Murcko frameworks, then we decreased the ligand affinity threshold in
the sequence [1 μM, 300 nM, 100 nM, 30 nM, 10 nM, 3 nM] until
fewer than 600 frameworks were present, where we then took the
highest affinity ligand from each framework. While clustered ligand
sets are the default, the full unclustered ligand sets and corresponding
decoys are available. The script (subset_decoys.py) used to select the
clustered subset given the ligand ids is provided with the full ligand set
to enable other clustering algorithms or filtering methods to be
substituted.
Automated Decoy Generation. As in the original DUD, we

property-matched decoys to ligands using molecular weight, estimated
water−octanol partition coefficient (miLogP), rotatable bonds,
hydrogen bond acceptors, and hydrogen bond donors, plus we
added net charge. We generated all ligand protonation states in pH
range 6−8 using Schrödinger’s Epik with arguments “-ph 7.0 -pht 1.0
-tp 0.20” (Supporting Information Figure S1C). Molecular properties
were then computed using Molinspiration’s mib. Over all the
protonated forms of a given ligand, we kept only those with a unique
set of the six physicochemical properties. For each of these unique
property sets, we aimed to generate 50 matched decoys. For example,
a single input ligand predicted to have two alternate charges would get
50 decoys property-matched to each charge. To accomplish this, a
pool of decoys was selected from ZINC46 using a dynamic protocol
that adapted to local chemical space by narrowing or widening
windows in seven steps around the six properties. The goal was to
return 3000−9000 potential decoys that matched the decoy’s reference
protonation state (predicted most prevalent form at pH 7.05). In the
final decoy procedure, ECFP4 fingerprints were generated by Scitegic’s
Pipeline Pilot for ligands and potential decoys. The decoys were sorted
by their maximum Tc to any ligand, and the most dissimilar 25% were
retained through this dissimilarity filter. We then remove duplicate
decoys from the ligand set by sorting decoys from least to most
duplicated and assigned each decoy to the protonated ligand which has
the least number of decoys already assigned. This ensures unique
decoys were spread across the ligands as evenly as possible. Finally, if
available, 50 decoys were picked randomly from this deduplicated list.
Original DUD Comparison. For the original DUD comparison,

we downloaded ligands and decoys from dud.docking.org and
prepared docking flexibases with our modern ZINC toolchain.46 The
original DUD target preparations were copies of the original, modified
to perform SEV desolvation calculations as described previously.31 We
also generated DUD-E style automated decoys and flexibases for the
original DUD ligands. The analysis was performed on the 37 directly
comparable targets, excluding the original targets PDGFrb, ERagonist,
and ERantagonist.

Docking Calculations. Except as noted, docking calculations were
performed with DOCK 3.6 and solvent-excluded volume (SEV) ligand
desolvation as described previously.31 Ligand conformations were
generated by OpenEye’s Omega.52 For sampling, the minimum
number of graph matching nodes was changed to 3, and ligand overlap
was changed to 0.1. Ligands were limited to between 5 and 100 heavy
atoms. The timeout for an individual ligand hierarchy was 180 s. We
performed 200 steps of simplex minimization, with initial translations
of 0.2 Å and initial rotations of 5°. The thin dielectric layer Delphi
spheres were created by walking out each DMS (http://www.cgl.ucsf.
edu/Overview/ftp/dms.zip) surface normal by 1.8 Å and placing a
sphere. This thin sphere layer is then used as input to makespheres1.pl
in place of the usual SPHGEN spheres. The random background
calculations were performed using SEV desolvation by seeding the
DUD-E ligands into the entire ChEMBL12_10 subset of ZINC, which
includes 273375 ligands with annotated affinities below 10 μM.

Docking Metrics. The area under the curve (AUC) of the receiver
operating characteristic (ROC) is one common metric to measure
docking performance. However, ROC plots often use a semilog
transformation of the x-axis to zoom in on early changes. As described
previously,31 LogAUC is completely analogous to AUC in this
transformed space, measuring the percentage of the unit area under
the curve. Formally, we use the adjusted LogAUC0.001 here, which
spans three decades of log space and subtracts the LogAUC of the
random curve (14.462%) so that random enrichment is 0%. We
typically refer to the adjusted LogAUC0.001 as either adjusted LogAUC
or simply LogAUC. The ROC-based enrichment factor at 1% (EF1) is
the percent of ligands found when 1% of the decoys have been found
and is preferred over traditional enrichment factors.53
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