
Bayesian adaptive assessment of the reading function for
vision: The qReading method

Fang Hou
School of Ophthalmology & Optometry and Eye Hospital,
Wenzhou Medical University, Wenzhou, Zhejiang, China $

Yukai Zhao

Center for Cognitive and Brain Sciences,
Center for Cognitive and Behavioral Brain Imaging,

and Department of Psychology,
The Ohio State University, Columbus, OH, USA $

Luis Andres Lesmes Adaptive Sensory Technology, Inc., San Diego, CA, USA $

Peter Bex
Department of Psychology, Northeastern University,

Boston, MA, USA $

Deyue Yu
College of Optometry, The Ohio State University,

Columbus, OH, USA $

Zhong-Lin Lu

Center for Cognitive and Brain Sciences,
Center for Cognitive and Behavioral Brain Imaging,

and Department of Psychology,
The Ohio State University, Columbus, OH, USA $

Reading is a fundamental skill that can be significantly
affected by visual disabilities. Reading performance,
which typically is measured as reading speed with a
reading chart, is a key endpoint for quantifying normal
or abnormal vision. Despite its importance for clinical
vision, existing reading tests for vision are time
consuming and difficult to administer. Here, we propose
a Bayesian adaptive method, the qReading method, for
automated assessment of the reading speed versus print
size function. We implemented the qReading method
with a word/nonword lexical decision task and validated
the method with computer simulations and a
psychophysical experiment. Computer simulations
showed that both the interrun standard deviation and
intrarun half width of the 68.2% credible interval of the
estimated reading speeds from the qReading method
were less than 0.1 log10 units after 150 trials, with a bias
of 0.05 log10 units. In the psychophysical experiment,
reading functions measured by the qReading and Psi
methods (Kontsevich & Tyler, 1999) in a word/nonword
lexical decision task were compared. The estimated
reading functions obtained with the qReading and Psi
methods were highly correlated (r¼ 0.966 6 0.004, p ,
0.01). The precision of the qReading method with 225

trials was comparable to that of the Psi method with 450
trials. We conclude that the qReading method can
precisely and accurately assess the reading function in
much reduced time, with great promise in both basic
research and clinical applications.

Introduction

In adulthood, reading is one of the most crucial daily
activities for engaging and communicating with others
and exchanging information. Impairment in reading
can have a significant impact on the quality of life
(Mitchell et al., 2008) and is often cited as a major
factor in patients seeking professional help for eye-
related problems (Elliott et al., 1997). Reading perfor-
mance has also served as an outcome measure in
clinical trials for assessing the effectiveness of treat-
ments (Mahmood et al., 2015), surgical procedures
(Jonker et al., 2015; Tang, Zhuang, & Liu, 2014), and
rehabilitation techniques (Binns et al., 2012; Stelmack
et al., 2017).

Citation: Hou, F., Zhao, Y., Lesmes, L. A., Bex, P., Yu, D., & Lu, Z.-L. (2018). Bayesian adaptive assessment of the reading function
for vision: The qReading method. Journal of Vision, 18(9):6, 1–15, https://doi.org/10.1167/18.9.6.

Journal of Vision (2018) 18(9):6, 1–15 1

https://doi.org/10 .1167 /18 .9 .6 ISSN 1534-7362 Copyright 2018 The AuthorsReceived October 21, 2017; published September 7, 2018

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

mailto:houf@mail.eye.ac.cn
mailto:houf@mail.eye.ac.cn
mailto:zhaoyukai1986@gmail.com
mailto:zhaoyukai1986@gmail.com
mailto:luis.lesmes@adaptivesensorytech.com
mailto:luis.lesmes@adaptivesensorytech.com
mailto:p.bex@northeastern.edu
mailto:p.bex@northeastern.edu
mailto:yu.858@osu.edu
mailto:yu.858@osu.edu
mailto:lu.535@osu.edu
mailto:lu.535@osu.edu
https://creativecommons.org/licenses/by-nc-nd/4.0/


Because individual letters embedded in a word are
more difficult to recognize than single letters (Whitney
& Levi, 2011), reduced visual acuity cannot fully reveal
reading impairment in a number of ophthalmic diseases
(Crossland, Culham, & Rubin, 2005; Legge, Ross,
Isenberg, & LaMay, 1992; McClure, Hart, Jackson,
Stevenson, & Chakravarthy, 2000). On the other hand,
reading speed, one of the most commonly used reading
performance measures, is a strong predictor of visual
ability and vision-related quality of life metrics for
patients with vision loss (Hazel, Petre, Armstrong,
Benson, & Frost, 2000; McClure et al., 2000). Reading
speed has also been found to correlate with the
pathological characteristics of age-related macular
degeneration (Cacho, Dickinson, Smith, & Harper,
2010; Richter-Mueksch, Stur, Stifter, & Radner, 2006).
All of these suggest that reading performance is an
important component in evaluating functional vision.

There are several reading tests that measure reading
acuity as well as reading speed at multiple print sizes,
including Bailey–Lovie word reading charts (Bailey &
Lovie, 1980), MNREAD charts (Precision Vision; see
Ahn, Legge, & Luebker, 1995; Mansfield, Ahn, Ge, &
Leubeker, 1993), SKread Charts (Precision Vision; see
MacKeben, Nair, Walker, & Fletcher, 2015), and
RADNER reading charts (Neumed AG, AT, Precision
Vision; see Radner et al., 1998). The maximum reading
speed and critical print size can be derived from the
reading speed versus print size function. However, as
Kingsnorth and Wolffsohn (2015) pointed out, chart-
based reading tests can have learning effects and are
cumbersome to use and too time consuming. They
require an examiner to simultaneously present the
reading material, take manual time measurements, and
record reading accuracy. To obtain a reading speed
versus print size function, examiners usually need to
measure reading speeds at eight to ten print sizes,
taking about 5–15 min in chart-based tests (Ahn et al.,
1995; Bailey & Lovie, 1980; MacKeben et al., 2015;
Mansfield et al., 1993; Radner et al., 1998), and an
upper bound of 5 min per print size in a more precise
test (Legge, Ross, Luebker, & LaMay, 1989). More-
over, deriving reading performance metrics from the
raw data is also laborious (Kingsnorth & Wolffsohn,
2015) and susceptible to subjective factors (Cheung,
Kallie, Legge, & Cheong, 2008).

There have been attempts to develop computerized
reading tests (Dexl, Schlogel, Wolfbauer, & Grabner,
2010; Legge et al., 1989), including tests implemented
on mobile devices (Calabrèse, Gamam, Mansfield, &
Legge, 2014; Calabrèse et al., 2018; Kingsnorth &
Wolffsohn, 2015). Although they have eliminated the
requirement for the examiner to manually record
reading time and automated data analysis, these tests
still need an examiner to enter reading errors and can
only measure reading speed at one print size at a time,

without considering any relationship between reading
speeds at different print sizes.

There is a clear need for reading tests that are easy to
administer, relatively less time-consuming, and can
provide accurate and precise estimate of reading
performance. In this study, we adopt the Bayesian
adaptive testing strategy to develop a new reading test,
the qReading method, that is fast, requires minimal
examiner involvement, and has high accuracy and
precision. The Bayesian adaptive testing strategy
combines the Bayes rule and an information-theoretic
framework to select the most informative stimulus in
each trial and accumulate information about the
reading speed versus print size function throughout the
entire test procedure. The strategy has demonstrated
great success in measuring a single sensory threshold
(Kontsevich & Tyler, 1999) and can achieve even higher
efficiency when it is applied to measure more complex
visual functions by exploiting functional regularities in
human behavior (Kujala & Lukka, 2006; Lesmes, Jeon,
Lu, & Dosher, 2006; Lesmes, Lu, Baek, & Albright,
2010; Watson, 2017).

To develop qReading, we exploited a well-estab-
lished functional relationship between reading speed
and print size (Legge & Bigelow, 2011) to gain
information of the entire reading speed versus print size
function from each test trial at a single print size and
presentation duration. In addition, we adopted the
word/nonword lexical decision task to quantify a
specific subtask of reading. Current reading tests
require an examiner to judge reading accuracy and
enter the number of reading mistakes. This renders
them far less efficient than automated tasks that can be
scored by a computer. However, automated computer
scoring limits the specific reading tasks that can be
implemented for reading testing. The word/nonword
lexical decision task has been widely used in studies of
word recognition (Meyer, Schvaneveldt, & Ruddy,
1975) and is considered as a probe to investigate the
reading process (Cohen et al., 2000; Wandell, 2011) and
an important assessment of reading ability (Gijsel, van
Bon, & Bosman, 2004; Katz et al., 2012). In qReading
with the lexical decision task, a letter string is briefly
presented and followed by a mask, and the observer is
asked to report if the letter string is a word or a
nonword. The task can be considered as a special case
(one-word version) of an rapid serial visual presenta-
tion (RSVP) reading task (Chung, Mansfield, & Legge,
1998). The reading speed in words per minute (wpm)
can be computed as the reciprocal of threshold
exposure duration (in seconds) times 60. As in many
conventional reading tests for vision, we manipulate the
exposure duration and print size of the stimuli in the
lexical decision task to focus on visual factors in
reading, keeping language comprehension factors
minimal.

Journal of Vision (2018) 18(9):6, 1–15 Hou et al. 2



In the following, we describe the logic and core
algorithm of the qReading method as well as computer
simulations and a psychophysical experiment conduct-
ed to evaluate its performance. The results show that
the qReading method can generate precise and accurate
measures of reading speed versus print size function,
and may provide a key endpoint for quantifying
normal or abnormal vision.

The qReading Method

It is well known that reading speed increases sharply
with print size at small print and plateaus at large print
sizes (Legge & Bigelow, 2011). The qReading method
exploits this functional regularity between reading
speed and print size to achieve greater efficiency.
Specifically, the qReading method adopted an expo-
nential-decay function form to describe the reading
speed versus print size curve (Cheung et al., 2008):

log 10 speed sizeð Þð Þ
¼ log10 að Þ � log10 að Þ � log10 aCð Þð Þ

3 exp � log10 sizeð Þ � log10 jð Þð Þ
g

� �
; ð1Þ

where speed(size) is in wpm, a is the asymptote of
reading speed in large print sizes, corresponding to the
maximum reading speed, j is the print size at which the
reading speed is aC wpm, and g controls the ascending
rate of the reading speed versus print size function, aC
is defined as 360 wpm in the current study. Therefore,
the reading speed versus print size function is charac-
terized by three parameters: a;j and g (Figure 1).
Reading speed at a given print size is defined by the
threshold exposure duration s sizeð Þ (in seconds) with
which the observer performs the lexical decision task at
80.3% correct in that print size:

speed sizeð Þ ¼ 60=s sizeð Þ: ð2Þ
The probability that the observer can perform the

word/nonword lexical decision task correctly in a given
print size and exposure duration condition is described
by a psychometric function:

W duration sizeð Þð Þ ¼ ckþ 1� kð Þ

3 cþ 1� cð Þ 1� exp � duration

s sizeð Þ

� �b
 ! ! !

; ð3Þ

where s sizeð Þis the threshold exposure duration corre-
sponding to 80.3% percent correct in the print size
condition, c¼ 0.5 is the guessing rate in the word/non-
word lexical decision task, k¼ 0.04 is the lapse rate for
the task (Lesmes et al., 2010; Wichmann & Hill, 2001),
and the slope b was set to 2.0 based on pilot data

collected on human observers.1 Combined together,
Equations 1, 2, and 3 can model the response accuracy
of the observer in any print size and exposure duration
condition in the lexical decision task.

Before each test, the qReading method defines the
parameter space for all the possible reading functions h
¼ (a; j; g) and a prior distribution of parameters
p0 hð Þrepresenting the experimenter’s prior knowledge
of the probability of different reading curves. It also
defines the stimulus space that contains all possible
print sizes and presentation durations to be tested in
the experiment x ¼ (size, duration).

In each trial, the qReading method searches for the
optimal print size and exposure duration via an
information-theoretic approach, presents the optimal
stimulus to the observer, and collects the observer’s
response. Figure 2 illustrates how the qReading works
for a simulated observer. In Figure 2a, c, and e, the
mutual information of all potential stimuli in the
stimulus space is shown in Trials 3, 23, and 200. The
location with the maximum mutual information, as
indicated by the black square, represents the optimal
stimulus used in the corresponding trial. The method
accumulates information about the parameters a, j,
and g by updating their joint posterior distribution
based on the observer’s response via Bayes’ rule.
Because the performance of the observer in any print
size and duration condition is jointly determined by
these parameters, the qReading method can obtain
information about the entire reading function in each
trial instead of measuring reading speed at one print
size at a time and therefore greatly improve test
efficiency. As shown in Figure 2b, d, and f, the
estimated reading speed versus print size curve is
updated according to the responses made by observers
(blue circles and red crosses). As trial number increases,
the estimated reading speed versus print size function
approaches the true function.

Figure 1. The reading speed versus print size function is

characterized by three parameters: a, the asymptotic reading

speed in very large print sizes, j, the print size at which the

reading speed is 360 wpm, and g, the ascending rate of the

exponential function. Both axes are in log10 units.
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The procedure is reiterated until a certain number of
trials is reached. The estimated parameter values as well
as the reading speed versus print size function can be
derived from the posterior distributions of the param-
eters. For a more formal description of the qReading
method, please see Appendix A.

Computer simulations

We first carried out computer simulations to test the
qReading method. A simulated observer performed a
two-alternative forced-choice word/nonword lexical
decision task. The parameters of the simulated observer
were: atrue ¼ 1; 556 wpm;jtrue ¼ 9:26 arcmin; and gtrue ¼
0.129 log10 arcmin, based on the average parameter
values obtained from a pilot experiment. The true
reading speed versus print size function was then
calculated using Equation 1, and used to generate the
simulated observer’s response probabilities using
Equations 2 and 3. Then we used the qReading method

to estimate the reading function of the simulated
observer based on her response in each trial.

We defined the following parameter space in the
qReading method: 15 values evenly sampled from 2.55
to 3.75 (in log10 wpm units) for the asymptote a, 15
values evenly sampled from 0.46 to 1.66 (log10 arcmin
units) for the critical size j, and 15 values evenly
sampled in log space from 0.079 to 1 (log10 arcmin
units) for the ascending rate g. The prior of the
parameters is defined as a uniform distribution in the
corresponding region of the three-dimensional space.
The range of possible stimuli is 60 print sizes from 5.79
to 129 arcmin and 20 durations from 0.013 to 1 s. The
stimulus space was sampled evenly in log units in both
dimensions.

The simulated observer was tested with 500 qRead-
ing runs. Each qReading run had 300 trials. In order to
evaluate the performance of the qReading method, we
examined the precision and bias of the estimated
reading speed versus print size functions obtained from
the qReading method.

The precision of a method can be gauged by the
variability of its estimates. A smaller variability means
a higher precision. In this study, the interrun standard
deviation of the estimated parameters of the reading
speed versus print size function was computed as:

SDinter ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP500
j¼1 log10 vj

� �
� log10 �vð Þ

� �� �2
500

s
; ð4Þ

where vj is the estimated parameters a, j, or g, in the jth
run, and v is the mean of vj over 500 runs. The interrun
standard deviation of the estimated reading speed was
calculated as the mean standard deviation of the
estimated reading speeds over all 60 print sizes.

We also examined the precision with intrarun
variability, or the half width of the 68.2% credible
interval (HWCI) of the posterior distribution of the
parameters and the 68.2% HWCI of the distribution of
the estimated reading speeds in a single qReading run
(Clayton & Hills, 1993; Hou, Lesmes, Bex, Dorr, & Lu,
2015). The latter was performed with a resampling
procedure. Five hundred sets of parameters h were
sampled from the posterior distribution pt hð Þ from a
single qReading run. They were used to construct 500
reading functions and estimate the 68.2% HWCIs. The
resampling procedure can take into account of the
covariance structure in the posterior distribution of the
reading speed versus print size function parameters
(Hou et al., 2015).

The interrun standard deviation (blue) and intrarun
HWCI (red) of the parameters a, j, and g, as well as the
estimated reading speeds from the qReading method,
are plotted as functions of trial number in Figure 3a
through d, respectively. Both interrun standard devia-
tion and intrarun HWCI decreased rapidly in about 50

Figure 2. Illustrations of the qReading method in a simulation.

(a, c, and e) Mutual information as a function of stimulus

duration and print size in Trials 3, 23, and 200. The optimal

stimulus, indicated by the square symbol, is selected to

maximize the mutual information in Trials 3, 23, and 200,

respectively. (b, d, and f) Stimuli placement in Trials 3, 23, and

200, respectively. Dashed curve: estimated reading speed

versus print size function by the qReading method. Continuous

curve: the true reading speed versus print size curve. Crosses:

incorrect responses; Circles: correct responses. The locations of

the crosses, circles, and squares indicate stimulus conditions.
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trials. The interrun standard deviation for estimated a,
j, and g and reading speeds were 0.143, 0.044, 0.142,
and 0.420 log10 units after 50 trials, respectively, and
decreased to 0.065, 0.009, 0.068, and 0.084 log10 units
after 150 trials, respectively. The intrarun HWCI for
estimated a, j, and g and reading speeds were 0.161,
0.051, 0.177, and 0.723 log10 units after 50 trials,
respectively, and decreased to 0.060, 0.011, 0.075, and
0.090 log10 units after 150 trials, respectively.

The accuracy of a method quantifies how much the
estimated value deviates from the truth. We computed
the bias of the estimated parameters as

Bias ¼
P500

j¼1 log10 vj
� �
� log10 vtrueð Þ

� �
500

; ð5Þ

where vj is any one of the estimated parameters a, j, or
g in the jth run, and vtrue is the true value of the
parameter. We also computed the average absolute bias
(AAB) of the estimated reading speeds:

AAB ¼
P60

k¼1
P500

j¼1 log10 Sj;k

� �
� log10 Strue;k

� �� ���� ���
5003 60

; ð6Þ

Where Sj;k is the estimated speed at the kth print size in
the jth run, and Strue;k is the true reading speed at the
kth print size.

The bias of the estimated parameters a, j, and g and
the AAB of the estimated reading speeds from the
qReading method are plotted as functions of trial
number in Figure 3a through d, respectively. The bias
of the estimated a, j, and g and the AAB of the
estimated speeds were �0.064, 0.030, 0.100, and 0.099
log10 units after 50 trials, respectively, and decreased to
�0.008, 0.010, 0.029, and 0.022 log10 units after 150
trials, respectively. The simulation results showed
clearly that the qReading method could deliver very
precise and accurate assessment of the reading speed
versus print size function efficiently.

Psychophysical experiment

To further validate the qReading method, we
measured the reading speed versus print size function
from four human observers with the qReading method
and the Psi method (Kontsevich & Tyler, 1999) in a
word/nonword lexical decision task. The Psi method
was used to provide an independent measure of reading
speed at each of a range of print sizes one at a time. The
results obtained from the Psi method can be used to (a)
test whether the reading speed versus print size
functions estimated from the qReading method, which
assesses the parameters of the entire function in each
trial, is consistent with those obtained in a series of
print sizes, (b) compare the two methods in terms of
relative efficiency, and (c) test some of the underlying
assumptions of the qReading method. The settings of
the qReading method used in the experiment were
almost the same as those used in the simulations except
that the range and sampling of print sizes and
presentation durations were adjusted to accommodate
the physical limits (i.e., pixel size and refresh interval)
of the monitor. The possible stimuli consisted of 50
print sizes from 4.34 to 89.7 arcmin evenly sampled in
log units and 33 durations from 0.013 to 1 s evenly
sampled in log units.

Methods

Observers

The second author (S1) and three other naive
observers (S2–S4), aged 20 to 33 years, all with normal
or corrected-to-normal vision, participated in the
study. S2–S4 were native English speakers. The study
was approved by the institutional review board of
human subject research at The Ohio State University.
Written consent was obtained before the experiment.

Figure 3. Interrun standard deviation, intrarun 68.2% HWCI, and bias of the estimated parameters a (in a), j (in b), and g (in c) of the

reading speed versus print size function of the simulated observer as functions of trial number. (d) Average interrun standard

deviation, intrarun 68.2% HWCI, and bias of the estimated reading speed of the simulated observer as functions of trial number. Solid

blue lines: interrun standard deviation; dashed red lines: intrarun HWCI; solid yellow lines: Bias (in a, b, and c) and AAB (in d).
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Apparatus

All programs used in this study were written in
MATLAB (MathWorks, Natick, MA) with Psy-
chtoolbox extensions (Kleiner, Brainard, & Pelli, 2007)
and run on a PC computer. Stimuli were displayed on a
gamma-corrected Dell 19-in. M993s CRT monitor. The
monitor had a 1,600 3 1,200 pixel resolution and a
vertical refresh rate of 75 Hz. The mean luminance of
the monitor was 33 cd/m2. Observers viewed the stimuli
binocularly at a distance of 106.6 cm in a dark room.

Stimuli

The stimuli used in the experiment were five-letter
strings. The letter strings were presented in black on a
gray background (33 cd/m2) in the Arial font style.
Fifty print sizes (evenly sampled in log space from 4.34
to 89.7 arcmin) and 33 exposure durations (evenly
sampled in log space from 0.013 to 1 s) were used in the
study. The sizes and durations were rounded to the
nearest physically available values in the unit of pixels
and refresh intervals, separately. The Psi method was
applied to measure threshold reading speeds at six print
sizes that were selected for each observer based on data
collected in the practice session.

Procedure

MCWord (Medler & Binder, 2005) was used to
create five-letter word and nonword stimuli, which are
generated from the CELEX English database and are

based on the frequencies of written and spoken text
from almost 18 million instances of word use. The most
frequent 500 real five-letter words from the database
were used as word stimuli, and 500 nonword stimuli
were generated with constrained trigram statistics that
match three letter combinations in the database. In
each trial, a five-letter string was randomly selected
from the pre-generated word/nonword pool. The string
could be either a word or a nonword with equal
probability. The observers had to decide whether the
string is a word or nonword. Before the main
experiment, each observer was given a practice session
of 225 trials using the qReading procedure. Data from
the practice session were used to determine the six print
sizes to provide adequate sampling of the reading speed
versus print size function in the subsequent Psi method
test for each observer.

Each observer finished four experimental sessions,
each lasting approximately 25 min and consisted of 900
trials (450 qReading and 450 Psi trials). Each session
comprised two consecutive qReading runs (450¼ 225
trials 3 2 runs) randomly interleaved, trial-by-trial,
with one Psi run that was used to estimate the threshold
reading speed at six print sizes (450¼75 trials36 sizes).
The order of print sizes in the Psi procedure was
random across trials.

The display sequence of one trial is illustrated in
Figure 4. Each trial began with a 27-ms presentation of
a rectangle box in the center of the display. The size of
the box was the same as that of the outline of the to-be-
presented letter string. This was followed by a 27-ms
blank screen, a five-letter string with a certain print size

Figure 4. Illustration of the display sequence in one trial of the experiment.

Journal of Vision (2018) 18(9):6, 1–15 Hou et al. 6



and exposure duration, and a mask made of ‘‘xxxxx’’ in
the same print size that was present until the next trial
started. For the qReading trials, the print size and
exposure duration of the stimulus were determined by
the qReading algorithm. For the Psi trials, the print size
was randomly selected from the predetermined sizes
and the exposure duration was chosen by the Psi
method. Observers were instructed to use the two
buttons on the mouse to indicate if the letter string was
a word or nonword. No feedback was provided. A new
trial started 500 ms after the response.

Results

Agreement between the qReading and Psi methods

Figure 5 presents the reading speed versus print size
functions of four observers, obtained with the qRead-
ing and Psi methods. The estimated reading speed
versus print size functions obtained from the qReading
method are shown as solid curves, and those obtained
from the Psi method are shown as circles. The standard
deviation of the estimated reading speeds from the
qReading measurements was calculated from eight
repeated runs. The standard deviation of the Psi
estimates was computed from four repeated runs.

Inspection of the estimates from both methods suggests
excellent agreement.

We compared the parameters estimated from the two
methods. Equation 1 was fitted to the six reading
speeds versus print size curve estimated by the Psi
method in each session for each observer. The
estimated reading parameters, a, j, and g from the Psi
method, were determined by the best-fitted parameter
values, averaged across sessions and plotted against the
average parameters measured directly from the
qReading method in Figure 6a through c. The Pearson
correlation coefficients between the estimated parame-
ters from the two methods were 0.948 (p¼ 0.052), 0.997
(p ¼ 0.003) and 0.975 (p ¼ 0.025) for a, j, and g,
respectively. No significant difference was found
between the estimated a, t(3)¼ 2.76, p¼ 0.067, and j,
t(3)¼ 1.97, p ¼ 0.144, from the two methods. The
estimated g from the qReading method was signifi-
cantly smaller than that from the Psi method, t(3)¼
4.37, p ¼ 0.022.

In Figure 6d, estimated reading speeds at the six
print sizes used in the Psi procedure from both the
qReading and Psi methods are plotted against each
other. Again, data from the two methods showed
excellent agreement. Because an exponential reading
speed versus print size function with three parameters

Figure 5. Estimated reading functions from the qReading and Psi methods for each observer. The curves represent the mean reading

curves from eight qReading runs. Circles represent the mean estimates from four Psi runs. The shaded area and error bars represent

61 SD.

Figure 6. The estimated parameters of the reading speed versus print size function a; j and g as well as the estimated reading speeds

from the qReading and Psi method are plotted against each other in Panels (a) through (d), respectively. Four different symbols

represent data from the four observers.
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was used (Equation 1), the reading speeds obtained
from the qReading method are not independent across
print size conditions. To compute the correlation of the
reading speeds estimated by the two methods, we
carried out a special procedure for each observer to
eliminate the dependency across print size conditions
(see Appendix B for the detailed procedure). Across all
observers, the average correlation coefficient between
the estimated reading speeds obtained with the two
methods was 0.969 6 0.005 (p , 0.01 for all observers).
A repeated-measure ANOVA with print size and
method as factors was conducted on the estimated
reading speeds obtained from the two methods.
Method had no significant effect, F(1, 15)¼ 0.036, p¼
0.862.

Precision of the qReading method

We computed the average interrun standard devia-
tion and intrarun 68.2% HWCI of the estimated
reading speed across print sizes and observers from the
eight qReading runs (Figure 7a). The average interrun
standard deviation of the estimated reading speed from
the qReading procedure was 0.172 6 0.077, 0.141 6
0.048, and 0.109 6 0.044 log 10 units after 75, 150, and
225 trials, respectively. The average 68.2% HWCI of
the estimated reading speed from the qReading
procedure was 0.570 6 4.00, 0.078 6 0.077, and 0.058
6 0.040 log10 units after 75, 150, and 225 trials,
respectively. For comparison, the average interrun
standard deviation and HWCI of the estimated reading
speed measured by the Psi method was 0.112 6 0.055
and 0.067 6 0.08 log10 units with 450 trials. The
standard deviation and 68.2% HWCI of the estimated
reading speeds from the qReading method decreased
rapidly in the beginning of the procedure. After about
80 trials, the HWCI was almost the same as the
interrun standard deviation.

Using the mean reading speeds from the four Psi
runs as the ‘‘truth,’’ we computed the average absolute

bias of the estimated reading speed obtained with the
qReading method using the following equation:

AAB ¼
P50

k¼1
P8

j¼1 log10 Sj;k

� �
� log10 Strue;k

� �� ���� ���
503 8

: ð7Þ

The average absolute bias of the estimated reading
speed obtained with the qReading procedure across
print sizes and observers is plotted as a function of trial
number in Figure 7b. The AAB was 0.098 6 0.026,
0.069 6 0.027, and 0.065 6 0.012, log10 units after 75,
150, and 225 trials, respectively. Given that the ‘‘true’’
reading speeds estimated by the Psi method had an
average standard deviation of 0.11 log10 units, an
average absolute bias of 0.065 log10 units is relatively
small.

Test–retest reliability

A reliable measurement should not only produce the
same ranking upon the same respondents but also
produce exactly the same values in different measure-
ments. In order to examine the test–retest reliability of
the qReading method, we analyzed the overall con-
cordance correlation coefficient (OCCC; see Barnhart,
Haber, & Song, 2002; Lin, 1989, 2000) for assessing
agreement among eight qReading measurements. The
OCCC is the weighted average of the pair-wise
concordance correlation coefficient between any two
qReading measurements, which measures the agree-
ment between two tests by measuring the variation
from the 458 line (diagonal) through the origin. The
mean OCCC of the estimated reading speed across four
observers was 0.891 6 0.024.

Assumption check

One underlying assumption of the qReading method
is that the slope b of the psychometric function for the
word/nonword lexical decision task is the same at

Figure 7. (a) The interrun standard deviation and intrarun HWCI of the estimated reading speed from the qReading method as

functions of trial number. Blue line: interrun standard deviation; red line: intrarun HWCI. (b) The AAB of the estimated reading speed

from the qReading method as a function of trial number.
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different print sizes and can be fixed at 2.0 (Equation
3). It is important to know if the fixed slope assumption
is valid in the real human experiment and if the true
slope differs from the assumed value of 2.0.

For each observer, data from the Psi method in all
four sessions were pooled together. There were 300
trials in each print size condition, which were binned by
dividing the log exposure duration into 10 equally
spaced intervals. The percent of correct responses in the
10 bins allowed us to construct a raw psychometric
function in each print size condition (Hou et al., 2010).
Then we constructed two models (I and II) and fitted
both models to the raw psychometric function using a
maximum likelihood procedure. Model I, in which the
psychometric functions of the word/nonword lexical
decision task have different thresholds and slopes in
different print size conditions, fit the raw psychometric
functions well for all observers (v2 test, all ps . 0.05,
Table 1). Model II, in which the thresholds are different
but the slope is the same in different print size
conditions, also provided good fits to the data for all
observers (v2 test, all ps . 0.05, Table 1). A nested
model test showed that Model II is statistically
equivalent to Model I (v2 test, all ps , 0.05, Table 1),
indicating that the fix slope assumption in the qRead-
ing method held true in our experimental data. From
the best fitting Model II of each observer, we computed
the averaged slope across observers. It was 2.06 6
0.381, not significantly different from the assumed
value in the qReading method, t(3)¼ 0.312, p¼ 0.776.

Discussion

The goal of the current study is to develop an
automated and efficient psychophysical procedure to
measure reading speed. Combining the Bayesian
adaptive method and a word/nonword lexical decision
task, we developed the qReading method that retains
the precision of psychophysical testing but enables
shorter testing time. Computer simulations showed that
both the interrun standard deviation and intrarun

68.2% HWCI of the estimated reading speed from the
qReading method were less than 0.1 log10 units with
only 150 trials, with a bias of 0.05 log10 units. The
results of a psychophysics experiment were largely
consistent with the simulations. The estimated param-
eter of the reading function a, j, and g, as well as
reading speeds from the qReading method, were highly
correlated with those from the Psi method. The
interrun standard deviation, intrarun HWCI, and
average absolute bias of the estimated reading speeds
from the qReading method were 0.109 6 0.045, 0.058
6 0.040, and 0.065 6 0.012 log 10 units after 225 trials,
respectively. Moreover, to achieve the same amount of
precision, the qReading method only needs about half
the number of trials of the Psi method. The test–retest
reliability, as indicated by the OCCC of the reading
speed measured by the qReading method was 0.891 6
0.024.

Although the parameters of the reading function
correlated well between two methods, the decay
constant g estimated from the qReading method was
smaller than that derived from the Psi method, t(3)¼
4.37, p¼0.022. However, it should not be considered as
an inaccuracy issue for qReading method. In our
experiment, reading speed was only sampled at six print
sizes in the Psi test. It is possible that the number of
data points was not sufficient to obtain an accurate
estimate of g from the Psi test.

We also checked the assumptions underlying the
qReading method. In the qReading method, we
modeled the word/nonword lexical decision task with a
two-alternative forced-choice Weibull psychometric
function (Equation 3) with a fixed slope of 2.0 across
different print sizes. Violation of these assumptions
could substantially undermine the validity of the
measurements from the qReading method. As shown
by our analysis of the experimental data, the assump-
tions held well in the current study.

The qReading method inherits several advantages of
the Bayesian adaptive testing framework. First, high
efficiency was achieved through optimal stimulus
selection. The qReading method searches the entire
stimulus space for a stimulus condition that could
provide the maximum expected mutual information
(Kontsevich & Tyler, 1999; Kujala & Lukka, 2006).
The efficiency of the qReading test was evidently
supported by the rapidly decreasing standard deviation
and bias in both the simulation and psychophysics
studies (Figures 3 and 7). We used a one-step-ahead
search procedure in the current implementation of the
qReading method. Although this one-step-ahead
greedy search algorithm provides asymptotically opti-
mal results in most of the cases (Sims & Pelli, 1987),
multiple-step-ahead search or global optimization can
be used to gain extra efficiency when applicable (Kim,
Pitt, Lu, & Myung, 2016).

Observer S1 S2 S3 S4

Model I

v2(48) 51.5 37.5 37.3 48.0

p 0.338 0.863 0.867 0.471

Model II

v2(53) 53.0 45.0 40.8 51.8

p 0.472 0.775 0.889 0.522

Model II vs. Model I

v2(5) 1.52 7.50 3.50 3.74

p 0.911 0.186 0.623 0.588

Table 1. Results of the model fit for all observers.
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The second advantage came from the Bayesian
framework. The information accumulated through the
posterior distribution during the test allowed us to
gauge the variability of the estimated properties of the
reading speed versus print size function in a single run
of the qReading test. The intrarun variability repre-
sented by the 68.2% HWCI overlapped with interrun
standard deviation after completing enough trials in the
procedure (Figures 3 and 7). Similar findings were
reported in a study on qCSF (Hou et al., 2015). The
posterior distribution can also be exploited to test and
detect reading performance changes affected by visual
disease and/or other factors for an individual in
different conditions. We have demonstrated the use of
the posterior distribution in detecting CSF changes
with the qCSF method (Hou et al., 2016). The
usefulness of the qReading method in detecting changes
of reading performance will be evaluated in future
studies.

The qReading method also makes use of the well-
established functional relationship between reading
speed and print size (Legge & Bigelow, 2011). Instead
of measuring reading speed at one print size at a time,
the qReading method uses the information from
observer’s performance in a single trial, that is, in a
single print size and exposure duration condition, to
infer the properties of the entire reading speed versus
print size function. The use of functional regularities
therefore greatly improves the testing efficiency. It has
been reported reading speed depends on other factors—
for example, stimulus contrast (Legge, Rubin, &
Luebker, 1987), eccentricity (Chung et al., 1998), and
spacing between letters or words (Chung, 2004; Yu,
Cheung, Legge, & Chung, 2007). These regularities
could also be used by the qReading method to assess
reading speed under multiple test conditions.

Another improvement came from the automated
task. We have used a relatively simple word/nonword
lexical decision task that does not require the experi-
menter to score the responses of the observers to probe
the initial stage of reading process (Cohen et al., 2000;
Wandell, 2011). As performance in the lexical decision
task, mostly measured with reaction time, can be
affected by linguistic factors such as word frequency
and type of nonwords (Ratcliff, Gomez, & McKoon,
2004), we used the most frequent five-letter words and
presented word or nonword stimuli with equal possi-
bility to keep the language comprehension demand
minimal. Instead of measuring reaction time, we
manipulated the exposure duration and print size of the
stimuli in the lexical decision task and measured
response accuracy to focus on visual factors in reading.

The word/nonword lexical decision task used in the
current implementation of the qReading method is
related to paradigms used in previous reading tests in
many ways. It can be considered as a one-word version

of the RSVP silent reading test (Chung et al., 1998;
Rubin & Turano, 1994) with unrelated words. In fact,
unrelated random words have been extensively used in
existing reading tests, such as the Bailey–Lovie word
reading chart (Bailey & Lovie, 1980) and the SKread
charts (Precision Vision; MacKeben et al., 2015). In
this case, linguistic aspects such as grammar and
context involving complex nonvisual factors are
minimized, and observer’s reading performance de-
pends on word recognition alone (Radner, 2017).

The estimated reading speed in the current study is
much greater than that reported in the literature
(Calabrèse et al., 2016). This discrepancy may be due to
different test settings as well as the frequency and
length of the words used in different studies (Radner et
al., 2002). The reading speed measured using the RSVP
paradigm could be 2–4 times faster than that measured
with static presentations (Rubin & Turano, 1994).
Silent reading is generally faster than reading aloud
(Lovie-Kitchin, Bowers, & Woods, 2000). In this study,
high frequency words with a length of five were used.
The high frequency and short length of the words may
have also contributed to the fast reading speed (Radner
et al., 2002).

The qReading method implemented with the word/
nonword classification task in the current study is our
first attempt to use the method to quantify a specific
subtask of reading. The qReading method can be used
with other reading materials and/or assessment tasks,
provided that the assumptions on the psychometric
properties of reading performance are valid. In a
parallel study, we have also tested the method in an
RSVP sentence-reading task in peripheral vision and
found similar promising results (Shepard et al., 2017).
In another study (Arango et al., 2017), we compared a
computer-based sentence reading MNREAD test
(Mansfield et al., 1993) with two RSVP reading tasks
that used the qReading algorithm to control print size
and presentation duration: five-letter word versus non-
word judgement, and true or false judgement of four-
word sentences (Crossland, Legge, & Dakin, 2008).

This paper is the first step in the development of the
qReading method. We used high frequency words with
a fixed length of five letters. Bailey and Lovie (1980)
found that word length can affect the readability of
words in patients with age-related macular degenera-
tion. Words with different lengths can be used in future
implementations of the qReading method to capture
the characteristics of visual impairments. In ongoing
and future work, we will continue to develop the
qReading method and expand its application to a
broad range of reading test paradigms. The new
developments and applications will depend on the
principles and statistical validation established in this
paper.
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Because the most common functional endpoint,
visual acuity, is insensitive to many retinopathies,
especially in the early stages of diseases where visual
acuity may be within normal limits (Crossland et al.,
2005), the reading function may provide important
quantification of visual impairment for patient classi-
fication, and may be used for screening and monitoring
the progression or remediation of visual impairment.
The development of the qReading method is just a
beginning of many future studies. As a powerful and
versatile approach to measure reading performance, we
expect many new developments and applications of the
method in the future.

Keywords: reading, Bayesian adaptive test, precision,
efficiency
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Footnotes

1 In the current implementation of the qReading
method, we assume that the shape of the underlying
psychometric function is known. It has been demon-
strated that the shape of the psychometric function was
largely invariant in contrast detection (Chen et al.,
2014; Hou et al., 2010) and letter identification (Hou,
Lu, & Huang, 2014). This assumption was tested and
validated in the psychophysical experiment in this
study.

2 [In Appendix A] The Psi method (Kontsevich &
Tyler, 1999) is based on minimizing expected entropy,
which is equivalent to maximizing the expected change
of entropy H hð Þ �HðhjrÞ (Kujala & Lukka, 2006;

MacKay, 1992). Expected change of entropy is also
known as mutual information I hjrð Þ ¼ H hð Þ �HðhjrÞ
(Cover & Thomas, 1991). I h; rð Þ represents the amount
of information about h given the observation of r. The
mutual information is symmetric (Cover & Thomas,
1991): It�1 h; rð Þ ¼ It�1 r; hð Þ: Also see (Kujala & Lukka,
2006).
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Appendix A: Algorithm of the
qReading method

In this section we describe the detailed algorithm of
the qReading method. First, it characterizes the reading
speed as a function of print size, with a three-parameter
exponential function:

log 10 speed sizeð Þð Þ

¼ log10
60

s sizeð Þ

� �
¼ log10 að Þ � log10 að Þ � log10 aCð Þð Þ

3 exp � log10 sizeð Þ � log10 jð Þð Þ
g

� �
; ðA1Þ

Second, the qReading method defines the parameter
space for all the possible reading curves h¼ (a;j; g) and
a prior distribution of parameters p0 hð Þrepresenting the
experimenter’s prior knowledge of the probability of
different reading curves. In the current study, we used a
noninformative prior (flat prior over the entire
parameter space).

Third, the method defines the stimulus space that
contains all possible print sizes and presentation
durations to be tested in the experiment x ¼ (size,
duration) and a psychometric function in each stimulus
condition, conditioned on the parameters of the
reading curve:

p r ¼ correctjx; hð Þ
¼ W x; hð Þ ¼ ckþ 1� kð Þ

3 cþ 1� cð Þ 1� exp � duration

s sizeð Þ

� �b
 ! ! !

; ðA2Þ

where s sizeð Þis the threshold exposure duration corre-
sponding to 80.3% correct and depends on the print
size of the stimulus (Equations 1 and 2), c and k
represent the guessing rate, lapse rate of the observer
when performing the task, and b is slope of the
psychometric function. The probability of an incorrect
response is p r ¼ incorrectjx; hð Þ ¼ 1�W x; hð Þ. Com-
bined together, Equations 1, 2, and A1 can model the
response accuracy of the observer in any stimulus
condition x. The equations also provide the condi-
tioned joint probability of the parameter h given the
observed response to a stimulus x. In this way, the
qReading test directly estimates the entire reading
speed curve define by three parameters, instead of
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measuring reading speed at one print size once a time,
therefore greatly improving the testing efficiency.

Fourth, the qReading method calculates the mutual
information2 (Cover & Thomas, 1991; Kujala &
Lukka, 2006) for each possible stimulus x,

It�1 h; rð Þ ¼ h

Z
pt�1 hð ÞW x; hð Þdh

� �

�
Z

pt�1 hð Þh W x; hð Þð Þdh; ðA3Þ

where pt�1 hð Þ with t¼ 1, 2, 3. . . is the prior knowledge
about h before the tth trial, and h pð Þ ¼ �plog pð Þ �
1� pð Þlog 1� pð Þ is the entropy of a distribution p. A
one-step-ahead search determines the optimal stimulus
xt condition to be used in the next (tth) trial, by
maximizing the expected information gain over the
entire stimulus space:

xt ¼ argmax
x

It�1 h; rð Þð Þ: ðA4Þ

Therefore, the qReading method avoids large regions
of the stimulus space that provide little information to
our current knowledge about h.

Fifth, Bayesian update is used to accumulate the
information collected in each trial throughout the
measurement. After the response of the observer is
collected in trial t, the posterior distribution of the
reading function parameters pt hð Þ is computed, given
the evidence provided by the observer’s response r¼
‘‘correct’’ or ‘‘incorrect’’ to the stimulus xt¼ (size,
duration) in the trial and the prior knowledge about
parameters pt�1 hð Þ via Bayes’ rule:

pt hð Þ ¼ pt hjrxð Þ ¼ pt�1 hð Þpðrjx; hÞP
h pt�1 hð Þpðrjx; hÞ : ðA5Þ

Lastly, the qReading method reiterates Steps 4 and 5
until it reaches a predefined number of trials. Then the
estimated parameters h as well as reading speed
(Equation A1) are calculated based on the posterior
distribution p hð Þ.

Appendix B: Procedure to eliminate
the dependency of the estimated
speeds across print size conditions

Because an exponential reading function with three
parameters was used (Equation 1), the reading speeds
obtained from the qReading method are not indepen-
dent across print size conditions. To compute the
correlation of the reading speeds estimated by the
qReading and Psi methods, we carried out the following
procedure for each observer to eliminate the dependency
across conditions (Hou et al., 2016): (1) The reading
speeds in the six print size conditions were first derived
from the reading curves obtained with the qReading
method; (2) for each of the six print sizes, randomly
select one qReading run (out of eight, without
replacement) and obtain the reading speed at that print
size; (3) compute the correlation coefficient between the
reading speeds in Step 2 with those obtained by the psi
method; and (4) repeat Steps 2 to 3 five hundred times
and calculate the average correlation coefficient. In this
procedure, the reading speeds at different sizes were
from entirely different qReading runs and were not
constrained by the exponential model.
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