
T
H

E
J

O
U

R
N

A
L

O
F

C
E

L
L

B
IO

L
O

G
Y

JCB: ARTICLE

© The Rockefeller University Press  $8.00
The Journal of Cell Biology, Vol. 173, No. 6, June 19, 2006 949–961
http://www.jcb.org/cgi/doi/10.1083/jcb.200511072

JCB 949

Introduction
All developmental and physiological functions performed by 

epithelia depend on the polarized targeting of the plasma mem-

brane and secreted proteins to either the apical or basolateral 

plasma membranes (Rodriguez-Boulan et al., 2005). Cargo pro-

teins sorted in the Golgi apparatus and the endosomal system 

through sets of basolateral- and apical-specifi c sorting determi-

nants are transported to the plasma membrane following par-

tially different routes (Hoekstra et al., 2004; Rodriguez-Boulan 

et al., 2005). Although basolateral secretion has been fairly well 

characterized, the mechanisms involved in apical traffi cking 

 remain poorly defi ned (Rodriguez-Boulan et al., 2005).

Basolateral sorting signals usually correspond to tyrosine 

or dileucine residues found in the COOH terminus of proteins. 

They are recognized by basolateral-specifi c adaptor complexes 

(Bonifacino and Lippincott-Schwartz, 2003; Rodriguez-Boulan 

et al., 2005), such as AP-1B in epithelial cells (Folsch et al., 1999). 

Before membrane fusion and SNARE action, vesicles are thought 

to be tethered to the basolateral membrane by the exocyst complex 

(Whyte and Munro, 2002), which was initially identifi ed in yeast 

(TerBush and Novick, 1995). In metazoans, the exocyst is required 

for basolateral delivery of the LDL  receptor in MDCK cells 

(Grindstaff et al., 1998; Yeaman et al., 2001), of E-cadherin in the 

 Drosophila melanogaster notum (Langevin et al., 2005), and 

for Rhodopsin1 transport in D. melanogaster photoreceptor cells 

(Beronja et al., 2005). Recent results suggest that AP-1B and the 

exocyst act primarily in recycling endosomes (Ang et al., 2004; 

Beronja et al., 2005;  Langevin et al., 2005; Lock and Stow, 2005; 

Satoh et al., 2005), which underlines the central role of this organ-

elle in sorting processes. Indeed, recycling endosomes may 

be compartmentalized into apical- and basolateral-related domains, 

or even  divided into distinct organelles, suggesting that they could 

also play a critical role in apical traffi cking (Hoekstra et al., 2004; 

Rodriguez-Boulan et al., 2005).

Aside from this possible role of recycling endosomes, all 

other aspects of sorting along the basolateral and apical routes 

seem to differ. Apical signals are more diverse and often cor-

respond to posttranslational adducts, such as lipids or glycans 

(Schuck and Simons, 2004; Rodriguez-Boulan et al., 2005). For 

instance, the Hedgehog morphogen is secreted apically upon 
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cholesterol addition, but basolaterally otherwise (Gallet et al., 

2003). No specifi c apical cytosolic complex, akin to AP-1B or 

the exocyst, has been identifi ed so far. Instead, protein cluster-

ing, possibly through lipid rafts, is thought to mediate the sort-

ing and transport of apical cargoes (Schuck and Simons, 2004; 

Rodriguez-Boulan et al., 2005). In particular, glycosyl phospha-

tidylinositol–linked proteins appear to form oligomers that are 

directly targeted to the apical membrane (Paladino et al., 2004, 

2006; Hua et al., 2006). Several proteins have been proposed to 

play an active role in apical protein clustering, raft formation, 

and/or apical delivery, such as caveolins (Kurzchalia et al., 

1992), annexin 13b (Fiedler et al., 1995), and the tetraspan pro-

tein VIP17/MAL (Cheong et al., 1999; Puertollano et al., 1999). 

However, their mechanistic roles have not been fully elucidated, 

or their implication has been questioned (Manninen et al., 

2005). In addition to the limited understanding of apical secre-

tion at the molecular level, it is not clear whether the terminal 

fusion process involves small vesicles, such as those defi ned 

at synapses, or larger organelles, such as secretory lysosomes 

(Blott and Griffi ths, 2002).

Hence, despite the many critical fi ndings originating from 

tissue culture cells (Rodriguez-Boulan et al., 2005), investiga-

tions with other systems and other cargo proteins could help 

to elucidate the mechanisms involved in apical exocytosis. 

 Caenorhabditis elegans, which has contributed to decipher the 

mechanisms controlling vesicular traffi cking (Nurrish, 2002), 

provides such an in vivo model. We have chosen to analyze api-

cal secretion of cuticle proteins by the epidermis. The cuticle 

includes glycosylated collagens, glycosyl phosphatidylinositol–

linked cuticlins, and lipid-modifi ed Hedgehog-related peptides 

(McMahon et al., 2003; Sapio et al., 2005; Zugasti et al., 2005). 

We previously suggested that the gene che-14 is required for 

cuticle secretion (Michaux et al., 2000). The CHE-14 protein is 

the C. elegans orthologue of Drosophila Dispatched, which par-

ticipates in apical targeting of cholesterol-modifi ed Hedgehog 

(Burke et al., 1999; Gallet et al., 2003).

While searching for che-14 alleles (Michaux et al., 2000), 

we uncovered several additional mutations inducing che-14–

like phenotypes and reasoned that they might identify new com-

ponents of the apical traffi cking pathway. Two such mutations, 

mc37 and mc38, proved to be small deletions behaving as 

 genetic-null alleles of the gene vha-5 (unpublished data). The 

gene vha-5 encodes one of the four C. elegans “a” subunits of 

the V0 sector of the vacuolar H+-ATPase (V-ATPase), and is re-

quired for development beyond the L2 larval stage (Oka et al., 

2001; Pujol et al., 2001). The V-ATPase is a multisubunit pro-

tein complex consisting of two subcomplexes called the V0 and 

V1 sectors (Fig. 1 A). The cytosolic V1 sector hydrolyses ATP 

and provides the energy to pump protons through the transmem-

brane proteolipid pore formed by the V0 sector (Nishi and Forgac, 

2002). The V-ATPase is the main proton pump establishing 

a pH gradient in the secretory and endocytic pathways. It gener-

ates a proton-motive force that is essential to load synaptic 

 vesicles with neurotransmitters before secretion (Amara and 

Kuhar, 1993). The V-ATPase is also found at the apical plasma 

membrane of polarized cells, where it is essential for osmoregu-

lation in animal excretory systems (Nishi and Forgac, 2002). 

More recently, biochemical and genetic data suggested that the 

V0 sector can play a role independently from the V1 sector. 

In Saccharomyces cerevisiae, vacuoles defi cient for the “a” sub-

unit Vph1p do not fuse effi ciently (Peters et al., 2001; Bayer 

et al., 2003). In D. melanogaster, neurons lacking the “a” subunit 

Vha100 accumulate vesicles in synaptic terminals (Hiesinger 

et al., 2005). In both cases, the defects were independent of the 

proton gradient and placed downstream of SNARE function 

(Peters et al., 2001; Bayer et al., 2003; Hiesinger et al., 2005).

By further dissecting the role of vha-5 using targeted 

 mutagenesis, and by comparing phenotypes resulting from the 

inactivation of V1 or V0 subunits, we uncover a specifi c role for 

the V0 sector in mediating secretion to the apical membrane. 

In particular, we show that the V0 sector is required for apical 

secretion of Hedgehog-related peptides through a multivesicular 

compartment able to release exosomes.

Results
The V0 “a” subunit VHA-5 is apical 
and required for cuticle formation
To determine the distribution and subcellular localization of 

VHA-5, we raised polyclonal antibodies against its cytoplasmic 

NH2 terminus. In addition, we generated a COOH-terminal 

VHA-5::GFP fusion, which rescued the larval lethality caused 

by the vha-5(mc38) deletion (Fig. 1 B). The VHA-5 antiserum 

recognized a 105-kD protein in wild-type extracts (Fig. 1 C, 

lane a). To prove its specifi city, we examined extracts from 

vha-5(mc38) homozygous animals carrying the rescuing VHA-

5::GFP construct. The VHA-5 antiserum failed to detect the 

�105-kD band in these extracts, but detected an �135-kD band 

(Fig. 1 C, lane b). These results are consistent with vha-5(mc38) 
being a small deletion associated with a frameshift (Fig. 1 B and 

not  depicted) and with the presence of 257 additional residues in 

the GFP-fusion protein. We conclude that the VHA-5 antiserum 

is specifi c and that vha-5(mc38) is a molecular null mutation.

In agreement with previously published observations 

(Oka et al., 2001; Pujol et al., 2001), we found that VHA-5 is 

expressed in the H-shaped excretory cell corresponding to the 

C. elegans kidney-like organ (Fig. 1, D and E). It is also ex-

pressed in the main epidermal syncytium (Fig. 1, D–F), which 

had previously been overlooked. The excretory cell extends 

long processes called excretory canals where osmoregulation 

takes place (Nelson and Riddle, 1984), whereas the epidermis 

controls body length and apical cuticle secretion (White, 1988). 

VHA-5 colocalized apically with the V1 subunit VHA-8 in both 

tissues (Fig. 1 E; note that VHA-5 is not expressed in the lateral 

epidermis). VHA-5 was localized at the level of apical mem-

brane stacks by immunogold staining (Fig. 1 G). Consistent 

with VHA-5 distribution and a role of the V-ATPase in osmo-

regulation (Nishi and Forgac, 2002), vha-5(mc38) larvae fi lled 

with fl uid and died at the L1 stage (unpublished data), which 

corresponds to the phenotype observed after laser ablation of 

the excretory cell (Nelson and Riddle, 1984). In addition, 

vha-5(mc38) L1 larvae had a severe malformation of the lateral 

cuticular specializations known as alae (Fig. 1 D and Fig. 2 A), 

which are primarily synthesized by the lateral seam cells. 
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 Although VHA-5 is not expressed in these cells, the main epi-

dermal syncytium also contributes to their morphogenesis 

(Sapio et al., 2005). Because VHA-5 is transmembraneous and 

not cuticular, the simplest interpretation for this phenotype is 

that vha-5 mutations compromise the secretion of proteins 

needed for alae formation.

The V0 sector alone is required 
for cuticle formation
As outlined in the previous section, the V0 sector may fulfi ll 

two distinct functions; either working together with the V1 sec-

tor to mediate proton pumping or working alone, as in yeast and 

D. melanogaster neurons, to mediate membrane fusion. To de-

termine which of these functions could account for the cuticle 

secretion defect observed in vha-5(mc38) larvae, we examined 

the role of other V-ATPase subunits in cuticle formation using 

the RNAi approach. If improper proton pumping is responsible 

for the aforementioned vha-5 cuticle defects, RNAi knockdown 

of either V0 or V1 subunits should result in similar cuticular 

 defects. Conversely if the loss of a V0-specifi c function accounts 

for the vha-5 cuticular phenotype, only RNAi knockdown of V0 

subunits should phenocopy vha-5 cuticle defects. We chose two 

V1 subunits (VHA-8 and -13) and one V0 subunit (VHA-4) 

 encoded by single-copy genes, which were, thus, expected to be 

ubiquitously expressed and to display RNAi phenotypes of 

comparable severity. In addition, we tested RNAi against the 

three genes encoding the V0 “c” subunit (vha-1, -2, and -3), 

which are >78% identical at the nucleotide level. We found that 

the RNAi phenotype of vha-1 was the strongest and was di-

rectly comparable to that of vha-4, -8, and -13 (Fig. 2 B'), pre-

sumably because it refl ects knockdown of all three paralogs.

RNAi against these V1 or V0 subunit genes led to 100% 

lethality in the progeny of treated animals (Fig. 2 B', bottom 

bars). It is likely that most embryos died because of a defect in 

yolk endocytosis, which is known to be sensitive to proton 

pumping (Choi et al., 2003). In agreement, we found that yolk 

vitellogenin-GFP accumulated in the pseudocoelom of RNAi-

treated animals rather than in oocytes and embryos (Fig. S1, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200511072/DC1). 

Despite the strong lethality induced by loss of V-ATPase 

 function, a few L1 larvae hatched and, invariably, died fi lled 

with fl uid before the L2 larval stage (Fig. 2 B''), as observed for 

vha-5(mc38) larvae. Strikingly, we observed before their death 

that L1 hatchlings displayed severe alae defects when RNAi tar-

geted the V0 subunits vha-1 or -4, but had wild-type alae after 

knockdown of the V1 subunits vha-8 or -13 (Fig. 2, B and B'). 

Consistent with the phenotype of vha-5–null mutants, RNAi 

against vha-5 also affected alae formation (Fig. 2, B and B'–C), 

Figure 1. VHA-5 is at the apical membrane in the excretory canal and the epidermis. (A) Drawing of the V-ATPase complex and C. elegans subunits ana-
lyzed in this study. (B) PCR analysis of wild-type, vha-5(mc38)/+, and vha-5(mc38) animals with primers in vha-5 showing that mc38 is a small deletion. 
(C) Western blot with a VHA-5 antiserum of wild-type C. elegans extracts (lane a) and vha-5(mc38) mutants rescued by a vha-5::gfp transgene (lane b). 
A 105-kD band is visible in wild-type animals, a 135-kD band in rescued vha-5(mc38) mutants. (D) Drawing of a section through the body (left) and the epi-
dermis (right) showing the positions of the images displayed in this and other fi gures. (E) Distribution of vha-5::rfp and vha-8::yfp in rescued vha-5(mc38) 
animals; XY confocal section, apical epidermal surface where the pattern appears as dots (arrowheads; excretory canal, arrows). The V1 E subunit VHA-8 
(see A) colocalizes with VHA-5. (F) Immunofl uorescence image of a wild-type adult with VHA-5 antiserum; VHA-5 forms dots in the epidermis. (G) Immuno-
gold labeling against VHA-5 (gold beads, arrowheads); VHA-5 localizes mainly to apical membrane stacks of the epidermis (see also Fig. S5 D). Fig. S5 
is available at http://www.jcb.org/cgi/content/full/jcb.200511072/DC1.
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although lethality was weaker because VHA-5 is not ubiqui-

tously expressed like VHA-4. One trivial explanation for the 

persistence of normal alae after V1 subunit knockdown could be 

that RNAi was less effi cient than for V0 subunits. It is unlikely, 

as the lethality rates and the larval osmoregulation defects ob-

served after V1 and V0 subunit knockdown were comparable 

(Fig. 2, B' and B''), hinting that both RNAi were equally 

 effective. To support this idea, we submitted a vha-8::gfp 

 transgenic strain to vha-8 RNAi and verifi ed that it induced a 

drastic decrease of VHA-8::GFP fl uorescence (Fig. 2 D). We 

conclude that the V0 sector is required independently from the 

V1 sector for apical secretion of some cuticle components.

The two functions of V0 
are genetically separable
If the V0 sector has two distinct functions, it should be possible 

to recover vha-5 alleles that affect either its V0-specifi c secre-

tion function or its V0+V1 proton-pump function. The vha-5 

distribution and the aforementioned phenotypes indicate that 

reducing V0-specifi c function should affect cuticle secretion, 

whereas impairing proton pumping should affect the excretory 

canal responsible for osmoregulation. To identify such muta-

tions, we used a plasmid rescue strategy, whereby we generated 

mutations by using PCR on a rescuing vha-5::gfp construct, in-

troducing them into vha-5(mc38)/+ animals, and recovering 

live homozygous vha-5(mc38) animals whenever possible (Fig. 

3 A). We modifi ed charged or large hydrophobic residues, as 

well as residues previously mutated in the yeast Vph1p (Leng 

et al., 1996, 1998). We generated 56 mutations (Fig. 3, B and C; 

and Fig. S2, available at http://www.jcb.org/cgi/content/full/

jcb.200511072/DC1); 42 had no obvious phenotype by differ-

ential interference contrast (DIC) microscopy (Fig. 3 B, stars), 

and eight failed to rescue, indicating that those residues are es-

sential for VHA-5 function (Fig. 3 B, white boxes). More inter-

estingly, six substitutions rescued the vha-5(mc38)–induced 

lethality and affected the cuticle, the excretory canal, or both.

These six mutations defi ned three classes, which we 

will call “cuticle mutations” (L786S, E830Q, and V844F), 

“canal mutations” (W190A and R191A), or “mixed mutations” 

(W327A). First, animals carrying cuticle or mixed mutations 

were signifi cantly shorter and dumpier than wild-type animals 

or animals carrying canal mutations (Fig. 4 A). This phenotype 

is frequently observed for mutations affecting cuticle com-

ponents (McMahon et al., 2003). Western blot analysis using 

the VHA-5 antiserum detected similar amounts of mutant 

VHA-5::GFP proteins (Fig. 4 B), implying that expression level 

Figure 2. The V0 sector is specifi cally required for cuticle secretion. (A) Alae (arrowheads) of wild-type (WT), vha-5(mc38), and vha-4(RNAi) L1 larvae vi-
sualized by SEM; vha-5(mc38) and vha-4(RNAi) larvae have essentially no alae. (B–B”) Alae (arrowheads; B), quantifi cation of lethality and alae defects 
(B’) and a representative larva fi lled with fl uid (B”) after RNAi knockdown of the V1 subunits VHA-8 and -13, or V0 subunits VHA-1, -4, and -5; images 
(in B and B”) correspond to DIC micrographs. Lethality, and L1 or adult (Ad) alae defects, were quantifi ed in separate experiments. (C) Alae (arrowheads) of 
a wild-type adult and an animal that survived until adulthood after RNAi against vha-5. Alae are absent in the VHA-5–defective adult. (D) GFP fl uorescence 
of a control L1 larva carrying a vha-8::gfp transgene (WT), and after RNAi against vha-8 (vha-8(RNAi)). The RNAi treatment almost completely removed 
the fl uorescence in this larva, yet it has normal alae (see magnifi ed view of the boxed area in the bottom DIC image).
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 differences do not explain phenotypic differences. Second, 

scanning electron microscopy (SEM) showed that adult alae 

were strongly affected in the former, but not the latter, animals 

(Fig. 4 C and Fig. S3 A, available at http://www.jcb.org/cgi/

content/full/jcb.200511072/DC1). Third, confocal microscopy 

using the mutant VHA-5::GFP as a marker and transmission 

electron microscopy (TEM) revealed that the excretory canal of 

animals with canal or mixed mutations, but not with cuticle mu-

tations, was abnormal (Fig. 4, D and E; and Fig. S3, A and B). 

Their excretory canals had an increased section, often with mul-

tiple lumens, and 3–10 abnormal whorls per canal (see mc38; 
Ex[W190A] in Fig. 4 [D and E]). Strikingly, we observed simi-

lar phenotypes by knocking down V1 or V0 subunits by RNAi 

from L3 larval stage until adulthood (Fig. 5). Thus, we infer 

that the defects induced by canal mutations refl ect an impair-

ment of V0+V1 proton pumping, and that they are caused by 

loss-of-function rather than by gain-of-function mutations. 

Expansion of the excretory canal in these mutants might help 

Figure 3. Mutations introduced in the V0 subunit VHA-5. (A) Strategy to generate vha-5 mutations based on complementation of the vha-5–null allele 
vha-5(mc38). (B) Predicted topology for VHA-5 based on yeast Vph1p (Nishi and Forgac, 2002) and positions of substitutions. Box, symbols for the most 
important phenotypes (see also Fig. S2). DbClustal alignment (http://bips.u-strasbg.fr/PipeAlign/jump_to.cgi?DbClustal+noid) of VHA-5 with the three 
other C. elegans “a” subunits, VHA-6 (intestinal), VHA-7 (epidermal), and UNC-32 (ubiquitous in the embryo, and then muscular and neuronal), the most 
closely related human and fl y “a” subunits (human ATP6V0a1 and D. melanogaster V100), and the S. cerevisiae “a” subunit Vph1p. The positions of the 
mutations and the predicted positions of the transmembrane domains (numbered with roman letters) are indicated above VHA-5. Fig. S2 is available at 
http://www.jcb.org/cgi/content/full/jcb.200511072/DC1.



JCB • VOLUME 173 • NUMBER 6 • 2006 954

to compensate for the decrease in proton-pumping effi ciency. 

Surprisingly, animals with canal mutations did not show any 

proton-pumping defect in the epidermis. Possibly, proton pump-

ing is preserved in this tissue because the “a” subunit VHA-7, 

which is expressed in the epidermis but not in the excretory 

cell (Oka et al., 2001; Pujol et al., 2001), compensates for the 

mutated VHA-5. In contrast, we infer that the cuticle defects 

induced by cuticle mutations refl ect an impairment of the V0-

specifi c secretion function, which would not be compensated 

by other “a” subunits, probably because they are not endowed 

with this specifi c function. The existence of various “a” sub-

units with possibly different functions in the epidermis is remi-

niscent of the difference observed in yeast between Vph1p and 

Stv1p (Kawasaki-Nishi et al., 2001). Lastly, we suggest that the 

mixed mutation W327A affects both V0+V1 and V0-specifi c 

functions. We note that cuticle mutations are located in the last 

Figure 4. Genetic separation of the V0-specifi c and V0+V1 functions of the V0 subunit VHA-5. (A) Body length of adults at the same age (Error bars repre-
sent the SD; ***, signifi cantly different from wild-type with P < 0.0001). In this and subsequent fi gures, vha-5(mc38) animals with a mutant vha-5::gfp or 
vha-5::rfp transgenic are noted mc38; Ex[substitution]. (B) Western blot analysis with VHA-5 antiserum of extracts prepared from the three main mutants de-
scribed in the text. The VHA-5::GFP protein levels are comparable, relative to an actin loading control. (C) Adult outer cuticle, alae (arrows), and annuli 
(arrowheads) observed by SEM (genotypes indicated above images). Note the stunted alae and annuli defects induced by L786S and E830Q mutations. 
(D) GFP fl uorescence of the VHA-5 construct in the excretory canal of similar adults (top row, single XY confocal section; bottom row, transverse XZ projection. 
Compare the normal lumen (arrow) in the control animal with the whorls (arrowheads) induced by the W190A mutation. (E) Excretory canal in similar 
adults observed by TEM, and quantifi cation of the canal section area. Note the multiple lumens (black arrowheads) in mc38; Ex[W190A] animals (dotted 
lines outline the excretory canal). NS, not signifi cantly different from control animals; SD, standard deviation.

Figure 5. Knockdown of V0 and V1 subunits induces whorls in the excre-
tory canal. VHA-5::GFP fl uorescence in the excretory canal of adults after 
RNAi against V0 (vha-1 and vha-4) or V1 (vha-8 and vha-13) subunits per-
formed during larval development. Note the presence of whorls (arrow-
heads; the normal lumen is outlined with arrows), as in mc38; Ex[W190A] 
animals (Fig. 4 D).
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transmembrane domain or in the COOH-terminal luminal tail, 

whereas canal mutations are in the NH2-terminal cytoplasmic 

part, which is more likely to interact with the V1 sector (Nishi and 

Forgac, 2002). We conclude that the V0-specifi c and V0+V1 

functions of VHA-5 are genetically separable.

V0 mediates secretion of exosomes 
through MVBs
If indeed the V0 sector is involved in secretion, vha-5 cuticle 

mutants should accumulate secretory organelles. At low magni-

fi cation, TEM through the epidermis showed that animals carry-

ing cuticle or mixed mutations contained signifi cantly more and 

larger dense organelles than wild-type adults or animals carry-

ing canal mutations (Fig. 6 A and Fig. S3 C). At higher magnifi -

cation these organelles appeared as multivesicular bodies 

(MVBs; Fig. 6, B and C). MVBs are endosome-derived organ-

elles containing 30–90 nm vesicles, which grow from early and 

recycling endosomes or from the trans-Golgi network and 

evolve into lysosomes or into secretory organelles (Raiborg 

et al., 2003). Hence, MVB accumulation may refl ect either an 

endocytic/degradation pathway or a secretory defect. To distin-

guish between these two possibilities, we examined whether 

vha-5 mutants had normal lysosomes. In addition, we compared 

vha-5 defects to those induced by strong mutations in vps-27, 

rme-8, and cup-5, which are three essential genes acting at dif-

ferent steps along the endocytic route (Zhang et al., 2001; 

Treusch et al., 2004; Roudier et al., 2005). The rationale for this 

comparison is that if vha-5 cuticle mutations affect endocytosis, 

Figure 6. Cuticle mutations impair MVB-driven exosome release. TEM micrographs of the adult epidermis. (A) Dense MVBs at low magnifi cation (geno-
types indicated above images); the number and size of MVBs are quantifi ed below images. Note that L786S and E830Q mutations increase MVB size and 
number. (B) Light MVBs at higher magnifi cation in control mc38; Ex[+] (B1–B3) and wild-type (B4) adults. Note MVB organelles (thick arrows) with intralu-
menal vesicles (arrowheads), in direct apposition to membrane stacks (thin arrows) at the apical epidermal plasma membrane (B1), or in apparent fusion 
with the plasma membrane (B2). The presence of vesicles externally (B3 and B4) suggests that these MVBs are secretory and that intralumenal vesicles 
 become exosomes. (C) MVBs and lysosomes in mc38; Ex[E830Q] (C1–C3) and wild-type (C4) adults. MVBs are electron dense (C1), yet can evolve into 
normal lysosomes (C2 and C3, compare to C4). Bars, 0.5 μm. (D) Quantifi cation of endocytic organelles in vha-5 mutants (error bars represent the SD; 
***, signifi cantly different from wild type; P < 0.0001). Cuticle mutants specifi cally accumulate dense and hybrid MVBs.
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then vps-27, rme-8, or cup-5 mutations should induce cuticle 

phenotypes comparable to those of vha-5 mutants. As found in 

other systems (Luzio et al., 2001), we could observe in all vha-5 

mutants intermediate late endosome–lysosome compartments 

corresponding to enlarged MVBs with multilamellar structures 

(called hybrid-MVBs in the next section) and normal lyso-

somes, suggesting that the endocytic/degradation pathway was 

not qualitatively affected (Fig. 6 C). In contrast, cup-5(ar465) 
mutants accumulated large MVBs in their epidermis that did 

not evolve into lamellar structures (Fig. 7 A). Furthermore, 

vps-27(ok579), rme-8(b1023), and cup-5(ar465) mutants had 

normal alae, unlike vha-5 cuticle mutants (Fig. 7, B and C). We 

conclude that cuticle mutations are unlikely to affect degrada-

tion, and, rather, they affect a secretory pathway.

To understand the relevance of MVB accumulation in 

vha-5 mutants, we reinvestigated secretion in the wild-type 

C. elegans epidermis. In hematopoietic cells, some MVBs release 

their vesicle content into the extracellular space and, thus, play 

a role in exocytosis, in addition to their well defi ned role in the 

endosomal pathway (de Gassart et al., 2004). The vesicles re-

leased by fusion of MVBs with the plasma membrane were 

originally called exosomes in antigen-presenting cells. In sup-

port of the notion that secretion in the C. elegans epidermis in-

volves exosomes, we observed small light MVBs containing 

50–100-nm vesicles just beneath the apical plasma membrane. 

Moreover, we occasionally saw vesicles immediately above the 

plasma membrane in the inner cuticular layer, strongly suggest-

ing that a MVB had released its intralumenal vesicles (Fig. 6 B). 

These MVBs were always found in the vicinity of epidermal 

apical membrane stacks, a structure whose role is so far un-

known (White, 1988). In contrast, we rarely observed similar 

MVBs adjacent to the plasma membrane in cuticle mutants, or 

they were darker (Fig. 6 C). These data suggest that the MVB-

limiting membrane can fuse with the apical membrane to re-

lease exosomes in the cuticle, and show that this process is 

impaired in vha-5 cuticle mutants. It raises the possibility that 

the V0 sector is critical for MVB fusion with the apical mem-

brane during exosome release.

V0 mediates secretion 
of hedgehog-like peptides
An important expectation of the cuticle defects described so far 

is that we should be able to identify cuticular proteins whose 

secretion depends on VHA-5 activity. Cuticle proteins include 

collagens and Hedgehog-related peptides (McMahon et al., 

2003; Zugasti et al., 2005). We found that the collagen DPY-7 

was effi ciently secreted in vha-5(mc38)–null animals, in an-

imals carrying cuticle mutations, as well as in che-14(mc35) 
mutants (Fig. S4, available at http://www.jcb.org/cgi/content/

full/jcb.200511072/DC1). We turned our attention onto Hedge-

hog-related peptides, which appeared as good candidates for 

three reasons. First, vha-5 alae defects partially resemble those 

observed in che-14 mutants. Second, CHE-14 is homologous to 

Dispatched, which is a protein required for Hedgehog release 

(Burke et al., 1999; Michaux et al., 2000). Third, despite the ab-

sence of a Hedgehog homologue in C. elegans, its genome con-

tains several Hedgehog-related peptides required to generate a 

normal cuticle, although their precise roles remain unknown 

(Aspock et al., 1999; Zugasti et al., 2005).

We tagged with GFP the secreted domain of the Hedgehog-

related peptides WRT-2 and -8 (Fig. 8 A and Fig. S3 E), which 

are expressed in the epidermis (Aspock et al., 1999). We found 

that animals bearing cuticle mutations, but not canal mutations, 

accumulated VHA-5::RFP and WRT-2::GFP or -8::GFP in dis-

crete entities in their epidermis (Fig. 8, B and C; and Fig. S3, 

D and F). These entities most likely correspond to the dense 

and hybrid MVBs (Fig. 6, C and D) because VHA-5::RFP also 

colocalized (Fig. 8 C) with the MVB marker VPS-27::GFP 

(Roudier et al., 2005). Moreover, both VHA-5 antiserum and a 

GFP antiserum targeting WRT-2::GFP decorated the MVBs of 

cuticle mutants (Fig. 8 D and Fig. S5 B, available at http://www.

jcb.org/cgi/content/full/jcb.200511072/DC1). Last, in wild-type 

nontransgenic animals, in addition to membrane stacks (Fig. 

1 G), VHA-5 was found at the MVB-limiting membrane, in 

Figure 7. Fluid-phase endocytosis mutations do not affect cuticle formation. 
(A) Epidermis of a cup-5(ar465) adult visualized by TEM; note the  enlarged 
electron-dense MVB (demarcated by dotted lines). (B) Adult alae visualized 
by TEM (genotypes are indicated on the left). (C) Alae of L1 larvae grown 
at 25°C and visualized by DIC; vps-27(ok579) is an L2 lethal mutation 
and rme-8(b1023) is a temperature-sensitive lethal mutation. vps-27, rme-8, 
and cup-5 mutations did not affect alae formation, in contrast to vha-5 
 cuticle mutations.
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 intralumenal vesicles, and in the cuticle (Fig. 8 E and Fig. S5 A), 

suggesting that it could act at different steps in the secretion of 

vesicle (see Discussion). Importantly, the VHA-5 protein with the 

substitutions L786S (Fig. 8 B) or E830Q (not depicted) could 

reach the plasma membrane in heterozygous vha-5(mc38)/+ 

animals, which strongly suggests that their intracellular reten-

tion in homozygous mc38 animals is caused by the loss of a 

traffi cking function rather than by misfolding. Consistently, the 

WRT-2/8 proteins were not retained intracellularly either in het-

erozygous vha-5(mc38)/+ animals, despite the presence of the 

L786S (Fig. 8 B), or in E830Q transgenes (not depicted). These 

results indicate that the V0 sector plays a key role in a specifi c 

apical secretion pathway that is taken on by Hedgehog-related 

proteins, but not by collagens.

Discussion
Whereas basolateral secretion is known to depend on the activ-

ity of specifi c complexes (AP-1B and the exocyst), no such 

complex has been implicated in apical secretion. In addition, 

 although recycling endosomes appear to play a central role in 

basolateral secretion, their importance in apical secretion is still 

under active investigation. Our characterization of mutations af-

fecting the V-ATPase “a” subunit VHA-5 sheds new light on the 

apical biosynthetic secretory pathway. We could observe the 

 fusion of MVBs with the apical plasma membrane in wild-type 

animals, and the subsequent release of exosomes. In contrast, 

we found that some VHA-5 mutations accumulate MVBs in 

their epidermis and prevent the secretion of Hedgehog-related 

proteins. Thus, we propose a model whereby apical secretion of 

Hedgehog-related proteins involves their incorporation into the 

intralumenal vesicles of MVBs, and their subsequent release 

when MVBs fuse with the apical plasma membrane (Fig. 9). 

Furthermore, we suggest that the V0 sector of the V-ATPase 

plays a key role in this process.

We can envision two scenarios for the role of the V0 

 sector. First, vha-5 mutations affecting cuticle formation could 

 decrease V-ATPase proton pumping along the biosynthetic se-

cretory route to indirectly impair secretion. Consistent with this 

possibility, mutations in S. cerevisiae Vph1p (L746S, E789Q, 

and V803F) corresponding to the cuticle mutations (L786S, 

E830Q, and V844F, respectively) strongly reduce, but do not 

Figure 8. The V0 sector is required for the secretion of Hedgehog-related peptides through MVBs. (A) Structure of the wrt-2::gfp construct. GFP was 
inserted in frame in a nonconserved region after the signal peptide cleavage site, rather than at the COOH terminus because the related WRT-1 protein 
undergoes autoprocessing in vitro, like Hedgehog (Porter et al., 1996). (B) XZ projections of serial confocal sections through the epidermis of adults 
expressing mutant VHA-5::mRFP and WRT-2::GFP constructs (white arrowheads, VHA-5 and WRT-2 in the epidermis; white arrows, excretory canal; part 
of the green signal was caused by autofl uorescence, arrow on the right). The L786S mutation induced coretention of VHA-5::mRFP and WRT-2::GFP in 
homozygous (third set of images), but not in heterozygous (fi rst set of images), vha-5(mc38) animals. The mixed mutation W327A, and the cuticle mu-
tations L786S and V844F resulted in similar coretention phenotypes (Fig. S3 D and not depicted). (C) XZ projections of serial confocal sections through 
the epidermis of mc38; Ex[E830Q] adults expressing the MVB marker VPS-27::GFP construct. (D and E) Immunogold localization of VHA-5 (D and E) 
and WRT-2::GFP (D) in MVBs of mc38; Ex[E830Q] mutant (two different samples; D) and wild-type adults (E). Fig. S3 is available at http://www.jcb.
org/cgi/content/full/jcb.200511072/DC1.
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eliminate, proton pumping (Leng et al., 1996, 1998). We think, 

however, that this possibility is unlikely because in yeast proton 

uptake is not limiting for fusion of Vph1p-defective vacuoles 

(Bayer et al., 2003). Alternatively, these mutations could un-

cover a direct role of the V0 sector in apical exocytosis, inde-

pendently of the V1 sector. Four observations strongly support 

this notion. First, inhibition of V1 subunits did not affect cuticle 

formation, although it strongly impaired osmoregulation and 

endocytosis. Second, we obtained specifi c V0 mutations induc-

ing a strong cuticular phenotype without any apparent pumping-

related defect in the excretory cell. Third, these mutations 

selectively affected the secretion of Hedgehog-related proteins, 

but not collagens. Last, strong mutations in well characterized 

genes blocking different steps of fl uid-phase endocytosis did 

not affect cuticle structure. The specifi c accumulation of dense 

and hybrid MVBs, but not of light MVBs, in cuticle mutants, as 

well as the detection of signifi cant amounts of WRT-2::GFP 

within these MVBs, suggests that VHA-5 is neither required to 

form MVBs nor to load them with cargo proteins. Instead, the 

presence of VHA-5 at the MVB-limiting and apical membranes 

suggests that the V0 sector could drive the fusion of MVBs with 

the apical membrane via the formation of V0 sectors transcom-

plexes between both membranes (Fig. 9), as suggested in yeast 

vacuole fusion and at the D. melanogaster synapse (Bayer et al., 

2003; Hiesinger et al., 2005; Peters et al., 2001). In vertebrates, 

300-nm procollagen-I rod bundles assemble in the ER and travel 

through the Golgi lumen (Bonfanti et al., 1998). Assuming that 

worm collagens are secreted this way, they would not fi t into 

exosomes, suggesting that there are at least two distinct secre-

tion pathways in the epidermis, one involving the V0 sector and 

another followed by collagens.

What could explain a common requirement for the V0 

sector during the C. elegans apical exocytosis, yeast vacuole 

 fusion, and D. melanogaster synaptic transmission? The pre-

vailing view is that a SNAREpin complex initiates membrane 

fusion once a vesicle has been docked to a proper membrane 

(Chernomordik and Kozlov, 2003; Jahn et al., 2003). Although 

the V0 sector is thought to act downstream of SNAREs in yeast 

and D. melanogaster (Peters et al., 2001; Bayer et al., 2003; 

Hiesinger et al., 2005), we cannot exclude that it also acts in 

parallel to SNAREs, at least in C. elegans, to dock MVBs. 

 Another possibility is that V0 transcomplexes initiate the forma-

tion of a protein pore, as initially suggested in yeast (Peters 

et al., 2001). On the other hand, expansion of the fusion pore is 

considered as the limiting step in membrane fusion, and might 

require additional catalysts in vivo (Chernomordik and Kozlov, 

2003). Such a role could be fulfi lled by the V0 sector, either to 

overcome constraints caused by the big size and/or the specifi c 

lipoproteic content of C. elegans epidermal MVBs and yeast vac-

uoles, or to allow rapid synaptic transmission in D. melanogaster 

neurons (Hiesinger et al., 2005).

Irrespective of the precise role of the V0 sector in mem-

brane fusion, our fi ndings bear potentially important implications. 

First, morphogens such as Wingless and Hedgehog in 

D. melanogaster, or Sonic-Hedgehog at the mouse node, might 

be secreted through a similar pathway because their secretion 

involves particles possibly related to exosomes (Greco et al., 

2001; Gallet et al., 2003; Panakova et al., 2005; Tanaka et al., 

2005). A major objective will be to determine whether CHE-14 

and Dispatched act in the aforementioned secretory pathway, 

and, if so, at which step. Second, several other cell types, such 

as antigen-presenting cells, reticulocytes, and some epithelial 

cells, can release exosomes (de Gassart et al., 2004), which 

might thus also require the V0 sector for their secretion. In par-

ticular, the V0 sector might be directly associated with the 

transmission of some infectious diseases because viruses, such 

as HIV and the prion protein, can be disseminated through 

MVBs and the exosome-releasing machinery (de Gassart et al., 

2004; Fevrier et al., 2005). Likewise, the aforementioned secre-

tory pathway could be involved in innate immunity because 

 expression of the Hedgehog-related peptide GRD-3 is induced 

in C. elegans upon bacterial infection (Couillault et al., 2004). 

Figure 9. Model for apical secretion mediated by the V0 sector of the V-ATPase. We propose that in a wild-type animal (left) the V0 sector mediates fusion 
between the limiting membrane of MVBs and the apical plasma membrane (curved double-headed arrow). This model is supported by our genetic data, 
by the presence of VHA-5 at the apical plasma membrane (Fig. 1, E–G) and the MVB-limiting membrane (Fig. 8 E and Fig. S5 A), and by the accumulation 
of dense or hybrid MVBs in cuticle mutants (Fig. 8, Fig. S3 D, and Fig. S5, B–D). We expect the existence of two distinct V0 populations, some mediating 
secretion, others mediating proton pumping with the V1 sector. In cuticle defective vha-5 mutants (right), most fusion events between MVBs and the plasma 
membrane are compromised so that MVBs grow and become denser by accumulating their content, which can nevertheless be normally degraded.
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Third, our fi ndings raise the issue of the origin of the MVBs. 

Interestingly, the apical recycling endosomes have been recog-

nized to play an important role in biosynthetic secretory path-

ways (Hoekstra et al., 2004). Future studies should reveal 

whether the secretory MVBs that we described could originate 

from this compartment.

In conclusion, our work shows that traffi cking to the api-

cal membrane of at least some lipid-modifi ed proteins involves 

specifi c protein complexes (the V-ATPase V0 sector), much as 

traffi cking to the basolateral membrane, and predicts a key role 

for MVBs in apical exocytosis.

Materials and methods
Strain maintenance and RNA interference
Worms were grown at 20°C (unless noted otherwise; Brenner, 1974). The 
identifi cation of mc37 and mc38 as vha-5/F35H10.4-null mutations will 
be described elsewhere (the gene affected by mc37 and mc38 was ini-
tially named rdy-1; see www.wormbase.org). Marker and alleles used 
were as follows: cup-5(ar465) (Treusch et al., 2004), rme-8(b1023ts), 
bIs1[vit-2::gfp; rol-6(su1006)] (Zhang et al., 2001), and vps-27(ok579)/
unc-24(e138) dpy-20(e1282) (Roudier et al., 2005). The L1 alae pheno-
type of rme-8(b1023ts) was scored by allowing adults to lay eggs for 1 h 
at 15°C, and then transferring embryos to 25°C after egg laying. RNAi 
was performed using the following bacterial clones from the Wellcome–
Medical Research Council library (Kamath et al., 2003): vha-1, III-5A20; 
vha-4, II-5J16; vha-5, IV-4O13; vha-8, IV-3I08; and vha-13, V-9O06 
(www.wormbase.org). To score L1 larvae, RNAi was induced in L4 larvae; 
to score adults, RNAi was induced in larvae at the L2–L3 molt. Feeding 
plasmids were retransformed into fresh HT115 (DE3) bacteria, selecting for 
tetracycline and ampicillin resistance.

Plasmids
Cloning of the vha-5 coding sequence with a 2.8-kb promoter upstream of 
the GFP coding sequence in the pPD95.75 vector (Fire kit) generated a 
rescuing vha-5::gfp construct. A vha-5::mrfp construct was obtained by re-
placing the GFP with the monomeric red fl uorescent protein (mRFP) coding 
sequence in the vha-5::gfp construct. A vha-8::yfp construct was obtained 
by cloning the vha-8 coding sequence and a 3-kb promoter upstream of 
the YFP coding sequence in the pPD136.64 vector (Fire kit). To generate 
wrt-2::gfp and wrt-8::gfp constructs, we cloned wrt-2 and -8 genomic DNA 
with their 5′ and 3′ regulatory sequences into pBSKII-derived plasmids. 
The GFP coding sequence was inserted in a nonconserved region of the 
predicted secreted peptide (Fig. 8 A and Fig. S3 D).

Site-directed mutagenesis of VHA-5::GFP
The vha-5::gfp construct was mutated using the QuikChange Site-Directed 
Mutagenesis kit (Stratagene). Each desired mutation, and the entire vha-5 
coding sequence of most important plasmids, was verifi ed. Mutant plasmids 
were microinjected in heterozygous vha-5(mc38)/unc-5(e53) at 3 ng/μl, 
along with the marker pRF4 [rol-6(su1006)] at 100 ng/μl, wrt-2::gfp or 
wrt-8::gfp constructs at 30 ng/μl (when relevant), and pBSKII plasmid at up 
to 200 ng/μl. Absence of unc-5 animals in the progeny was used as a cri-
terion for rescue. mRFP versions for the mutations W190A, R191A, 
W327A, L786S, E830Q, and V844F were obtained from GFP derivatives 
without PCR amplifi cation and resulted in similar phenotypes. At least two 
independent extrachromosomal lines were initially examined for each 
 mutation. More detailed analysis was performed on a representative line.

VHA-5 antiserum, Western blots, and immunofl uorescence
VHA-5 polyclonal antibodies were raised in rabbits injected with a purifi ed 
GST fusion protein containing VHA-5 residues I29–M302, which was ob-
tained by cloning a fragment amplifi ed from the cDNA yk458f4 (a gift 
from Y. Kohara, National Institute of Genetics, Mishima, Japan) into the 
vector pGEX-2T. Total worm extracts were solubilized in 8 M urea/2% SDS 
by sonication, before 8% acrylamide gel electrophoresis and Western 
 blotting. VHA-5 antiserum was used at 1:2,000, the actin monoclonal anti-
body (act-2D7; Institut de Génétique et de Biologie Moléculaire et  Cellulaire 
collection) at 1:4,000; primary antibodies were revealed with a Super -
Signal kit (Pierce Chemical Co.). Immunofl uorescence was performed using 
the VHA-5 antiserum at 1:1,000 dilution and the DPY-7 monoclonal antibody 

(gift from I. Johnstone, Wellcome Centre for Molecular Parasitology, 
Glasgow, Scotland) at a 1:50 dilution.

DIC and confocal microscopy
Animals were mounted on 4% agarose pads in M9, anaesthetized with 
0.2% tricaine/0.02% tetramisole in M9. For DIC imaging, we used a mi-
croscope (Axioplan; Carl Zeiss MicroImaging, Inc.) coupled to a camera 
(CoolSNAP; Roper Scientifi c) under a 100× objective (PlanApo; Leica). 
For Fig. 4 A, we took at least 40 pictures of adult worms per strain and 
used ImageJ (National Institutes of Health) to measure the distance between 
the rectum and the grinder. Confocal images were captured on a confocal 
microscope (SP2-AOBS; Leica), scanning every 122 nm for XZ sections 
through a 100× objective with a 2.15× zoom (Fig. 8, B and C; and Fig. 
S3 D) or a 4× zoom (Fig. 4 E and Fig. 5). Images were processed with the 
Tcstk software (McMahon et al., 2001) and edited using Photoshop 7.0 
(Adobe). Microscopes were in an air-conditioned room (20–21°C).

TEM and SEM
L4 larvae were transferred onto fresh plates for 24 ± 2 h at 20°C before 
fi xation. For TEM, but not for SEM, animals were sectioned and fi xed for at 
least 24 h in 2.5% glutaraldehyde/2% paraformaldehyde/0.1 M sodium 
cacodylate, pH 7.2, at 4°C, and then postfi xed for 5 h with 2% osmium 
 tetroxide in the same buffer at 4°C, dehydrated in graded alcohol/water 
mixes, and embedded in Epon. Ultrathin 70-nm sections were contrasted 
with uranyl acetate and lead citrate. Sections were observed with a micro-
scope (CM12; Philips) operating at 60 kV. Quantifi cation of the excretory 
canal section area was obtained using the Metamorph software after scan-
ning images were captured at a 17,000× magnifi cation. Quantifi cation of 
MVBs was performed on 3,600×-magnifi ed images. Quantifi cation of the 
mean area occupied by organelles (Fig. 6 D) was obtained using ImageJ 
and dividing the total surface of each organelle subtype by the cytoplasmic 
surface of the hyp7 epidermis section. At least four animals per mutant 
strain were examined, and more than nine pictures per animal from differ-
ent ultrathin sections were analyzed. For SEM, animals were postfi xed for 
1 h with 2% osmium tetroxide at 4°C, dehydrated, and critical point dried 
in hexamethyldisilazane. Fixed animals were mounted on stubs, coated 
with palladium, and observed through a microscope (XL20; Philips). 
At least 20 animals per strain were analyzed.

High pressure freezing and immunogold labeling
Adult worms were frozen with a high pressure freezing apparatus  (EMPACT-2;
Leica) in 20% BSA/M9 medium. Cryosubstitution was conducted as in 
Muller-Reichert et al. (2003). Ultrathin sections were collected on formvar-
 carbon–coated copper grids and processed for immunogold labeling. 
Blocking was performed in PBS/glycine 150 mM, and then in PBS/1% 
BSA/0.1% Cold Water Fish Skin Gelatin (CWFSG; Aurion) for 30 min. 
Rabbit anti–VHA-5 at 1:1,000 and rabbit anti-GFP at 1:500 (ab6556; 
 AbCam) were incubated for 1 h in PBS/0.1% CWFSG. 10 nm protein A–
coupled gold beads (1:50; University Medical Center, Utrecht,  Netherlands) 
were incubated for 1 h in PBS/0.1% CWFSG. Postfi xation was achieved 
in 2.5% glutaraldehyde, contrasted by uranyl acetate/lead citrate. Images 
were acquired at 60 kV on a microscope (Morgagni; FEI) with a charge-
coupled device camera (Megaview III; Soft Imaging System).

Online supplemental material
Fig. S1 provides a control for Fig. 2 B, showing that RNAi against vha-5 
was effi cient. In addition, it presents the yolk endocytosis defects induced 
by the loss of V-ATPase activity (yolk proteins are produced by the intestine 
and are essential for embryonic development); it suggests that RNAi treat-
ment against V0 and V1 subunits was equally effective, and contributes to 
establish that alae differences described in Fig. 2 are meaningful. Fig. S2 
summarizes the main phenotypes observed in vha-5(mc38) animals carry-
ing transgenes with the mutations shown in Fig. 3. Fig. S3 presents the excre-
tory canal, cuticle and MVB phenotypes induced by the mutations R191A, 
W327A and V844A, which are discussed but not illustrated in the main 
text, and shows that WRT-8::GFP accumulates in mc38; Ex[vha-5(E830Q)::rfp] 
animals; it should be viewed along with Figs. 4, 6 and 8. Fig. S4 shows 
that secretion of the collagen DPY-7 is not affected by vha-5 or che-14 
 mutations. Fig. S5 provides larger pictures and controls for the immunogold 
experiments shown in Fig. 8. Online supplemental material is available at 
http://www.jcb.org/cgi/content/full/jcb.200511072/DC1.
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