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Abstract Involvement of dopamine in regulating exploration during decision-making has long

been hypothesized, but direct causal evidence in humans is still lacking. Here, we use a

combination of computational modeling, pharmacological intervention and functional magnetic

resonance imaging to address this issue. Thirty-one healthy male participants performed a restless

four-armed bandit task in a within-subjects design under three drug conditions: 150 mg of the

dopamine precursor L-dopa, 2 mg of the D2 receptor antagonist haloperidol, and placebo. Choices

were best explained by an extension of an established Bayesian learning model accounting for

perseveration, directed exploration and random exploration. Modeling revealed attenuated

directed exploration under L-dopa, while neural signatures of exploration, exploitation and

prediction error were unaffected. Instead, L-dopa attenuated neural representations of overall

uncertainty in insula and dorsal anterior cingulate cortex. Our results highlight the computational

role of these regions in exploration and suggest that dopamine modulates how this circuit tracks

accumulating uncertainty during decision-making.

Introduction
A central aspect of a broad spectrum of decision problems is the weighting of when to exploit,

that is to choose a familiar option with a well-known reward value, and when to explore, that is to

try an alternative option with an uncertain but potentially higher payoff. This decision dilemma is

commonly known as the ‘exploration/exploitation trade-off’ (Cohen et al., 2007; Addicott et al.,

2017). Striking a balance between exploration and exploitation is essential for maximizing rewards

and minimizing costs in the long term (Addicott et al., 2017). Too much exploitation prevents an

agent from gathering new information in a volatile environment, and fosters inflexibility and habit

formation. Too much exploration, on the other hand, may lead to inefficient and inconsistent deci-

sion-making, thereby reducing long-term payoffs (Beeler et al., 2014; Addicott et al., 2017).

Despite the high relevance of the explore/exploit trade-off for optimal decision-making, research is

only beginning to unravel the mechanisms through which animals and humans solve this dilemma.

Several tasks have been developed to test explore/exploit behavior in both animals and humans.

The most widely used paradigm in both human (Daw) and primate work (Costa et al., 2019) is the

multi-armed bandit task (Robbins, 1952; Gittins and Jones, 1974). It mirrors a casino’s slot-machine

with multiple arms. Several implementations exist that differ according to the number of arms and
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their underlying reward structure. The restless bandit paradigm uses continuous, slowly drifting

rewards for each bandit that encourage participants to strike a balance between exploiting the cur-

rently best option and exploring alternative bandits to keep track of their evolving rewards

(Daw et al., 2006; Addicott et al., 2017). Other prominent paradigms include the (patch) foraging

task (Cook et al., 2013; Addicott et al., 2014; Constantino & Daw, 2015) that mirrors exploration

and exploitation of food sources in a more naturalistic setting, and the horizon task (Wilson et al.,

2014) that examines exploration in series of discrete games. These paradigms offer different

approaches to measure explore/exploit behavior and may be used to address different research

questions. Computational models have served as an elegant tool for modeling behavior on these

tasks, yielding insights into latent cognitive processes, and inter individual differences (Sutton and

Barto, 1998; Daw et al., 2006; Gershman, 2018).

These computational models have at least two components: a learning rule and a choice rule. The

learning rule describes how subjective value estimates of an option’s mean outcome are updated for

each choice option based on experience, for example via the classical ‘Delta rule’ (Rescorla and

Wagner, 1972) from reinforcement learning theory (Sutton and Barto, 1998). Work on explore/

exploit behavior has also to utilized a ‘Bayesian learner’ model that relies on a Kalman filter model

that simultaneously tracks estimates of outcome mean and uncertainty (e.g. Daw et al., 2006;

Speekenbrink and Konstantinidis, 2015), and updates values based on an uncertainty-dependent

delta rule. The choice rule then accounts for how learned values give rise to choices. Here, explora-

tion can be due to at least two mechanisms. First, exploration could result from a probabilistic selec-

tion of sub-optimal options as in e-greedy or softmax choice rules (Sutton and Barto, 1998),

henceforth referred to as ‘random exploration’ (Daw et al., 2006; Speekenbrink and Konstantini-

dis, 2015). Recently, Gershman, 2018 reported evidence for random exploration to depend on the

summed uncertainty over all choice options, in line with ‘Thompson sampling’ (Thompson, 1933). In

contrast, exploration could also be based on the degree of uncertainty associated with a single

option (Daw et al., 2006; Wilson et al., 2014), such that highly uncertain options have a higher

probability to be strategically explored by an agent, henceforth referred to as ‘directed exploration’.

However, estimation of exploration/exploitation behavior might be partially confounded by persev-

eration (i.e. repeating previous choices irrespective of value or uncertainty), a factor that has not

been incorporated in previous models (Badre et al., 2012; Speekenbrink and Konstantinidis,

2015).

Dopamine (DA) neurotransmission is thought to play a central role in the explore/exploit trade-

off. Striatal phasic DA release is tightly linked to reward learning based on reward prediction errors

(RPEs) (Steinberg et al., 2013) that reflect differences between experienced and expected out-

comes, and serve as a ‘teaching signal’ that update value predictions (Schultz et al., 1997;

Schultz, 2016; Tsai et al., 2009; Glimcher, 2011; Chang et al., 2018). Exploitation has been linked

to polymorphisms in genes controlling striatal DA signaling, namely the DRD2 gene (Frank et al.,

2009) predictive of striatal D2 receptor availability (Hirvonen et al., 2004), and the DARPP-32 gene

involved in striatal D1 receptor-mediated synaptic plasticity and reward learning (e.g.

Calabresi et al., 2000; Stipanovich et al., 2008). Variation in the slower tonic DA signal might also

contribute to an adaptive regulation of exploration/exploitation. Beeler et al., 2010 found that

dopamine-transporter (DAT) knockdown mice that are characterized by increased striatal levels of

tonic DA (Zhuang et al., 2001) showed higher random exploration compared to wild-type controls.

In addition to striatal DA, prefrontal DA might also be involved in explore/exploit behavior. In

humans, both directed and random exploration have been associated with variations in the catechol-

O-methyltransferase (COMT) gene (Kayser et al., 2015; Gershman and Tzovaras, 2018) that modu-

lates prefrontal DAergic tone (Meyer-Lindenberg et al., 2005). Participants with putatively higher

prefrontal DA tone had highest levels of exploration.

These findings regarding the roles of striatal and frontal DA in exploration resonate with cognitive

neuroscience studies suggesting that exploration and exploitation rely on distinct neural systems.

Daw et al., 2006 showed that frontopolar cortex (FPC) is activated during exploratory choices, pos-

sibly facilitating behavioral switching between an exploitative and exploratory mode by overriding

value-driven choice tendencies (Daw et al., 2006; Badre et al., 2012; Addicott et al., 2014;

Mansouri et al., 2017). In line with this idea, up- and down-regulation of FPC excitability via trans-

cranial direct current stimulation (TDCS) increases and decreases exploration during reward-based

learning (Raja Beharelle et al., 2015). Anterior cingulate cortex (ACC) and anterior insula (AI), have
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also been implicated in exploration (Addicott et al., 2014; Laureiro-Martı́nez et al., 2014; Lau-

reiro-Martı́nez et al., 2015; Blanchard and Gershman, 2018), although their precise computational

role remains elusive (Blanchard and Gershman, 2018). Both regions may trigger attentional reallo-

cation to salient choice options in the light of increasing uncertainty (Laureiro-Martı́nez et al.,

2015). Exploitation, on the other hand, is thought to be predominantly supported by structures

within a ‘valuation’ network including ventromedial prefrontal cortex (vmPFC), orbitofrontal cortex

(OFC), ventral striatum and hippocampus (Daw et al., 2006; Bartra et al., 2013; Clithero and Ran-

gel, 2014; Laureiro-Martı́nez et al., 2014; Laureiro-Martı́nez et al., 2015).

Despite these advances, evidence for a causal link between DA transmission, exploration and the

underlying neural mechanisms in humans is still lacking. To address this issue, we combined compu-

tational modeling and functional magnetic resonance imaging (fMRI) with a pharmacological inter-

vention in a double-blind, counterbalanced, placebo-controlled within-subjects study. Participants

performed a restless four-armed bandit task (Daw et al., 2006) during fMRI under three drug condi-

tions: the DA precursor L-dopa (150 mg), the DRD2 antagonist haloperidol (2 mg), and placebo.

While L-dopa is thought to stimulate DA transmission by providing increased substrate for DA syn-

thesis, haloperidol reduces DA transmission by blocking D2 receptors. However, we note that Halo-

peridol might also increase DA release via action on presynaptic D2 autoreceptors (z.B. Frank and

O’Reilly, 2006).

We extended previous modeling approaches of exploration behavior (Daw et al., 2006;

Speekenbrink and Konstantinidis, 2015) using a hierarchical Bayesian estimation scheme. Specifi-

cally, we jointly examined dopaminergic drug-effects on directed and random exploration as well as

perseveration, hypothesizing that choice behavior would be best accounted for by a model that

accounts for all three processes (Schönberg et al., 2007; Rutledge et al., 2009; Payzan-

Lenestour and Bossaerts, 2012). We hypothesized both random and directed exploration to

increase under L-dopa and decrease under haloperidol compared to placebo (Frank et al., 2009;

Beeler et al., 2010; Gershman and Tzovaras, 2018). We further hypothesized that this would be

accompanied by a corresponding modulation of brain activity in regions implicated in exploration,

focusing specifically on FPC, ACC and AI (Daw et al., 2006; Raja Beharelle et al., 2015;

Blanchard and Gershman, 2018).

Results

Participants learn to keep track of the best bandit
On each testing day, separated by exactly one week, participants performed 300 trials of a four-

armed restless bandit task (Daw et al., 2006; Figure 1; for more details, see Materials and methods

section) during fMRI, under three pharmacological conditions (Placebo, Haloperidol, L-DOPA). Over-

all, participants’ choice behavior indicated that they understood the task structure, and tracked the

most valuable bandit throughout the task (see Figure 2). On trial 1, participants randomly selected

one of the four bandits (probability to choose best bandit: 21.5 ± 7.49%, M ± SE). After five trials,

participants already selected the most valuable option with 49.03% (±4.98%; M ± SE), which was sig-

nificantly above chance level of 25% (t30 = 4.83, p=3.82*10�5, Figure 2), and consistently kept

choosing the bandit with the highest payoff with on average 67.89% (±2.78%). Thus, participants

continuously adjusted their choices to the fluctuating outcomes of the four bandits.

No significant drug effects on model-free performance measures
We first tested for possible drug effects on model-free measures of task performance. These varia-

bles included the overall monetary payout (payout), the percentage of choices of the bandit with the

highest actual payoff (%bestbandit, Figure 2), the percentage of choice switches (%switches), and

median reaction times (median RT). Yet, rmANOVAs yielded no significant drug effect on any of

these four model-free choice variables (payout: F2,60=0.06, p=0.943; %bestbandit: F2,60=0.34,

p=0.711; %switches: F2,60=1.02, p=0.366; median RT: F2,60=0.50, p=0.611).
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Choice behavior contains signatures of directed exploration and
perseveration
We then used computational modeling to examine whether choice behavior indeed contained signa-

tures of random exploration, directed exploration and perseveration. To this end, we set up eight

separate computational models that differed regarding the implemented learning and choice rules

within a hierarchical Bayesian framework using the STAN modeling language (version 2.17.0;

Stan Development Team, 2017). We compared two learning rules: the classical Delta rule from

temporal-difference algorithms (e.g. Sutton and Barto, 1998), and a Bayesian learner (Daw et al.,

2006) that formalizes the updating process with a Kalman filter (Kalman, 1960). In the former

model, values are updated based on prediction errors that are weighted with a constant learning

rate. In contrast, the Kalman filter additionally tracks the uncertainty of each bandit’s value, and

value updating is proportional to the uncertainty of the chosen bandit (Kalman gain, see

Materials and methods section). These learning rules were combined with four different choice rules

that were all based on a softmax action selection rule (Sutton and Barto, 1998; Daw et al., 2006).

Choice rule 1 was a standard softmax with a single inverse temperature parameter (b) modeling ran-

dom exploration. Choice rule 2 included an additional free parameter ’ modeling an exploration

bonus that scaled with the estimated uncertainty of the chosen bandit (directed exploration). Choice

rule 3 included an additional free parameter (r) modeling a perseveration bonus for the bandit cho-

sen on the previous trial. Finally, choice rule 4 included an additional term to capture random explo-

ration scaling with total uncertainty across all bandits (Gershman, 2018). Leave-one-out (LOO)

cross-validation estimates (Vehtari et al., 2017) were computed over all drug-conditions, and for

each condition separately to assess the models’ predictive accuracies. The Bayesian learning model

with terms for directed exploration and perseveration (Bayes-SMEP) showed highest predictive accu-

racy in each drug condition and overall (Figure 3). The most complex model including an additional

total-uncertainty dependent term provided a slightly inferior account of the data compared to the

model without this term (loo log-likelihood: Bayes-SME(R)P: -0.5983 (-0.59989)).

Model-based regressors and classification of exploration trials
In the best-fitting Bayesian model (Bayes-SMEP), participants’ choices are stochastically dependent

on three factors: the prior belief of the mean reward value of each bandit (�pre
; Figure 4a), the

exploration bonus, that is the prior belief of each bandit’s payout variance (‘uncertainty’) scaled with

Figure 1. Task design of the restless four-armed bandit task (Daw et al., 2006). (a) Illustration of the timeline within a trial. At trial onset, four colored

squares (bandits) are presented. The participant selects one bandit within 1.5 s, which is then highlighted and, after a waiting period of 3 s, the payoff is

revealed for 1 s. After that, the screen is cleared and the next trial starts after a fixed trial length of 6 s plus a variable intertrial interval (not shown) with

a mean of 2 s. (b) Example of the underlying reward structure. Each colored line shows the payoffs of one bandit (mean payoff plus Gaussian noise) that

would be received by choosing that bandit on each trial.
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the exploration bonus parameter ’ (’spre; Figure 4b), and the perseveration bonus (Ir; where I

denotes an indicator function with respect to the bandit chosen on the previous trial; Figure 4c).

Based on these quantities, which are computed for each bandit, the model computes the choice

probabilities for all four bandits on each trial (P; Figure 4d, See Equation 7 in the

Materials and methods section). Between trials, participants’ prior belief of the chosen bandit’s

mean reward value is updated according to the reward prediction error (d, Figure 4e), as the differ-

ence between their prior belief and the actual reward outcome of the chosen bandit. Based on the

model, participants’ choices can be classified as exploitation (i.e. when the bandit with highest

expected value was selected), or exploration (i.e. when any other bandit was selected) (Daw et al.,

2006). We extended this binary classification of Daw et al., 2006 by further dividing exploration tri-

als into directed exploration (i.e. trials where the bandit with the highest exploration bonus was cho-

sen), and random exploration trials (i.e. trials where one of the remaining bandits was chosen). The

trinary classification scheme corresponded well with the respective model parameters (b-random

exploration, ’-directed exploration, r-perseveration; Appendix 1—figure 1). Over trials, the

summed uncertainty over all bandits (Sspre; Figure 4f) fluctuates in relation to the fraction of

exploration.

Figure 2. Percentage of optimal choices (highest payoff) throughout the task. Shown are the mean percentage of choosing the best bandit in trials 1–

10, and over task blocks of trials 11–50 (block 1) and 51–300 separated in 5 blocks of 50 trials each, over all participants, and for each drug session

separately. Participants started with randomly (~25%) choosing one bandit in trial 1 (21.5% ± 7.49%, M ± SE). After five trials participants already chose

the most valuable bandit with 49.03 ± 4.98% (M ± SE).
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L-dopa reduces directed exploration
Next, we tested for possible drug effects on the percentage of exploitation and exploration trials

(overall, random and directed) per subject. Three separate rmANOVAs with within factors drug and

trial (6 blocks of 50 trials each) were computed for each of the following four dependent variables:

the percentage of (a) exploitation trials, (b) random exploration trials, and (c) directed exploration

trials. We found a significant drug effect only for the percentage of directed explorations

(F1.66,49.91=7.18, p=.003; Figure 5c). The percentage of random explorations (F2,60=0.55, p=.58,

Figure 5b) or exploitations (F2,60=1.57, p=.22; Figure 5a) were not significantly modulated by drug.

All drug � trial interactions were not significant (p>=0.19). Post-hoc, paired t-tests showed a signifi-

cant reduction in the percentage of directed explorations under L-dopa compared to placebo (mean

difference P-D=2.82, t30=4.69, p<.001) and haloperidol (mean difference H-D = 2.42, t30=2.76,

p=.010), but not between placebo and haloperidol (mean difference P-H=0.39, t30=0.43, p=.667).

Notably, an exploratory t-test revealed that the percentage of exploitations was marginally

increased under L-dopa compared to placebo (mean difference P-D=-2.61, t30=-1.92, p=.065).

Importantly, the observed attenuation of directed exploration trials under L-dopa was mirrored in

our analysis of drug effects on the model parameters’ posterior distributions. Dopaminergic drug

effects were first examined for the group-level (mean M posteriors for b (random exploration), ’

Figure 3. Results of the cognitive model comparison. Leave-one-out (LOO) log-likelihood estimates were calculated over all drug conditions (n = 31

subjects with t = 3*300 trials) and once separately for each drug condition (n = 31 with t = 300). All LOO estimates were divided by the total number of

data points in the sample (n*t) for better comparability across the different approaches. Note that the relative order of LOO estimates is invariant to

linear transformations. Delta: simple delta learning rule; Bayes: Bayesian learner; SM: softmax (random exploration); E: directed exploration; R: total

uncertainty-based random exploration; P: perseveration.
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(directed exploration) and r (perseveration)) of the best-fitting Bayesian model, which were esti-

mated separately for each drug. In accordance with the drug effects on fraction of directed explora-

tions, under L-dopa, the posterior group-level mean of ’ (M’) was substantially reduced compared

to both placebo and haloperidol (Figure 6), such that the 90% highest density intervals of the differ-

ence of the posterior distributions of M’ did not overlap with zero (Appendix 1—figure 1b). In con-

trast, we did not observe effects of L-dopa on random exploration (b, Figure 6) or perseveration (r,

Figure 6). Somewhat surprisingly, haloperidol showed no effects on the posterior group-level means

of any parameter.

In summary, we found that boosting central dopamine with L-dopa specifically attenuated explor-

atory choice patterns that aimed at reducing uncertainty of highly uncertain choice options. At the

same time, exploitative choices were marginally increased. Although we observed no significant

drug � trial interactions, the L-dopa-induced effects appeared to be more pronounced in the first

third of the task (Figure 5a, c).

Distinct brain networks orchestrate exploration and exploitation
Analysis of the imaging data proceeded in two steps. First, we examined our data for overall effects

of exploration/exploitation based on a binary trial classification, as well as on the model-based

parametric effects of expected value and uncertainty. In a second step, we examined the neural

basis of the drug-induced change in exploration. All reported fMRI results are based on statistical

parametric maps (SPMs) thresholded at p<0.05, FWE-corrected for whole brain volume (unless

Figure 4. Trial-by-trial variables of the best-fitting Bayesian model (Bayes-SMEP). Trial-by-trial estimates are shown for the placebo data of one

representative subject with posterior medians: b=0.29, ’ = 1.34, and r=4.11 (random exploration, directed exploration, and perseveration). (a) Colored

lines depict the expected values (�pre) of the four bandits, whereas colored dots denote actual payoffs. Vertical black lines mark trials classified as

exploratory (Daw et al., 2006). (b) Exploration bonus (’spre) and uncertainty (spre) for each bandit. (c) Perseveration bonus (Ir). This bonus is a fixed

value added only to the bandit chosen in the previous trial, shown here for one bandit. (d) Choice probability (P). Each colored line represents one

bandit. (e) Reward prediction error (d). (f) The subject’s overall uncertainty (Sspre), that is the summed uncertainty over all four bandits.
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Figure 5. Drug effects on the percentage of exploitations and explorations (bandit with highest uncertainty is chosen). Shown are the mean percentage

of directed explorations for each drug session over six blocks of 50 trials each (error bars indicate standard error of the mean).
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stated otherwise, for example for visualization purposes). In addition to whole-brain analyses, drug-

induced changes were additionally assessed in a regions of interest approach based on small volume

FWE correction (p<0.05) for seven regions that have previously been associated with exploration:

the left/right FPC and left/right IPS (Daw et al., 2006), as well as the dACC and left/right AI

(Blanchard and Gershman, 2018). Regions used for small volume correction were defined by 10

mm radius spheres centered at peak voxels reported in these previous studies (Appendix 1—table

5).

In a first general linear model (GLM), differences in brain activity between exploratory and

exploitative choices were modeled (at trial onset) across all participants and drug conditions, using

the binary classification previously described by Daw et al., 2006. In accordance with previous work,

the pattern of brain activity differed markedly between both types of choices (Figure 7, Appen-

dix 1—figure 5). Highly similar activation patterns were found with a second GLM that was based

on the parametric regressors expected value (�pre) and uncertainty (spre) of the chosen bandit, both

modeled at trial onset. While expected value related neural activity largely overlapped with the one

Figure 6. Drug effects for the group-level parameter estimates of the best-fitting Bayesian model. Shown are posterior distributions of the group-level

mean (M) of all choice parameters (b, ’, r), separately for each drug condition. Each plot shows the median (vertical black line), the 80% central interval

(blue (grey) area), and the 95% central interval (black contours); b: random exploration, ’: directed exploration; r: perseveration parameter. For drug

effects on the standard deviation of the group-level median parameters ’; b and r see Appendix 1—figure 1a. See Appendix 1—figure 1b and c

for pairwise drug-related differences of the group-level mean (M) and (c) standard deviation (L) of ’.

Figure 7. Brain regions differentially activated by exploratory and exploitative choices. Shown are overlays of statistical parametric maps (SPMs) for the

contrast (a) the parametric regressor expected value (�preÞ of the chosen bandit (in blue) and the binary trial classification related contrast

exploit > explore (‘exploit’ in red), and for (b) the parametric regressor uncertainty (spre) (in blue) and the contrast explore > exploit (‘explore’ in red),

over all drug conditions. For visualization purposes: thresholded at p<0.001, uncorrected. R: right.
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for exploitative choices (Figure 7a), uncertainty associated patterns of neural activation overlapped

with the ones for exploratory choices (Figure 7b).

Replicating earlier findings (e.g. Daw et al., 2006; Addicott et al., 2014), exploration trials were

associated with greater activation in bilateral frontopolar cortex (FPC; left: �42, 27, 27 mm;

z = 6.07; right: 39, 34, 28 mm; z = 7.56), in a large cluster along the bilateral intraparietal sulcus (IPS;

cluster peak at �48,–33, 52; z = 10.45), and in bilateral anterior insula (AI; left: �36, 15, 3 mm;

z = 6.69; right: 36, 20, 3 mm; z = 6.87) as well as dorsal anterior cingulate cortex (dACC; cluster

peak at 8, 12, 45 mm; z = 8.47). Clusters within thalamus, cerebellum, and supplementary motor

area also showed increased bilateral activation during exploration compared to exploitation.

In contrast, exploitative choices were associated with greater activation in the ventromedial pre-

frontal cortex (vmPFC; �2, 40,–10 mm; z = 5.67) and in bilateral lateral orbitofrontal cortex (lOFC;

left: �38, 34,–14 mm; z = 5.81; right: 38, 36,–12 mm; z = 5.02). Furthermore, greater activation dur-

ing exploitative trials was also observed in a cluster spanning the left posterior cingulate cortex

(PCC) and left precuneus (cluster peak at �6,–52, 15 mm; z = 7.40), as well as in the angular gyrus

(left: �42,–74, 34 mm; z = 8.04; right: 52,–68, 28 mm; z = 7.02), hippocampus (left: �24,–16, �15

mm; z = 4.16; only at p<0.001, uncorrected; right: 32,–16, �15 mm; z = 5.09), and several clusters

along the superior and middle temporal gyrus. A complete list of activations associated with explor-

ative and exploitative choices, as well as activation related to model-based PEs can be found in

Appendix 1. We observed no differential activation patterns for directed and random exploration

types when expanding the original trial classification of Daw et al., 2006 in a third GLM (Appen-

dix 1—figure 6).

No evidence for a direct drug modulation of exploration/exploitation-
related brain activation
To test for a main effect of drug on differential explore/exploit-related brain activation, we con-

ducted rmANOVAs on the second level contrasts explore vs. exploit of the first GLM as well as on

the contrasts related to the parametric regressors of expected value and uncertainty of the second

GLM. Surprisingly, we found no suprathreshold activations on the whole-brain level, nor in any of

seven regions of interest (ROIs) with small volume correction applied (i.e. left/right FPC, left/right

IPS, left/right AI, and dACC).

The same analyses were run for the contrasts from the third GLM, that is directed exploration vs.

exploit, randomexploration vs.exploit, and randomvs.directed exploration. Again, we found no sig-

nificant drug-related modulation of brain activation for these contrasts in any of our a priori ROIs.

Likewise, further analyses revealed no drug effects on neural activation (trial onset, reward onset,

PE, and outcome value; see Appendix 1 for details) and no evidence for an association of drug

effects with putative proxy measures of baseline DA availability (spontaneous blink rate and working

memory span, see Appendix 1 for details).

Table 1. Free and fixed parameters of all six computational models.

Delta rule Bayes learner rule

Choice rule 1 a;b fixed: v1 b fixed: l̂; #̂; ŝ2

0
; ŝ2

d ; �̂
pre
1
; ŝpre

1

Choice rule 2 a;b; ’ fixed: v1 b; ’ fixed: l̂; #̂; ŝ2

0
; ŝ2

d ; �̂
pre
1
; ŝpre

1

Choice rule 3 a;b; ’; � fixed: v1 b; ’; � fixed: l̂; #̂; ŝ2

0
; ŝ2

d ; �̂
pre
1
; ŝpre

1

Choice rule 4 a;b; ’; �; g fixed: v1 b; ’; �; g fixed: l̂; #̂; ŝ2

0
; ŝ2

d ; �̂
pre
1
; ŝpre

1

Note: Free parameters are only listed for the subject-level. Hierarchical models contained for each free subject-level parameter x two additional free

parameters (Mx;Lx) on the group-level (Figure 9). Choice rule 1: softmax; Choice rule 2: softmax with exploration bonus; Choice rule 3: softmax with explo-

ration bonus and perseveration bonus; a: learning rate; b: softmax parameter; ’: exploration bonus parameter; �: perseveration bonus parameter; ; g:

uncertainty-based random exploration parameter; v1: initial expected reward values for all bandits; l: decay parameter; #: decay center; s2

o: observation

variance; s2

d: diffusion variance; �pre
1
: initial mean of prior expected rewards for all bandits; spre

1
: initial standard deviation of prior expected rewards for all

bandits.
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L-dopa indirectly modulates exploration via reducing neural coding of
overall uncertainty
Based on the null findings in the planned analyses, we reasoned that L-dopa might attenuate

directed exploration not by modulating brain activation for exploratory/exploitative choices in a

direct manner, but rather by modulating neural computations that are involved in switching from

exploitation to directed exploration. Thus, L-dopa might delay the time point at which directed

exploration is triggered in response to accumulating ‘total’ (summed) uncertainty. As we did not find

evidence (according to model comparison, see Figure 3) for total (summed) uncertainty (Sspre)

related random exploration, this was not accounted for in our final Bayesian model. Still, total uncer-

tainty is linked (via the exploration bonus parameter ’) to the probability to explore a previously

unchosen bandit. Sspre gradually increases during a series of exploitations but reduces abruptly

when a bandit with high uncertainty is explored (see Figure 2f). We therefore included model-based

overall uncertainty as a parametric regressor modeled at trial onset in a new GLM to reveal brain

activation that tracks accumulating uncertainty during learning. The contrast images for this regres-

sor were then used in a second-level random effects analysis with the factors drug condition and

subject. In the placebo condition alone, no voxels survived whole-brain FWE correction (p<.05), but

a more lenient threshold (p<.001, uncorrected) revealed activity in the bilateral dACC (cluster peak

at -3, 21, 39mm; z=3.96), right anterior insula (42, 15, -6mm; z=3.46), and left posterior insula (PI) (-

34, -20, 8mm; z=4.63) that was positively correlated with the overall uncertainty (Figure 8a, Table 2).

To test our exploratory hypothesis, we computed directed t-contrasts for L-dopa vs. placebo (place-

bo>L-dopa and L-dopa>placebo). While the contrast L-dopa>placebo yielded no suprathreshold

activations, the reverse contrast (placebo>L-dopa) revealed a significant activation in the left PI (-34,

-20, 8mm; z=5.05). At a reduced threshold (p<.001, uncorrected), left AI (-38, 6, 14mm; z=4.88) and

bilateral dACC (left: -2, 36, 33mm; z=3.32; right: 4, 14, 28mm; z=3.41) showed a stronger correlation

with the overall uncertainty under placebo compared to L-dopa (Figure 8b, Table 2).

Figure 8. L-dopa effects on neural coding of overall uncertainty. (a) Regions in which activity correlated positively

with the overall uncertainty in the placebo condition included the dorsal anterior cingulate cortex (dACC) and left

posterior insula (PI). (b) Regions in which the correlation with overall uncertainty was reduced under L-dopa

compared to placebo included the dACC and left anterior insula (AI). Thresholded at p<0.001, uncorrected. R:

right.
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Discussion
Here, we directly tested the causal role of DA in human explore/exploit behavior in a pharmacologi-

cal, computational fMRI approach, using L-dopa (DA precursor) and haloperidol (DA antagonist) in a

double-blind, placebo-controlled, counterbalanced, within-subjects design. Model comparison

revealed that choice behavior was best accounted for by a novel extension of a Bayesian learning

model (Daw et al., 2006), that included separate terms for directed exploration and choice persev-

eration. Modeling revealed that directed exploration was reduced under L-dopa compared to pla-

cebo and haloperidol. In contrast, no drug effects were observed on parameters capturing random

exploration (b) or perseveration (r). On the neural level, exploration was associated with higher activ-

ity in the FPC, IPS, dACC, and insula, whereas exploitation showed higher activity in the vmPFC,

OFC, PCC, precuneus, angular gyrus, and hippocampus, replicating previous studies (Daw et al.,

2006; Addicott et al., 2014; Blanchard and Gershman, 2018). Surprisingly, no drug effects were

found for these effects, nor on striatal reward prediction error signaling (see Appendix 1 for details).

However, an exploratory model-based analysis revealed that L-dopa reduced insular and dACC

activity associated with total (summed) uncertainty.

Computational modeling of exploration
We examined two learning rules (Delta rule vs. Bayesian learner) and four choice rules resulting in a

total of eight computational models. Model comparison revealed that the Bayesian learning model

(Kalman Filter) outperformed the Delta rule for each of the choice rules. Although both learning rules

are based on the same error-driven learning principle, the Bayesian learner assumes that subjects

additionally track the variance (uncertainty) of reward expectation and adjust the learning rate from

trial to trial according to the current level of uncertainty - learning is high when reward predictions

are uncertain (i.e. during exploration), but decreases when predictions become more accurate (i.e.

during exploitation).

For both learning rules the model including separate parameters for random exploration,

directed exploration and perseveration accounted for the data best, in line with recent work from

Table 2. Brain regions in which activity was significantly correlated with the overall uncertainty

(fourth GLM), shown for the placebo condition and for pairwise comparison with L-dopa.

Region MNI coordinates peak cluster

x y z z-value extent (k)

Placebo

L posterior insula �34 �20 8 4.63 198

R supplementary motor cortex 8 10 52 3.98 92

R/L dorsal anterior cingulate cortex,
L supplementary motor cortex

-3 21 39 3.96 176

R anterior insula 42 15 -6 3.46 38

R thalamus 8 �10 2 3.41 18

Placebo > L-dopa

L posterior insula �34 �20 8 5.05* 82

L anterior insula, L frontal operculum �38 6 14 4.88 222

L opercular part of the inferior frontal gyrus �42 9 26 4.01 80

L precentral gyrus �54 3 12 3.47 23

R dorsal anterior cingulate cortex 4 14 28 3.41 32

R precentral gyrus 39 -9 44 3.39 16

L dorsal anterior cingulate cortex -2 36 33 3.32 17

L-dopa > placebo

no suprathreshold activation

Note: Thresholded at p<0.001, uncorrected, with k � 10 voxels; L: left; R: right.

*p=0.031, FWE-corrected for whole-brain volume.
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our group (Wiehler et al., 2019). Note that we also replicated this effect in the original data from

the Daw et al., 2006 paper (Wiehler et al., 2019). Random exploration was implemented via add-

ing stochasticity to the action selection with a softmax formulation (Thrun, 1992; Daw et al., 2006;

Beeler et al., 2010; Gershman, 2018). Directed exploration was implemented via an exploration

bonus parameter (e.g. Dayan and Sejnowski, 1996; Daw et al., 2006). In this scheme, ‘uncertainty’

or ‘information’ biases choices toward more uncertain/informative options by increasing their value.

In contrast to Gershman and Tzovaras, 2018, we found no evidence in our data that including an

additional term for total-uncertainty based exploration further improved model fit.

Behavioral DA drug effects
Overall, our finding that pharmacological manipulation of the DA system impacts the exploration/

exploitation trade-off is in line with previous animal and human studies (e.g. Frank et al., 2009;

Beeler et al., 2010; Blanco et al., 2015). However, the observed pattern of drug effects did not

match our initial hypothesis, according to which both random and directed exploration were

expected to increase under L-dopa vs. placebo and decrease under haloperidol vs. placebo.

L-dopa
L-dopa administration reduced directed exploration (’) compared to placebo, while random explo-

ration (b) was unaffected. In the model, this could reflect (1) a reduced tendency for directed

Figure 9. Graphical description of the hierarchical Bayesian modeling scheme. In this graphical scheme, nodes

represent variables of interest (squares: discrete variables; circles: continuous variables) and arrows indicate

dependencies between these variables. Shaded nodes represent observed variables, here rewards (r) and choices

(ch) for each trial (t), subject (s), and drug condition (d). For each subject and drug condition, the observed rewards

until trial t-1 determine (deterministically) choice probabilities (P) on trial t, which in turn determine (stochastically)

the choice on that trial. The exact dependencies between previous rewards and choice probabilities are specified

by the different cognitive models and their model parameters (x). Note that the double-bordered node indicates

that the choice probability is fully determined by its parent nodes, that is the reward history and the model

parameters. As the model parameters differ between all applied cognitive models, they are indicated here by an x

as a placeholder for one or more model parameter(s). Still, the general modeling scheme was the same for all

models: Model parameters were estimated for each subject and drug condition and were assumed to be drawn

from a group-level normal distribution with mean Mx and standard deviation Lx for any parameter x. Note that

group-level parameters were estimated separately for each drug condition. Each group-level mean (Mx) was

assigned a non-informative (uniform) prior between the limits xmin and xmax as listed above. Each group-level

standard deviation (Lx) was assigned a half Cauchy distributed prior with location parameter 0 and scale 1.

Subject-level parameters included a;b; ’, �, and g depending on the cognitive model (see Table 1).

Chakroun et al. eLife 2020;9:e51260. DOI: https://doi.org/10.7554/eLife.51260 13 of 44

Research article Neuroscience

https://doi.org/10.7554/eLife.51260


exploration and/or (2) an increased tendency for value-driven exploitation. Accordingly, when classi-

fying all choices per subject into exploitations, directed exploration and random exploration, L-dopa

was found to reduce the percentage of directed but not random exploration compared to placebo

across subjects, and marginally increase the percentage of exploitations.

Previous studies that found that DA promotes exploration primarily focused on prefrontal DA

availability (Frank et al., 2009; Blanco et al., 2015; Kayser et al., 2015) or examined effects of tonic

DA modulation (Beeler et al., 2010; Costa et al., 2014). L-Dopa, however, likely increases DA trans-

mission most prominently within striatum, and to a much lesser degree in PFC (Carey et al., 1995;

Cools, 2006). PET studies in humans also indicate that L-dopa primarily increases phasic rather than

tonic striatal DA activity (Floel et al., 2008; Black et al., 2015). Increased phasic DA release was

associated with improved learning under L-dopa compared to placebo, presumably by enhancing

the reinforcing effect of positive feedback during learning (Frank et al., 2004; Pessiglione et al.,

2006; Cox et al., 2015; Mathar et al., 2017). Thus, L-dopa might strengthen-positive reinforcing

effects of immediate rewards (Pine et al., 2010) via increased phasic striatal DA release, fostering

both impulsive and exploitative choice behavior (Kobayashi and Schultz, 2008; Schultz, 2010;

Pine et al., 2010).

In addition, the striatum is densely interconnected with frontal cortices (Haber and Knutson,

2010; Badre and Nee, 2018). Thus, L-dopa might have also attenuated exploration via indirectly

modulating frontal activity through bottom-up interference (Kellendonk et al., 2006;

Simpson et al., 2010; Kohno et al., 2015; Duvarci et al., 2018).

Haloperidol
Contrary to our hypothesis, we did not observe a significant modulation of exploration/exploitation

under haloperidol. Computational modeling revealed no changes in the group-level mean parame-

ters for directed exploration (’), random exploration (b) or perseveration.

Haloperidol is a potent D2 receptor antagonist. Thus, the absence of a clear effect on exploration

and/or exploitation is at first glance somewhat puzzling. We predicted haloperidol to attenuate tonic

DA signaling and reduce directed and random exploration. However, alternatively one could have

predicted haloperidol to reduce phasic signaling within striatum and attenuate reward exploitation

and thus increase exploration (Pessiglione et al., 2006; Pleger et al., 2009; Eisenegger et al.,

2014).

In addition, numerous studies found opposite effects of single doses of haloperidol, and the

directionality of effects might depend on the dosage (Frank and O’Reilly, 2006; Jocham et al.,

2011; Frank and O’Reilly, 2006; Pine et al., 2010). Low doses of D2 antagonists can stimulate DA

signaling, possibly via acting on presynaptic auto-receptors (Schmitz et al., 2003; Frank and

O’Reilly, 2006; Ford, 2014), which contrasts with the antidopaminergic effects observed under

chronic and high-dose treatment (Starke et al., 1989; Frank and O’Reilly, 2006; Knutson and

Gibbs, 2007).

Finally, a potential baseline dependency may have given rise to a complex non-linear pattern of

drug effects. However, we also examined two proxy measures for striatal DA transmission (spontane-

ous eye blink rate and working memory capacity), both of which showed no modulation of drug-

effects (see Appendix 1).

fMRI findings
Neural correlates of exploration and exploitation
Consistent with previous research in primates and humans (Ebitz et al., 2018; Daw et al., 2006),

the pattern of brain activity differed markedly between exploration and exploitation, both using a

binary classification of trials and via parametric model-based analyses: Exploratory choices were

associated with higher activity in the FPC, IPS, dACC, and AI, replicating previous human fMRI stud-

ies (Daw et al., 2006; Addicott et al., 2014; Laureiro-Martı́nez et al., 2014; Laureiro-

Martı́nez et al., 2015; Zajkowski et al., 2017). It has been suggested that the FPC may track infor-

mation relevant for exploratory decisions, such as the expected reward and uncertainty of unchosen

choice options, and trigger a behavioral switches from an exploitative to an exploratory mode when-

ever the accumulated evidence supports such a switch (Boorman et al., 2009; Boorman et al.,

2011; Badre et al., 2012; Cavanagh et al., 2012). The IPS, in contrast, has been suggested to serve
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as an interface between frontal areas and motor output areas, initiating behavioral responses to

implement exploratory actions (Daw et al., 2006; Boorman et al., 2009; Laureiro-Martı́nez et al.,

2015). The dACC and AI, on the other hand, are thought to form a salience network involved in

detecting and orienting toward salient stimuli (Menon, 2015; Uddin, 2015), which may also sub-

serve attentional and behavioral switching from exploitation to exploration.

Exploitative choices were associated with greater activation in vmPFC and OFC, again replicating

previous work (Laureiro-Martı́nez et al., 2014; Laureiro-Martı́nez et al., 2015). Both regions are

implicated in coding the subjective value of attainable goods (Levy and Glimcher, 2012). Thus,

vmPFC and OFC might foster exploitation based on computing subjective values of decision options

(Kringelbach and Rolls, 2004; O’Doherty, 2004; O’Doherty, 2011; Peters and Büchel, 2010;

Bartra et al., 2013).

In addition, greater activation during exploitation was also observed in the PCC, angular gyrus,

precuneus, and hippocampus, partly replicating the results of earlier studies (Addicott et al., 2014;

Laureiro-Martı́nez et al., 2014; Laureiro-Martı́nez et al., 2015). Together with the medial PFC,

these regions are hypothesized to form a large-scale brain system referred to as the ‘default mode

network’ (DMN; Raichle et al., 2001; Andrews-Hanna et al., 2014). Thus, activity within these

regions during exploitation may also relate to a reduced cognitive and attentional demand during

exploitation compared to exploration. The angular gyrus is also heavily implicated in number moni-

toring (Göbel et al., 2001) and thus may monitor reward values during exploitation (see

Addicott et al., 2014). The PCC is considered to be part of the brain’s valuation system and may

encode reward-related information during exploitation (Lebreton et al., 2009; Bartra et al., 2013;

Grueschow et al., 2015), although in primates PCC neurons were shown to signal exploratory deci-

sions (Pearson et al., 2009). A further characterization of the hypothesized functions of specific sub-

regions of the exploitation- and exploration networks naturally requires direct experimental tests in

the future.

Neural DA drug effects
We found no direct drug effects on exploration- or exploitation-related brain activity, nor on the

neural correlates of reward PE signals (see Appendix 1). We hypothesized DA drug effects on

exploratory behavior to be associated with changes in the activity of brain regions implicated in

exploratory choices. This was not supported by the fMRI data. Alternatively (or additionally), the

observed L-dopa effect on explore/exploit behavior could also be due to an enhanced phasic DA

release and PE signaling in the striatum (see above). In such a model, L-dopa would be expected to

increase the magnitude of the striatal reward PE signal, as previously shown by Pessiglione et al.,

2006. However, a recent study (Kroemer et al., 2019) did not observe such a modulatory effect of

L-dopa on PE coding in a sequential reinforcement learning task in a large community sample

(N = 65).

Several factors might have contributed to the absence of significant L-dopa effects on the neural

correlates of explore/exploit decisions or the reward PE. First, this failure may simply be due to a

lack of statistical power provided by the modest sample size of 31 subjects (Button et al., 2013;

Turner et al., 2018). Notably, however, previous studies (e.g. Pessiglione et al., 2006 used a sub-

stantially smaller sample size, and in our design power was increased due to the within-subjects

design. Second, L-dopa has a plasma half-life of only 60 to 90 min and reaches peak plasma concen-

trations (tmax) about 30 to 60 min after oral ingestion (Baruzzi et al., 1987; Keller et al., 2011;

Iwaki et al., 2015). However, the time schedule of the current experiment was adjusted to this

tmax. In addition, such considerations fall short in explaining the clear behavioral effect of L-Dopa

that was observed in the present study.

Obviously, the BOLD signal does not directly reflect DA release, and the precise physiological

relationship between DA release and BOLD signal is still to be revealed (Knutson and Gibbs, 2007;

Brocka et al., 2018). A recent optogenetic study in rats suggests that canonical BOLD responses in

the reward system may mainly represent the activity of non-dopaminergic neurons, such as glutama-

tergic projecting neurons (Brocka et al., 2018). Thus, it is also conceivable that L-dopa might have

enhanced striatal DA release to some degree without triggering a (detectable) BOLD signal change.

For the haloperidol condition, the null findings on the neural level are less surprising, given the

lack of a consistent behavioral effect across subjects. As discussed above, it can be assumed that the
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low dose (2 mg) of haloperidol used in this study exerted a mixture of presynaptic (DA-stimulating)

and postsynaptic (DA-antagonizing) effects across subjects, potentially explaining why no overall hal-

operidol effects were found on the behavioral and neural level. Similarly, Pine et al., 2010 also did

not observe significant effects of haloperidol (1.5 mg) on reward-related striatal activity or choice

behavior. Future studies should consider using higher doses of haloperidol to achieve more consis-

tent antidopaminergic effects from postsynaptic D2 receptor blockade across subjects, or other DA

antagonists with a lower side effect profile.

L-dopa attenuates neural tracking of overall uncertainty
We reasoned that L-dopa may have reduced exploration not by directly affecting the neural signa-

tures of explore/exploit decisions, but instead by modulating the neural correlates involved in behav-

ioral switching from exploitation to exploration in response to accumulating uncertainty. Thus,

L-dopa might delay the time point at which directed exploration is triggered, resulting in less

directed exploration trials over time.

We examined this alternative hypothesis with an additional model-based fMRI analysis, in which a

trial-by-trial estimate for overall uncertainty (summed standard deviation over all bandits), was used

as a parametric regressor in the GLM. Activity in the bilateral insula and dACC positively correlated

with the overall uncertainty in the placebo condition, suggesting that these regions may either track

the overall uncertainty directly or encode an affective or motivational state that increases with accu-

mulating uncertainty. Insula and dACC thus may trigger exploration under conditions of high overall

uncertainty, for example by facilitating switching between the currently exploited option and salient,

more uncertain choice alternatives (Kolling et al., 2012, p.97; Laureiro-Martı́nez et al., 2015).

Indeed, numerous studies have found greater activation in these regions during decision-making

under uncertainty, and have implicated both regions in encoding outcome uncertainty or risk

(Huettel et al., 2005; Preuschoff et al., 2006; Preuschoff et al., 2008; Christopoulos et al., 2009;

Singer et al., 2009; Bach and Dolan, 2012; Dreher, 2013). The insula is also considered to play a

key role for integrating interoceptive signals about bodily states into conscious feelings, such as

urgency, that can influence decision-making under risk and uncertainty (Craig, 2002; Craig, 2009;

Critchley, 2005; Naqvi and Bechara, 2009; Singer et al., 2009; Xue et al., 2010). The ACC is

known to monitor response conflict, which should increase with the overall uncertainty, and to trig-

ger attentional and behavioral changes for reducing future conflict (Botvinick et al., 2004;

Kerns et al., 2004; Vanveen and Carter, 2002).

Importantly, we found that L-dopa reduced uncertainty-related activity in the insula and dACC

compared to placebo. Expression of D1 and D2 receptors is much higher in striatum than in insula

and ACC (Hall et al., 1994; Hurd et al., 2001). Hence, L-dopa may have affected uncertainty-related

activity in the insula and ACC indirectly by modulating DA transmission on the striatal level. More

specifically, L-dopa might have modulated striatal processing of reward uncertainty

(Preuschoff et al., 2006; Schultz et al., 2008) that subsequently is transmitted to cortical structures

for integration with other decision parameters to guide explore/exploit behavior (Kennerley et al.,

2006; Rushworth and Behrens, 2008; Haber and Knutson, 2010; Shenhav et al., 2013). To further

test this hypothesis, future studies should more closely examine the role of the insula and ACC in

triggering exploration in response to accumulating uncertainty and further investigate how frontal

and/or striatal DA transmission might modulate this process.

Limitations
In addition to the limitations discussed above, the moderate sample size of 31 subjects in this within-

subjects manipulation study may have contributed to the absence of haloperidol effects and the

absence of drug-associated differences in categorical contrasts of explore/exploit trials in the fMRI

analysis. A second limitation relates to the fact that while the applied pharmacological fMRI

approach can examine DA drug effects on the BOLD signal, it remains unclear which effects directly

reflect local changes in DA signaling, and which reflect downstream effects that may also involve

other neurotransmitter systems (Schrantee and Reneman, 2014). Needless to say, the BOLD signal

provides an indirect index of blood oxygenation rather than a direct measure of DA activity. Hence,

an observed BOLD signal change must not necessarily rely on a change in DA transmission, and a

change in DA transmission must not necessarily produce a (detectable) BOLD signal change

Chakroun et al. eLife 2020;9:e51260. DOI: https://doi.org/10.7554/eLife.51260 16 of 44

Research article Neuroscience

https://doi.org/10.7554/eLife.51260


(Brocka et al., 2018). Future research should therefore complement pharmacological fMRI studies

with other in vivo techniques that specifically monitor local changes in DA activity, such as molecular

imaging with PET and SPECT (single photon emission computed tomography) in humans

(Cropley et al., 2006).

Conclusion
The present study examined the causal role of DA in human explore/exploit behavior in a pharmaco-

logical model-based fMRI approach, using the dopamine precursor L-dopa and the D2 antagonist

haloperidol in a placebo-controlled, within-subjects design. First, our cognitive modeling results con-

firm that humans use both random and directed exploration to solve the explore/exploit tradeoff.

Notably, we extend previous findings by showing that accounting for choice perseveration improves

model fit and interpretability of the parameter capturing directed exploration. Our results support

the notion that DA is causally involved in the explore/exploit trade-off in humans by regulating the

extent to which subjects engage in directed exploration. Interestingly, our neuroimaging data do

not support the hypothesis that DA controls this trade-off by modulating the neural signatures of

exploratory and exploitative decisions per se. In contrast, we provide first evidence that DA modu-

lates tracking of overall uncertainty in a cortical control network comprising the insula and dACC,

which might then drive exploration in the face of accumulating uncertainty. Future research should

more closely examine the potential role of these regions in driving exploration based on emotional

responses to increasing uncertainty, and further investigate how prefrontal and/or striatal DA may

be involved in this process.

Materials and methods

Participants
In total, 34 healthy male subjects participated in the study (aged 19 to 35 years, M = 26.85,

SD = 4.01). Three subjects dropped out of the study due to illness or personal reasons, two after the

initial baseline session and one after the first fMRI session. Only males were included, as female sex

hormones fluctuate during menstrual cycle which may affect DA signaling (Almey et al., 2015;

Yoest et al., 2018). Sample-size (n = 31, within-subject design) was based on previous work regard-

ing exploration-related brain activation (Daw et al., 2006; n = 14), and dopaminergic manipulation

of reinforcement learning (Pessiglione et al., 2006; n = 13, between-subject design). We aimed at a

sample-size of least twice the size of the above-mentioned studies for replication purposes. Partici-

pants were recruited online and included mainly university students. Inclusion criteria were the fol-

lowing: male, age 18–35 years, normal weight (BMI 18.5–25.0), right-handed, fluent German in

speaking and writing, normal or corrected to normal vision, no hearing impairments, no major past

or present psychological, neurological, or physical disorders, non-smoker, no excessive consumption

of alcohol (<10 glasses per week), no consumption of illegal drugs or prescription drugs within two

months prior to the study, no irreversibly attached metal in or on the body, no claustrophobia (the

latter two due to the fMRI measurement). Before participating in the study, all subjects provided

informed written consent and had to pass a medical check by a physician including an electrocardio-

gram (ECG) and an interview about their medical history and present health status. Participants

received a fixed amount (270e) plus a variable bonus depending on task performance (30–50e). The

study procedures were approved by the local ethics committee (Hamburg Medical Council).

General procedure
We employed a double-blind, placebo-controlled, counterbalanced, within-subjects design. Each

subject (n = 31) was tested in four separate sessions: one baseline session and three fMRI sessions.

The baseline screening was scheduled five to six days prior to the first fMRI session.

Baseline screening
The baseline screening started with spontaneous eye blink rate assessment, followed by a computer-

ized testing of working memory capacity comprising four working memory tasks (as proxy measures

for participants’ DA baseline; see Appendix 1), two tasks testing delay and probability discounting

behavior (not reported here), and it ended with a psychological questionnaire battery. Participants
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were encouraged to take small breaks in between the tasks to aid concentration. Blink rate was mea-

sured via electromyography for 5 min under resting conditions via three Ag/AgCl electrodes

(Blumenthal et al., 2005) and an MP100 hardware system running under AcqKnowledge (version

3.9.1; Biopac Systems, Goleta, CA). Working memory capacity was based on the following tasks:

Rotation Span (Foster et al., 2015), Operation Span (Foster et al., 2015), Listening Span (van den

Noort et al., 2008; based on the English version by Daneman and Carpenter, 1980), and Digit

Span (Wechsler Adult Intelligence Scale: WAIS-IV; Wechsler, 2008). All tasks were implemented

using the software MATLAB (R2014b; MathWorks, Natick, MA) with the Psychophysics Toolbox

extensions (version 3.0.12; Brainard, 1997; Kleiner et al., 2007).

At the end of the baseline screening, subjects completed a computer-based questionnaire bat-

tery assessing demographics, personality traits, addictive behavior, and various symptoms of psycho-

pathology. Most of the questionnaires were assessed for a separate study and are of no further

importance here. Only the Symptom Checklist-90-Revised (SCL-90-R; Derogatis, 1992; German ver-

sion by Franke, 1995) was used to exclude subjects with psychiatric symptoms. A cut-off was calcu-

lated for each subject and transformed into T values based on a German norm sample of male

students (see SCL-90-R manual by Franke, 2000, p.310–329). As instructed in this manual, the screen-

ing cut-off was set to TGSI � 63 or T � 63 for at least two of the nine subscales, which was reached

by none of the participants. Further, the Edinburgh Handedness Inventory (Oldfield, 1971) was used

to ensure that all participants were right-handed.

Scanning procedure
In the three fMRI sessions, each participant performed two tasks inside the MRI scanner under the

three different drug conditions. The procedure for each scanning session was as follows: Upon arrival

(2.5 hr before testing in the MRI scanner), participants received a first pill containing either 2 mg hal-

operidol or placebo (maize starch). Two hours later, subjects received a second pill containing either

Madopar (150 mg L-dopa + 37.5 mg benserazide) or placebo. Over the course of the study, each

subject received one dose of Madopar in one session, one dose of haloperidol in another session,

and two placebo pills in the remaining session (counterbalanced). Half an hours later, subjects first

performed the restless four-armed bandit task, followed by an additional short reinforcement learn-

ing task (not reported here) both inside the MRI scanner. Both tasks were trained on a practice ver-

sion outside the scanner a priori. On the first fMRI session, a structural MR image (T1) was

additionally obtained. Each fMRI session ended with a post-fMRI testing outside the scanner, to

assess several control variables (see Appendix 1). Throughout each fMRI session, further control vari-

ables were assessed at different time points, including physical wellbeing parameters and mood (see

Appendix 1). Subjects were not allowed to eat or drink anything but water throughout the fMRI ses-

sion but were offered a small snack (cereal bar) after testing in the fMRI scanner to aid concentration

for the post-fMRI testing.

Restless four-armed bandit task
The restless four-armed bandit task was adapted from Daw et al., 2006. The task included 300 tri-

als, which were separated by short breaks into four blocks of 75 trials. Each trial started with the pre-

sentation of four different colored squares (‘bandits’) representing four choice options (Figure 1).

The squares were displayed on a screen that was reflected in a head coil mirror inside the fMRI scan-

ner. Participants selected one option using a button box held in their right hand. Subjects had a

maximum of 1.5 s to indicate their choice. If no button was pressed during that time, a large red X

was displayed 4.2 s in the center of the screen indicating a missed trial with no points earned. If sub-

jects pressed a button before the response deadline the selected bandit was highlighted with a

black frame. After a waiting period of 3 s during which three black dots were shown within the cho-

sen bandit, the number of points earned in this trial was displayed within the chosen bandit for 1 s.

Subsequently, the bandits disappeared, and a fixation cross remained on screen until the trial ended

6 s after trial onset. This was followed by a jittered inter-trial interval (poisson distribution, mean: 2 s

(0–5 s)). At the end of the task, the sum of points earned as well as the monetary payout resulting

from these points were displayed on screen. Participants were told in advance that 5% of all points

earned would be paid out after the experiment (5 cents per 100 points). The mean payoffs of the

four bandits drifted randomly across trials according to a decaying Gaussian random walk. We used
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the three instantiations from Daw et al., 2006 for the three fMRI sessions of the current study. One

of these instantiations is shown in Figure 1. The order of these three instantiations across fMRI ses-

sions was the same for all subjects, thereby unconfounded with the drug order, which was counter-

balanced across subjects. The task was implemented using the software MATLAB (R2014b;

MathWorks, Natick, MA) with the Psychophysics Toolbox extensions (version 3.0.12; Brainard, 1997;

Kleiner et al., 2007).

Computational modeling of explore/exploit behavior
Choice behavior in the four-armed bandit task was modeled using eight different computational

models of explore/exploit choice behavior (Table 1). The best fitting model (in terms of predictive

accuracy) was selected for subsequent analyses of behavioral and fMRI data, and pharmacological

intervention effects. Each computational model was composed of two components: First, a learning

rule (Delta rule, Bayesian learner) described how participants generate and update subjective reward

value estimates for each choice option (bandit) based on previous choices and obtained rewards.

Second, a choice rule (softmax, softmax + exploration bonus, softmax + exploration bonus + persev-

eration bonus, softmax + exploration bonus + (total uncertainty dependent) random exploration

bonus + perseveration bonus) modeled how these learned values influence choices. By combining

two different learning rules with four different choice rules, a total of eight models entered for model

comparison.

For the sake of brevity, here we only outline the architecture of the Bayesian learner models (see

Appendix 1 for the models implementing the Delta rule), which consistently outperformed the Delta

rule models (Daw et al., 2006). This model implements the Kalman filter (Anderson and Moore,

1979; Kalman, 1960; Kalman and Bucy, 1961) as the Bayesian mean-tracking rule for the reward-

generating diffusion process in the bandit task. The model assumes that subjects form an internal

representation of the true underlying reward structure of the task. The payoff in trial t of bandit i fol-

lowed a decaying Gaussian random walk with mean payoff �i; t and variance s2

o = 42 (observation var-

iance). From one trial to the next, the mean payoffs changed according to:

�i; tþ1 ¼ l�i; t þ 1� lð Þ#þ vt with parameters l = 0.9836 (decay parameter), # = 50 (decay center),

and diffusion noise vt drawn independently in each trial from a Gaussian distribution with zero mean

and s2

d = 2.82(diffusion variance). In the model, subjects’ estimates of these parameters are denoted

accordingly as l̂; #̂; ŝ2

d and s
2

d: According to the model, participants update their reward expecta-

tions of the chosen bandit according to Bayes’ theorem. They start each trial with a prior belief

about each bandit’s mean payoff, that is normally distributed with mean �pre
i;t and variance s

2pre
i;t for

bandit i on trial t. For the chosen bandit, this prior distribution is updated by the reward observation

rt, resulting in a posterior distribution with mean �post
i;t and variance s

2post
i;t according to:

�̂post
ct ;t

¼ �̂pre
ct ;t

þktdtwithdt ¼ rt � �̂pre
ct ;t
; (1)

ŝ2post
ct ;t

¼ 1�ktð Þŝ2pre
ct ;t

: (2)

Here, k denotes the Kalman gain that is computed for each trial t as:

kt ¼ ŝ2pre
ct ;t

= ŝ2pre
ct ;t

þ ŝ2

o

� �

: (3)

The Kalman gain determines the fraction of the prediction error that is used for updating. In con-

trast to the learning rate (Delta rule), the Kalman gain varies from trial to trial depending on the cur-

rent variance of the expected reward’s prior distribution (s2pre
ct ;t

) and the estimated observation

variance (s2

o). The observation variance indicates how much the actual rewards vary around the (to

be estimated) mean reward of a bandit and therefore reflects how reliable each trial’s reward obser-

vation (each new data point) is for estimating the true underlying mean. If the prior variance is large

compared to the estimated observation variance, that is if a subject’s reward prediction is very

uncertain while the reward observation is very reliable, the Kalman gain approaches one and a large

fraction of the prediction error is used for updating. If, in contrast, the prior variance is very small

compared to the estimated observation variance, that is if a subject’s reward estimation is very
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reliable while reward observations are very noisy, then the Kalman gain approaches 0 and only a

small fraction of the prediction error is used for updating. Similar to the Delta rule, the expected

rewards (prior mean and variance) of all unchosen bandits are not updated within a trial, that is their

posteriors equal the prior for that trial. However, prior distributions of all four bandits are updated

between trials based on the subject’s belief about the underlying Gaussian random walk by:

�̂pre
i;tþ1 ¼ l̂�̂post

i;t þ 1� l̂
� �

#̂and ŝ2pre
i;tþ1 ¼ l̂2ŝ

post
i;t þ ŝ2

d: (4)

The trial-by-trial updating process was initialized for all bandits with the same prior distribution

N �pre
1
;s2pre

1

� �

, with �pre
1

and s
2pre
1

as additional free parameters of the model.

The three choice rules were based on the softmax function (Sutton and Barto, 1998; McFad-

den, 1974). The first implementation utilized the softmax (SM) with the inverse temperature parame-

ter b modeling inherent choice randomness (random exploration). The second choice rule (SM+E)

modeled directed exploration in addition, the third choice rule further modeled choice perseveration

(SM+E+P), and the fourth model additionally accounted for total uncertainty-based random explora-

tion (SM+E+R+P), all three via a bonus that was added to the expected value. The resulting proba-

bilities Pi;t to choose bandit i on trial t were then:

Choicerule1ðSMÞ : Pi;t ¼
expðb�̂pre

i;t Þ
P

j expðb�̂
pre
j;t Þ

; (5)

Choicerule2 ðSMþEÞ : Pi;t ¼
expðb�̂pre

i;t þ ’ŝpre
i;t �Þ

P

j expðb½�̂
pre
j;t þ ’ŝpre

j;t �Þ
; (6)

Choicerule3ðSMþEþPÞ : Pi;t ¼
expðb�̂pre

i;t þ’ŝpre
i;t þIct�1¼i

��Þ
P

j expðb½�̂
pre
j;t þ’ŝpre

j;t þIct�1¼j
��Þ

: (7)

Choicerule4ðSMþEþRþPÞ : Pi;t ¼
expðb½�̂pre

i;t þ’ŝpre
i;t þIct�1¼i

� þ g
�̂pre

i;t

Sŝpre �Þ
P

j expðb½�̂
pre
j;t þ’ŝpre

j;t þIct�1¼j
� þ g

�̂pre

i;t

Sŝpre �Þ
: (8)

Choice rule 2 is the “softmax (random exploration) with exploration bonus (directed explora-

tion)”, as used in Daw et al., 2006. Here, ’ denotes the exploration bonus parameter, which reflects

the degree to which choices are influenced by the uncertainty associated with each bandit.

Choice rule 3 is a novel extension of this model called “softmax with exploration and persevera-

tion bonus”. It includes an extra perseveration bonus, which is a constant value (free parameter) only

added to the expected value of the bandit chosen in the previous trial. Here, � denotes the persev-

eration bonus parameter and I an indicator function that equals 1 for the bandit that was chosen in

the previous trial (indexed by ct�1) and 0 for all other bandits.

Choice rule 4 further extends choice rule 3 by adding a second random exploration term that is

discounted by the estimated total (i.e. summed) uncertainty of all bandits (Gershman, 2018; Thomp-

son, 1933). Here, g denotes the uncertainty-based random exploration parameter which captures

the recent observation that choice randomness may increase with increasing overall uncertainty

(Gershman and Tzovaras, 2018).

As mentioned above, all four choice rules were also implemented within a simple Delta rule learn-

ing scheme (see Appendix 1). Taken together, by combing each learning rule with each choice rule,

eight cognitive models entered model comparison. The parameters for each model are summarized

in Table 1.

Posterior parameter distributions were estimated for each subject and drug condition using hier-

archical Bayesian modeling within Stan (version 2.17.0; Stan Development Team, 2017), operating

under the general statistical package R (version 3.4.3; R Development Core Team, 2017). Stan is

based on Hamiltonian Monte Carlo sampling (Girolami and Calderhead, 2011) for approximation.

Sampling was performed with four chains, each chain running for 1000 iterations without thinning

after a warmup period of 1000 iterations. The prior for each group-level mean was uniformly distrib-

uted within the limits as given in Figure 9. For each group-level standard deviation, a half-Cauchy
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distribution with location parameter 0 and scale parameter 1 was used as a weakly informative prior

(Gelman, 2006). Priors for all subject-level parameters were normally distributed with a parameter-

specific mean and standard deviation (denoted by Mx and Lx for any parameter x). Group-level pos-

terior distributions of the three parameters (b; ’; �; mean and standard deviation) were estimated

separately for each drug condition, which allowed the comparison of subject-level as well as group-

level parameters between drugs (for details on the fixed parameters see Appendix 1).

Model comparison
Following parameter estimation, the eight cognitive models were compared in terms of predictive

accuracy using a Bayesian leave-one-out (LOO) cross-validation approach (Vehtari et al., 2017).

LOO cross-validation computes pointwise out-of-sample predictive accuracy by repeatedly taking

one data set (’testing set’) out of the sample, refitting the model to the reduced data (’training set’),

and then measuring how accurately the refitted model predicts the data of the testing set. A testing

set was defined as the data of one subject under one drug condition, compounded over all trials.

Model comparison was performed using the data sets from all 31 participants once combined over

all drug conditions (yielding 93 data sets) and once separately for each drug condition (each with 31

data sets). To reduce computational burden, the R package loo (Vehtari et al., 2017) was used,

which applies Pareto-smoothed importance sampling to calculate LOO estimates as a close approxi-

mation. LOO estimates were calculated for each model fit based on its Stan output, using the log

likelihood function evaluated at the sampled posterior parameter values. The log likelihood for each

subject was calculated as the logarithmized product of choice probabilities (P) of the chosen bandits

(indexed by ct) compounded over trials: log
t

Y

Pct ;t

� �

. Please note that since cross-validation meas-

ures like LOO are not biased in favor of more complex models (like ordinary goodness-of-fit meas-

ures), no penalty term is needed here to compensate for model complexity in order to prevent over-

fitting. Based on the results of the model comparison (Figure 3), the cognitive model with the high-

est predictive accuracy (Bayes-learner with exploration and perseveration bonus (choice rule 3)) was

then selected for further data analysis.

FMRI data acquisition
Functional imaging data were acquired on a Siemens Trio 3T scanner (Erlangen, Germany) equipped

with a 32 channel head-coil. For each subject and drug condition, four blocks à 75 trials were

recorded for the bandit task. The first five scans of each block served as dummy scans to allow for

magnetic field saturation and were discarded. Functional volumes were recorded using a T2*-

weighted EPI sequence. Each volume consisted of 40 slices with 2 mm isotropic voxels and 1 mm

gap, acquired with a repetition time of 2470 ms, an echo time of 26 ms, and a flip angle of 80˚. In

addition, a high-resolution structural image was acquired for each subject at the end of the first fMRI

session, using a T1-weighted magnetization prepared rapid gradient echo (MPRAGE) sequence with

1 mm isotropic voxels and 240 slices. The experimental task was projected onto a mirror attached to

the head coil and participants responded by using a button box with four buttons held in the right

hand.

FMRI data analysis
Preprocessing
Preprocessing and statistical analysis of fMRI data was performed using SPM12 (Wellcome Depart-

ment of Imaging Neuroscience, London, UK). The preprocessing included four steps: (1) realignment

and unwarping to the first image of the placebo session; (2) slice time correction to the onset of the

middle slice; (3) spatial normalization to Montreal Neurological Institute (MNI) space utilizing the

DARTEL approach (Ashburner, 2007) with a resampling of functional images to 1.5 mm isotropic res-

olution; (4) spatial smoothing using a Gaussian kernel of 6 mm full-width at half-maximum (FWHM).

First-level analysis
For the first-level analysis of fMRI data, a general linear model (GLM) was created for each subject

and drug condition, concatenated over all four blocks of the bandit task. For each trial in which a

bandit was chosen, two different time points were included in the model: trial onset and outcome
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presentation. GLM regressors for these time points were created by convolving these event onsets

(stick function of zero duration) with the canonical hemodynamic response function (HRF). Parametric

modulators for both onset regressors were included in the model: (1) the type of each choice

(1 = explore, 0 = exploit, see Daw et al., 2006) as a parametric modulator for the trial onset regres-

sor; (2) the reward prediction error and the outcome value as separate parametric modulators for

the outcome regressor. For trials in which no bandit was chosen, the model contained an additional

error regressor. Four sessions constants (not convolved with the HRF) were included in the model.

Low-frequency noise was removed by employing a temporal high-pass filter with a cut-off frequency

of 1/128 Hz, and a first order autoregressive model AR(1) was used to remove serial correlations.

Regressor-specific contrast images were created for each subject and drug condition for the five

regressors of interest: trial onset, outcome onset, choice type, prediction error, and outcome value.

In addition to the main GLM, two alternative GLMs were created. Both alternative GLMs only dif-

fered from the main GLM with respect to the regressors modeled at trial onset, while the remaining

regressors were the same. The second GLM included one trial onset regressor with two parametric

modulators: the expected value (�pre) and uncertainty (spre) of the chosen option (in that order), both

derived from the cognitive model as described in the results section. The third GLM included three

trial onset regressors: one for directed explorations (directed), one for random explorations (ran-

dom), and one for exploitations (exploit). These three choice types were defined according to the tri-

nary classification scheme as described in the results section.

Second-level analysis
Utilizing a second-level random effects analysis approach, the subject- and drug-specific contrast

images for each first-level regressor were submitted to a flexible factorial model in SPM12, including

the factors drug (three levels, within-subject), subject (31 levels), and a constant. For each contrast-

specific second-level analysis, a t-contrast image was created that tested for the main effect of that

specific contrast over all subjects and drug conditions, calculated by weighting each drug level by

one and each subject level by 3/31 (Gläscher and Gitelman, 2008). For the choice type regressor

(explore = 1, exploit = 0), t-contrast were computed twice, once with positive and once with nega-

tive weights to create t-contrast images for both comparisons explore > exploit and

exploit > explore. For the second GLM, t-contrasts for both parameteric modulators, that is

expected value and uncertainty, were included in the second-level random effects analysis. For the

third GLM, the second-level random effects analysis included the t-contrasts directed > exploit,

random > exploit, directed > random, and random > directed.

To test for DA drug effects across subjects, an F-contrast image was created for each contrast-

specific second-level analysis with the weights [1 -1 0; 0 1 -1] over the three drug levels [P D H] and

zero weights for all 31 subject levels (Henson and Penny, 2005).

In addition, a second-level regression analysis was conducted for each drug pair to test whether

DA drug effects on exploration-specific brain activity were linearly predicted by DA drug effects on

exploratory behavior. For this, the subject- and drug-specific contrast images for explore vs. exploit

were used to calculate the difference image of this contrast for a given drug pair (P-D, P-H, or D-H)

for each subject. These difference images entered a second-level regression analysis, including the

subject-specific drug differences of the exploration bonus parameter ’ posterior medians for the

same drug pair as explanatory variable. The same kind of regression analysis was also performed for

the contrasts of expected value and uncertainty of the second GLM, and directed vs. exploit and

random vs. exploit of the third GLM.

Post-hoc, a fourth first-level GLM was created for an additional exploratory analysis. This fourth

GLM differed from the main GLM only with respect to the parametric modulator of the trial onset

regressor, replacing the binary variable choice type (explore/exploit) by a continuous model-based

variable termed overall uncertainty Sspreð ), which is the summed uncertainty (spre) over all four ban-

dits. The contrast images for the overall uncertainty regressor were then used in a second-level ran-

dom effects analysis to test for drug differences in the parametric effects of this regressor across

subjects. Since this post-hoc analysis specifically focused on a comparison of the placebo and

L-dopa condition (based on the behavioral findings), the second-level model only included these two

drug conditions. Based on this model, different t-contrast images were created to test for the
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parametric effects of this regressor in the placebo condition alone, and for its differential parametric

effects between both drug conditions (placebo >L dopa, L-dopa >placebo).

For completeness, also a second-level analysis with all three drug conditions was performed to

test for the remaining pairwise drug effects accordingly (placebo > haloperidol,

haloperidol > placebo, L-dopa > haloperidol, haloperidol > placebo). Finally, also a second-level

regression analysis was performed for this regressor.

All fMRI results are reported at a threshold of p<0.05, FWE-corrected for the whole brain volume,

unless stated otherwise. In addition, results of the drug-effect related second-level ANOVAs and

associated regression analyses were also analyzed using small volume FWE correction (p<0.05) for

seven regions that have previously been associated with exploratory choices: the left/right FPC and

left/right IPS (Daw et al., 2006), as well as the dACC and left/right AI (Blanchard and Gershman,

2018). Regions used for small volume correction were defined by a 10 mm radius sphere around the

respective peak voxel reported by the previous studies (Appendix 1—table 5). For display pur-

poses, an uncorrected threshold of p<0.001 was used (unless stated otherwise), and activation maps

were overlaid on the mean structural scan of all participants.
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Peters J, Büchel C. 2010. Neural representations of subjective reward value. Behavioural Brain Research 213:
135–141. DOI: https://doi.org/10.1016/j.bbr.2010.04.031

Pine A, Shiner T, Seymour B, Dolan RJ. 2010. Dopamine, time, and impulsivity in humans. Journal of
Neuroscience 30:8888–8896. DOI: https://doi.org/10.1523/JNEUROSCI.6028-09.2010, PMID: 20592211

Pleger B, Ruff CC, Blankenburg F, Klöppel S, Driver J, Dolan RJ. 2009. Influence of dopaminergically mediated
reward on somatosensory decision-making. PLOS Biology 7:e1000164. DOI: https://doi.org/10.1371/journal.
pbio.1000164, PMID: 19636360

Preuschoff K, Bossaerts P, Quartz SR. 2006. Neural differentiation of expected reward and risk in human
subcortical structures. Neuron 51:381–390. DOI: https://doi.org/10.1016/j.neuron.2006.06.024

Preuschoff K, Quartz SR, Bossaerts P. 2008. Human insula activation reflects risk prediction errors as well as risk.
Journal of Neuroscience 28:2745–2752. DOI: https://doi.org/10.1523/JNEUROSCI.4286-07.2008

R Development Core Team. 2017. R: A Language and Environment for Statistical Computing. Vienna, Austria, R
Foundation for Statistical Computing. http://www.r-project.org

Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. 2001. A default mode of brain
function. PNAS 98:676–682. DOI: https://doi.org/10.1073/pnas.98.2.676, PMID: 11209064

Raja Beharelle A, Polanı́a R, Hare TA, Ruff CC. 2015. Transcranial stimulation over frontopolar cortex elucidates
the choice attributes and neural mechanisms used to resolve Exploration-Exploitation Trade-Offs. Journal of
Neuroscience 35:14544–14556. DOI: https://doi.org/10.1523/JNEUROSCI.2322-15.2015, PMID: 26511245

Redick TS, Broadway JM, Meier ME, Kuriakose PS, Unsworth N, Kane MJ, Engle RW. 2012. Measuring working
memory capacity with automated complex span tasks. European Journal of Psychological Assessment 28:164–
171. DOI: https://doi.org/10.1027/1015-5759/a000123

Rescorla RA, Wagner AR. 1972. A theory of Pavlovian conditioning: Variations in the effectiveness of
reinforcement and nonreinforcement. In: Black AH, Prokasy WF (Eds). Classical Conditioning II: Current
Research and Theory. Appleton-Century-Crofts. p. 64–99.

Robbins H. 1952. Some aspects of the sequential design of experiments. Bulletin of the American Mathematical
Society 58:527–536. DOI: https://doi.org/10.1090/S0002-9904-1952-09620-8

Rushworth MF, Behrens TE. 2008. Choice, uncertainty and value in prefrontal and cingulate cortex. Nature
Neuroscience 11:389–397. DOI: https://doi.org/10.1038/nn2066, PMID: 18368045

Rutledge RB, Lazzaro SC, Lau B, Myers CE, Gluck MA, Glimcher PW. 2009. Dopaminergic drugs modulate
learning rates and perseveration in Parkinson’s patients in a dynamic foraging task. Journal of Neuroscience 29:
15104–15114. DOI: https://doi.org/10.1523/JNEUROSCI.3524-09.2009, PMID: 19955362

Schmitz Y, Benoit-Marand M, Gonon F, Sulzer D. 2003. Presynaptic regulation of dopaminergic
neurotransmission. Journal of Neurochemistry 87:273–289. DOI: https://doi.org/10.1046/j.1471-4159.2003.
02050.x, PMID: 14511105

Schönberg T, Daw ND, Joel D, O’Doherty JP. 2007. Reinforcement learning signals in the human striatum
distinguish learners from nonlearners during reward-based decision making. Journal of Neuroscience 27:
12860–12867. DOI: https://doi.org/10.1523/JNEUROSCI.2496-07.2007, PMID: 18032658

Schrantee A, Reneman L. 2014. Pharmacological imaging as a tool to visualise dopaminergic neurotoxicity.
Neuropharmacology 84:159–169. DOI: https://doi.org/10.1016/j.neuropharm.2013.06.029, PMID: 23851258

Schultz W, Dayan P, Montague PR. 1997. A neural substrate of prediction and reward. Science 275:1593–1599.
DOI: https://doi.org/10.1126/science.275.5306.1593, PMID: 9054347

Schultz W, Preuschoff K, Camerer C, Hsu M, Fiorillo CD, Tobler PN, Bossaerts P. 2008. Explicit neural signals
reflecting reward uncertainty. Philosophical Transactions of the Royal Society B: Biological Sciences 363:3801–
3811. DOI: https://doi.org/10.1098/rstb.2008.0152

Schultz W. 2010. Dopamine signals for reward value and risk: basic and recent data. Behavioral and Brain
Functions 6:24. DOI: https://doi.org/10.1186/1744-9081-6-24, PMID: 20416052

Schultz W. 2016. Dopamine reward prediction error coding. Dialogues in Clinical Neuroscience 18:23–32.
PMID: 27069377

Sescousse G, Ligneul R, van Holst RJ, Janssen LK, de Boer F, Janssen M, Berry AS, Jagust WJ, Cools R. 2018.
Spontaneous eye blink rate and dopamine synthesis capacity: preliminary evidence for an absence of positive
correlation. European Journal of Neuroscience 47:1081–1086. DOI: https://doi.org/10.1111/ejn.13895, PMID: 2
9514419

Shenhav A, Botvinick MM, Cohen JD. 2013. The expected value of control: an integrative theory of anterior
cingulate cortex function. Neuron 79:217–240. DOI: https://doi.org/10.1016/j.neuron.2013.07.007, PMID: 23
889930

Simpson EH, Kellendonk C, Kandel E. 2010. A possible role for the striatum in the pathogenesis of the cognitive
symptoms of schizophrenia. Neuron 65:585–596. DOI: https://doi.org/10.1016/j.neuron.2010.02.014,
PMID: 20223196

Singer T, Critchley HD, Preuschoff K. 2009. A common role of insula in feelings, empathy and uncertainty. Trends
in Cognitive Sciences 13:334–340. DOI: https://doi.org/10.1016/j.tics.2009.05.001, PMID: 19643659

Chakroun et al. eLife 2020;9:e51260. DOI: https://doi.org/10.7554/eLife.51260 29 of 44

Research article Neuroscience

https://doi.org/10.1016/j.cub.2009.07.048
https://doi.org/10.1016/j.cub.2009.07.048
http://www.ncbi.nlm.nih.gov/pubmed/19733074
https://doi.org/10.1038/nature05051
https://doi.org/10.1038/nature05051
http://www.ncbi.nlm.nih.gov/pubmed/16929307
https://doi.org/10.1016/j.bbr.2010.04.031
https://doi.org/10.1523/JNEUROSCI.6028-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20592211
https://doi.org/10.1371/journal.pbio.1000164
https://doi.org/10.1371/journal.pbio.1000164
http://www.ncbi.nlm.nih.gov/pubmed/19636360
https://doi.org/10.1016/j.neuron.2006.06.024
https://doi.org/10.1523/JNEUROSCI.4286-07.2008
http://www.r-project.org
https://doi.org/10.1073/pnas.98.2.676
http://www.ncbi.nlm.nih.gov/pubmed/11209064
https://doi.org/10.1523/JNEUROSCI.2322-15.2015
http://www.ncbi.nlm.nih.gov/pubmed/26511245
https://doi.org/10.1027/1015-5759/a000123
https://doi.org/10.1090/S0002-9904-1952-09620-8
https://doi.org/10.1038/nn2066
http://www.ncbi.nlm.nih.gov/pubmed/18368045
https://doi.org/10.1523/JNEUROSCI.3524-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19955362
https://doi.org/10.1046/j.1471-4159.2003.02050.x
https://doi.org/10.1046/j.1471-4159.2003.02050.x
http://www.ncbi.nlm.nih.gov/pubmed/14511105
https://doi.org/10.1523/JNEUROSCI.2496-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/18032658
https://doi.org/10.1016/j.neuropharm.2013.06.029
http://www.ncbi.nlm.nih.gov/pubmed/23851258
https://doi.org/10.1126/science.275.5306.1593
http://www.ncbi.nlm.nih.gov/pubmed/9054347
https://doi.org/10.1098/rstb.2008.0152
https://doi.org/10.1186/1744-9081-6-24
http://www.ncbi.nlm.nih.gov/pubmed/20416052
http://www.ncbi.nlm.nih.gov/pubmed/27069377
https://doi.org/10.1111/ejn.13895
http://www.ncbi.nlm.nih.gov/pubmed/29514419
http://www.ncbi.nlm.nih.gov/pubmed/29514419
https://doi.org/10.1016/j.neuron.2013.07.007
http://www.ncbi.nlm.nih.gov/pubmed/23889930
http://www.ncbi.nlm.nih.gov/pubmed/23889930
https://doi.org/10.1016/j.neuron.2010.02.014
http://www.ncbi.nlm.nih.gov/pubmed/20223196
https://doi.org/10.1016/j.tics.2009.05.001
http://www.ncbi.nlm.nih.gov/pubmed/19643659
https://doi.org/10.7554/eLife.51260


Slagter HA, Tomer R, Christian BT, Fox AS, Colzato LS, King CR, Murali D, Davidson RJ. 2012. PET evidence for
a role for striatal dopamine in the attentional blink: functional implications. Journal of Cognitive Neuroscience
24:1932–1940. DOI: https://doi.org/10.1162/jocn_a_00255, PMID: 22663253

Speekenbrink M, Konstantinidis E. 2015. Uncertainty and exploration in a restless bandit problem. Topics in
Cognitive Science 7:351–367. DOI: https://doi.org/10.1111/tops.12145, PMID: 25899069

Stan Development Team. 2017. RStan: the R interface to Stan. R Package. 2.19.3. http://mc-stan.org/
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Appendix 1

Introduction
To examine potential individual differences in dopaminergic drug effects we also collected

putative proxy measures of DA function, namely spontaneous eye blink-rate (sEBR)

(Jongkees and Colzato, 2016) and working memory capacity (WMC) (Cools and D’Esposito,

2011) in a separate ‘baseline-session’. We predicted that explore/exploit behavior and their

drug-related changes would be modulated by the individual DA baseline, as indexed by our

DA proxy measures, according to an inverted-u-shaped function (Cools and D’Esposito,

2011; Cavanagh et al., 2014).

Results

Accounting for perseveration boosts estimates of directed
exploration
If perseveration is not explicitly accounted for, variance attributable to perseveration might

influence the directed exploration parameter () in the form of an uncertainty-avoiding choice

bias (Badre et al., 2012; Payzan-Lenestour and Bossaerts, 2012). Following up on this, we

compared j estimates for the placebo condition between the winning Bayesian learning

model and the reduced model without a perseveration term. Subject-level medians for were

highly correlated between models (r29=.90, p<.001), but were significantly higher for the

model including a perseveration term than for the reduced model (mean difference=0.79,

paired t-test: t30=7.97, p<.001). This was also true for the corresponding group-level mean

parameter of (full model: 0.95; reduced model: 0.16). The number of subjects who showed a

negative median, reflecting a discouragement rather than an encouragement of directed

exploration was also reduced (full model 6/31; reduced model 13/31). Together, this shows

that explicitly accounting for perseveration improved sensitivity to detect effects of directed

exploration.

Correspondence between model parameters and fraction of
random exploration, directed exploration and exploitation trials
To verify the correspondence between the trinary trial classification (random exploration,

directed exploration, exploitation) and the computational modeling, we used Pearson

correlations to test for associations between the model parameters (subject-level medians of

b, f, r) and the percentage of the three choice types. To increase the sample size for this

correlation, we combined data from the placebo condition (n=31) with data from a prior pilot

study using the same task (n=16). With the original binary classification (Daw et al., 2006), the

percentage of exploration trials per subject was negatively correlated with the random

exploration parameter b, but positively correlated with the directed exploration parameter

(Appendix 1—table 1). However, with the trinary classification, only the percentage of

random explorations correlated with b, whereas directed explorations were significantly

associated with (Appendix 1—table 1), indicating that both parameters indeed reflect

different types of exploration.

Appendix 1—table 1. Correspondence between model parameters and fraction of random

exploration, directed exploration and exploitation trials.

% explorations b f r

overall -.65*** .30* 0.18

random -.68*** 0.09 -.22

directed 0.28 .64*** 0.09
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Note that overall explorations were defined according to the binary choice classification, while

directed and random explorations were defined according to the trinary choice classification. �:

RE parameter; ’: DE parameter; �: CP parameter. *p<0.05. ***p<0.001.

We checked for drug-related changes on several control variables in addition to the results

reported in the main section. The first set of control variables was measured during the post-

fMRI testing and included the spontaneous eye blink rate (sEBR), the total scores of the Digit

Span Task (forward and backward), and 15 attentional performance measures from the Tests

of Attentional Performance (TAP). To test for DA drug effects, a rmANOVA with the factor

drug was performed on each of these 18 control variables. None of these 18 variables

showed a significant drug effect in the ANOVA (all p>0.05).

A second set of control variables was measured at different time points throughout each

fMRI session and comprised six variables on subjective mood (alertness, contentedness,

calmness, pleasure, arousal, and dominance) and four variables on physical wellbeing (pulse,

systolic and diastolic blood pressure, and the side effects sum score). To test for drug effects

on these variables, their scores at three different time points after drug administration (t1, t2,

t3) were subtracted by their baseline score before drug administration (t0) for each drug

condition. A rmANOVA with the factor drug on each of these difference scores (t1-t0, t2-t0,

t3-t0) showed no significant drug effect for any of the physical wellbeing parameters (all

p>0.05). However, a significant drug effect (F2,60=4.46, p=0.016) was found for one of the

difference scores (t3-t0) on the subscale ‘calmness’ of the VAS (Bond and Lader, 1974).

Paired t-tests on this variable revealed a significant increase under haloperidol compared to

placebo (mean difference P-H = �0.67, t30 = �2.05, p=0.049) and L-dopa (mean difference

D-H = �0.85, t30 = �2.99, p=0.005), but no significant difference between placebo and

L-dopa (mean difference P-D = 0.18, t30 = 0.61, p=0.544). Although, with correction for

multiple comparisons (in total n = 42 tests), the effects no longer remained significant.

Beyond, to test whether subjects were actually blind to the drug condition, their drug

guesses after each session were examined. Over all subjects and drug sessions, 30 of the 93

guesses (32.3%) were correct, which is in line with the number of correct guesses expected

by chance (31, that is 33.3%). To rule out that some subjects performed above chance (i.e.

recognized all drug conditions) and others below, the number of correct guesses per subject

was calculated, resulting in the following frequency distribution: 25.8% (0 correct guesses),

51.6% (1 correct guess), 22.6% (2 correct guesses), 0.0% (3 correct guesses). A chi-squared

test revealed no significant difference to random guessing (29.6% (0 correct guesses), 44.4%

(1 correct guess), 22.2% (2 correct guesses), 3.7% (3 correct guesses); c2=1.66, p=0.634; with

Monte Carlo approximation). Finally, a chi-squared test showed that the frequencies of drug

guesses did not significantly differ between the three drug conditions (c24=0.36, p=0.986).

Taken together, the results of all three analyses indicate that the observed data are in

accordance with random guessing.

Drug effects on the posterior distributions of the single-subject
and group-level model parameters
In addition to the results reported in the main results section, we here show the drug-specific

posterior distributions of the group-level standard deviations of all free model parameters

(b; ’; �; Appendix 1—figure 1a and Appendix 1—table 2), the pairwise drug-related

differences of the group-level mean and standard deviation of ’ (Appendix 1—figure 1b, c),

and the posterior distributions of the single-subject model parameter ’ (Appendix 1—figure

2). The drug-related differences of the group-level mean and standard deviation for

parameter ’ are also depicted in Appendix 1—table 2.
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Appendix 1—figure 1. Group-level parameter estimates of the winning model . Shown are

the posterior distributions of the (a) group-level standard deviation (L) for all choice

parameters (b; ’; �Þ of the winning model, separately for each drug condition, and (b) of the

pairwise drug-related differences of the group-level mean (M) and (c) standard deviation (L)

of . For each posterior distribution, the plot shows the median (vertical black line), the 80%

central interval (blue/grey area), and the 95% central interval (black contours). b: softmax

parameter; ’: exploration bonus parameter; �: perseveration bonus parameter.

Appendix 1—table 2. Drug effects on the exploration bonus parameter (’) on the group-

level.

M’ L’

% above 0 90% HDI % above 0 90% HDI

placebo - L-dopa 97.5 [0.05, 0.69] 47.5 [�0.18, 0.16]

placebo - haloperidol 49.3 [�0.30, 0.27] 90.0 [�0.04, 0.29]

L-dopa - haloperidol 1.7 [�0.70,–0.10] 90.8 [�0.02, 0.31]

Note: Results refer to the posterior drug differences of the group-level mean (M’) and standard

deviation (L’) for the ’ parameter of the winning model. For each posterior difference, the table

shows the percentage of samples with values above zero (column: % above 0) and the 90%

highest density interval (column: 90%HDI).

In line with the attenuated standard deviation of the group-level ’ medians, haloperidol

reduced the variability of the subject-level ’ medians (range=[-0.43, 2.33]; SD=0.64)

compared to placebo (range=[-0.95, 2.48]; SD=0.85) and L-dopa (range=[-1.77, 2.00];

SD=0.85). Visual inspection suggested that haloperidol increased ’ for subjects with a

relatively low value under placebo and decreased ’ for subjects with a relatively high

’ value under placebo (Appendix 1—figure 2). We observed similar results in an additional

analysis of drug-effects on the percentage of exploitation and exploration trials (overall,

random and directed) per subject (see section below). We found no evidence for drug

effects on model-free measures of choice behavior (see section below).
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Appendix 1—figure 2. Drug effects for the subject-level parameter estimates of the directed

exploration parameter ’. Shown are posterior distributions of the subject-level parameter ’

from the best-fitting Bayesian model, separately for each drug condition. Each plot shows

the median (black dot), the 80% central interval (blue area), and the 95% central interval

(black contours). For the L-dopa and haloperidol conditions, posterior distributions (in blue)

are overlaid on the posterior distributions of the placebo condition (in white) for better

comparison.

No evidence for the inverted-u-shape dopamine hypothesis
According to the inverted-U-shaped DA hypotheses (Cools and D’Esposito, 2011), we

predicted participants’ individual DA baseline to modulate explore/exploit behavior in a

quadratic fashion and to linearly predict the strength and direction of drug-related effects.

As potential proxies for subjects’ DA baseline, we assessed spontaneous eye blink rate

(sEBR; Jongkees and Colzato, 2016) and working memory capacity (WMC) via three

working memory tasks (Operation/Rotation/Listening SPAN) (Cools and D’Esposito, 2011;

Kane et al., 2004; Unsworth et al., 2009; Redick et al., 2012). Scores on the first

component of a principal component analysis (PCA) (explaining 56.6% of the shared

variance) over the z-transformed working memory task scores were used as a working

memory compound score (WMCPCA). We then used regression to test for linear and

quadratic associations between each of the posterior medians of the subject-level model

parameters (b, ’, �, Appendix 1—figure 3) and the two DA baseline measures (sEBR,

WMCPCA).
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Appendix 1—figure 3. Test for an inverted-U relationship between DA baseline proxy meas-

ures (spontaneous eye blink rate (sEBR) & working memory capacity (WMCPCA)) and the poste-

rior medians of the three choice parameters (b; ’; �) of the winning (Bayes-SMEP) model.

Model parameters: b: softmax parameter; ’: exploration bonus parameter; �: perseveration

bonus parameter.

Models with and without quadratic terms were compared for each proxy measure via

LOO cross-validation. In all cases, the fit of the model that included a quadratic term was

poorer, and none of the quadratic terms were significant (all p>.05; see Appendix 1—table

3 for details). We also found no evidence for a linear association between drug-related

differences of subject-level model parameters (b, ’, �) and DA baseline measures with the

help of linear regression models (p>.05 for all regression slopes; Appendix 1—table 4).

In addition to the analyses of model-based variables, we also assessed whether drug-

associated differences in model-free choice variables were predicted by the individual DA

baseline. To increase sample size for this analysis, data from the placebo condition (n = 31)

and a pilot study (n = 16) were combined, resulting in a sample of 47 subjects. In summary,

we found no evidence for an inverted-U-shaped association of choice behavior and DA proxy

measures (Appendix 1—table 3 and Appendix 1—figure 4).

Appendix 1—table 3. Test for an inverted-U relationship between choice behavior and DA

baseline.

LooLM - LooQM ß2 estimate ß2p-value

sEBR WMC sEBR WMC sEBR WMC

model-based:

b �0.06 �0.04 �2.09e�04 2.98e�04 .132 .949

’ �3.60 �2.57 �1.13e�03 1.27e�02 .470 .809

� �53.09 �49.68 1.69e�03 1.20e�01 .869 .726

model-free:

payout �0.95 �1.05 �6.04e�04 1.37e�02 .582 .710

%bestbandit 198.06 �245.78 �2.45e�02 7.40e�02 .149 .897

meanrank 0.06 �0.10 �5.29e�04 �3.45e�03 .080 .733

%switches �484.04 �700.67 �2.09e�04 6.58e�01 .222 .509
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Note. Choice behavior was assessed by the three choice parameters of the winning (Bayes-SM+E

+P) model (upper part) and four model-free choice variables (lower part). Baseline dopamine

(DA) function was assessed by the two behavioral DA proxies spontaneous eye blink rate (sEBR)

and working memory capacity (WMC). For the latter, the first principal component across three

different WMC tasks was used, denoted by WMCPCA. The column “LOOLM-LOOQM” denotes the

difference of the squared distances for the linear model (LM) minus the quadratic model (QM)

from the leave-one-out (LOO) model comparison. Note that negative values for LOOLM - LOOQM

indicate better predictive accuracy of the LM. The columns “�2 estimate” and “�2 p-value” show

for each quadratic model the estimated value and p-value of the �2 regression coefficient,

respectively. Note that data from a pilot study (n=16) and the placebo condition of the main

study were combined for this analysis to increase the sample size to n=47. b: softmax parameter;

’: exploration bonus parameter; �: perseveration bonus parameter.

Appendix 1—table 4. Test for a linear relationship between drug-related effects on model-

parameters and DA baseline.

R2 ß1 estimate ß1p-value

sEBR WMC sEBR WMC sEBR WMC

b (P-D) 2.13e�5 1.52e�3 4.75e�05 2.25e�03 .98 .84

’ (P-D) 1.87e�2 4.25e�2 1.40e�02 �1.19e�01 .46 .27

� (P-D) 5.91e-3 2.42e-3 �4.89e�03 �1.76e�01 .68 .79

b (P-H) 2.47e�2 2.93e�2 1.64e�03 1.01e�02 .40 .36

’ (P-H) 9.58e�3 3.36e�2 �1.01e�02 �1.06e�01 .60 .32

� (P-H) 4.61e�2 1.18e�2 �9.01e�03 �2.57e�01 .25 .56

b (D-H) 1.57e�3 7.83e�3 1.57e�03 7.83e�03 .43 .49

’ (D-H) 1.02e�3 2.95e�4 �3.93e�03 1.20e�02 .86 .93

� (D-H) 4.11e-3 5.69e-4 �4.07e�02 �8.54e�02 .73 .90

Note. Drug-related differences (P: placebo, D: L-dopa, H: haloperidol) of model parameters for

all participants (n = 31). Baseline dopamine (DA) function was assessed by the two behavioral DA

proxies spontaneous eye blink rate (sEBR) and working memory capacity (WMC). For the latter,

the first principal component across three different WMC tasks was used, denoted by WMCPCA.

The column ‘R2’ denotes the R2-values of the linear regressions. The columns ‘�1 estimate’ and

‘�1 p-value’ show for each linear model the estimated value and p-value of the �1 regression

coefficient, respectively. �: softmax parameter; ’: exploration bonus parameter; �: perseveration

bonus parameter
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Appendix 1—figure 4. Test for an inverted-U relationship between choice behavior and DA

baseline. Choice behavior was assessed by four model-free choice variables (payout, %

bestbandit, meanrank, %switches). DA baseline function was assessed by the two DA proxies

spontaneous eyeblink rate (sEBR) and working memory capacity (WMC). For the latter, the

first principal component across three different WMC tasks was used, denoted by WMCPCA.

Each plot shows two regression lines that were fitted to the data, one for the “linear model”

(red line) and one for the “quadratic model” (blue line). Note that data from a pilot study

and the placebo condition of the main study were combined for this analysis to increase the

sample size to n=47. b: softmax parameter; ’: exploration bonus parameter; �: perseveration

bonus parameter.

Appendix 1—table 5. Regions used for small volume correction.

region of peak voxel (mm) reference for

small volume correction x y z peak voxel

rFPC (right frontopolar cortex) 27 57 6 Daw et al., 2006

lFPC (left frontopolar cortex) �27 48 4 Daw et al., 2006

rIPS (right intraparietal sulcus) 39 �36 42 Daw et al., 2006

lIPS (left intrapareital sulcus) �29 �33 45 Daw et al., 2006

rAIns (right anterior insula) 32 22 -8 Blanchard and Gershman, 2018

lAIns (left anterior insula) �30 16 -8 Blanchard and Gershman, 2018

dACC (dorsal anterior cingulate cortex) 8 16 46 Blanchard and Gershman, 2018

Note: Each small volume correction used a 10-mm-radius sphere around the listed voxel

coordinates, which mark brain regions that have previously been associated with exploratory

choices.

The center coordinates of the 10 mm spheres used for the regions of interest analysis are

reported below (Appendix 1—table 5).

Appendix 1—table 6 and Appendix 1—figure 5a depict the brain regions that showed

higher activity in exploratory compared with exploitative choices as revealed by the first

GLM. In Appendix 1—table 7 and Appendix 1—figure 5b the opposite contrast is

depicted.
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Appendix 1—figure 5. Brain regions differentially activated by exploratory and exploitative

choices. Shown are statistical parametric maps (SPMs) for (a) the contrast explore > exploit

and (b) the contrast exploit > explore over all drug conditions. AG: angular gyrus; AI:

anterior insula; Cb: cerebellum; dACC: dorsal anterior cingulate cortex; FPC: frontopolar

cortex; HC: hippocampus; IPS: intraparietal sulcus; vmPFC: ventromedial prefrontal cortex;
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OFC: orbitofrontal cortex; PCC: posterior cingulate cortex; SMA: supplementary motor area;

T: thalamus. For visualization purposes thresholded at p<0.001, uncorrected. R: right.

Appendix 1—table 6. Brain regions showing higher activity for exploratory than exploitative

choices (first GLM).

Region
MNI
coordinates peak cluster

x y z
z-
value

extent
(k)

R/L intraparietal sulcus, R/L postcentral gyrus, R/L precuneus, L
precentral gyrus

�48 �33 52 10.45 15606

R precentral gyrus 26 -8 50 9.32 2297

R/L supplementary motor cortex,
R/L dorsal anterior cingulate cortex

8 12 45 8.47 2552

R cerebellum/fusiform gyrus 18 �51 �22 8.09 2574

R middle frontal gyrus (FPC) 39 34 28 7.56 1291

R cerebellum 24 �57 �54 7.35 128

L precentral gyrus �51 0 34 7.31 430

L cerebellum, L fusiform gyrus �40 �54 �32 7.28 1419

L thalamus �10 �20 6 6.96 556

R/L calcarine cortex -8 �74 14 6.90 1222

R anterior insula 36 20 3 6.87 511

L anterior insula �36 15 3 6.69 557

R precentral gyrus 51 8 24 6.49 434

R thalamus 10 �18 8 6.32 331

R cerebellum 30 �44 �48 6.24 28

L middle frontal gyrus (FPC) �42 27 27 6.07 97

R cerebellum 14 �62 �45 5.88 61

R pallidum 15 6 -4 5.83 25

R calcarine cortex 9 �94 6 5.74 104

vermis 3 �75 �34 5.70 52

R supramarginal gyrus 51 �42 28 5.69 46

L middle frontal gyrus (FPC) �30 46 15 5.67 47

L pallidum �10 6 -4 5.64 51

R anterior orbital gyrus 24 54 -9 5.60 33

L posterior cingulate cortex -3 �32 26 5.51 21

L caudate nucleus �16 �14 18 5.33 28

R caudate nucleus 12 -8 16 5.24 16

L lingual gyrus �16 �84 �12 5.21 10

R anterior cingulate cortex 10 27 21 5.13 10

Note: Thresholded at p<0.05, FWE-corrected for whole-brain volume, with k � 10 voxels; L: left;

R: right.

Appendix 1—table 7. Brain regions showing higher activity for exploitative than exploratory

choices (first GLM).
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Region MNI coordinates peak cluster

x y z z-value extent (k)

L angular gyrus �42 �74 34 8.04 2530

L posterior cingulate cortex/precuneus -6 �52 15 7.40 1087

R angular gyrus 52 �68 28 7.02 185

R postcentral gyrus 33 �26 54 6.80 503

R cerebellum 27 �78 �38 6.28 452

R rostral anterior cingulate cortex 4 18 �14 5.90 125

L superior temporal gyrus �62 �36 3 5.89 70

L lateral orbital gyrus �38 34 �14 5.81 102

R central operculum 45 �14 20 5.73 83

L middle temporal gyrus �62 -4 �22 5.67 193

R/L medial frontal cortex (vmPFC) -2 40 �10 5.67 233

L superior frontal gyrus �10 54 30 5.54 20

L superior frontal gyrus �10 51 36 5.45 10

L middle temporal gyrus �60 �51 -2 5.38 61

R superior temporal gyrus 52 �12 -9 5.35 25

R middle temporal gyrus 62 4 �21 5.30 10

L rostral anterior cingulate cortex -6 46 4 5.17 13

L inferior frontal gyrus �50 27 2 5.16 20

Note: Thresholded at p<0.05, FWE-corrected for whole-brain volume, with k � 10 voxels; L: left;

R: right

In addition to the contrast directed > random exploration trials, we tested for the reverse

contrast (random > directed exploration). This yielded a small cluster of three voxels in the

right FPC (32, 50,–8 mm; z = 5.34) across conditions. However, the number of trials was

highly unequal for both exploration types with on average three times more random than

directed exploration trials per session. After exclusion of all sessions with � 5 trials in the

directed exploration condition (8 out of 93 sessions), the frontopolar cluster was no longer

significant at the whole-brain level. In line, overlaying activation maps for directed, random,

and overall explorations (each contrasted against exploitation) showed a highly similar

activation pattern for all three exploration conditions (Appendix 1—figure 6) that in each

case included the same network (bilateral FPC, IPS, dACC, AI, and thalamus).

Appendix 1—figure 6. Brain activation patterns for different types of explorations . Shown are

pairwise overlays of the statistical parametric maps for the contrasts explore > exploit

(‘overall’ in green), directed > exploit (‘directed’ in red), and random > exploit (‘random’ in

blue) over all drug conditions. While the first contrast is based on a binary choice

classification according to which all choices not following the highest expected value are
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explorations, the other two contrast are based on a trinary choice classification, which further

subdivides explorations into choices following the highest exploration bonus (directed) and

choices not following the highest exploration bonus (random). All activation maps

thresholded at p<0.05, uncorrected for display purposes. R: right.

Neural activation in response to model-based prediction errors
(PEs)
The model-based PE was positively correlated with activity in bilateral ventral striatum (left:

�16, 6,–12 mm; z = 6.40; right: 16, 9, 10 mm; z = 6.20), as shown in Appendix 1—figure 7.

Appendix 1—figure 7. Striatal coding of the model-based prediction error (PE). Activity in the

bilateral ventral striatum correlated positively with the PE signal. For visualization purposes

thresholded at p<0.001, uncorrected. R: right.

No further drug-related neural activation differences
In addition to the fMRI analyses described in the manuscript, we computed exploratory

rmANOVAs for the four remaining regressors of the first GLM (trial onset, reward onset, PE,

and outcome value), to explore other drug-related effects on brain activation. These analyses

also revealed no suprathreshold activations on the whole-brain level. DA drug effects on

directed exploration (’) showed considerable variability between subjects both in terms of

magnitude and direction (Appendix 1—figure 2). Therefore, we also performed second-

level regression analyses for each drug pair, testing whether drug effects on exploration

specific brain activity (first/second GLM contrasts for explorevs.exploit, directed vs.exploit,

and randomvs.exploit) were linearly predicted by the drug effects on exploratory behavior

(drug related differences of the subject-specific ’ medians). However, none of these analyses

revealed any suprathreshold effects on the whole brain level, nor in any of the seven a priori

ROIs.

Methods

Computational modeling (delta rule)
Choice behavior in the four-armed bandit task was modeled using the combination of two

different learning rules (Delta learning rule, Bayesian learner), and four choice rules (softmax,

softmax + exploration bonus, softmax + exploration bonus + exploitation bonus, softmax +

exploration bonus + exploitation bonus + uncertainty-based random exploration bonus) that

resulted in eight different computational models of explore/exploit choice behavior. Here,

the architecture of the delta learning rule (Sutton and Barto, 1998) which is an established

temporal difference model of reinforcement learning is outlined.

According to this rule, subjects update the expected reward value (v) of a chosen bandit

based on their prediction error (d), that is the difference between the actual reward (r) and

the expected reward for that trial:

vct;tþ1 ¼ vct;tþadtwithdt ¼ rt �vct;t
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Herein, the indices t and tþ1 denote the current and the next trial, respectively, and ct the

index of the bandit chosen on trial t. The parameter a denotes the learning rate, which is a

free parameter in this model ranging between 0 and 1. The learning rate determines the

fraction of the prediction error that is used for updating. In contrast, the expected rewards of

all unchosen bandits are not changed from one trial to the next, that is they remain constant

until that bandit is chosen again. This trial-by-trial updating was initialized for each bandit

with the same expected reward value v1 = 50.

Next, three different choice rules were used to model subjects’ choices based on their

expected rewards derived from either the Delta rule or the Bayesian learner rule. All choice

rules were based on the commonly applied softmax function (Sutton and Barto, 1998;

McFadden, 1974). The first model was the softmax function (SM) in its basic form without

any bonus term. According to this rule, choices are probabilistically based on the relative

expected reward values of each choice option. The softmax b parameter, also called inverse

temperature, reflects the degree of randomness (random exploration) in a subject’s

decisions. The second choice rule was a modified version of the softmax function called

“softmax with exploration bonus” (SM+E), adopted from Daw et al., 2006. This model adds

an additional “exploration bonus” to the expected value of each bandit, which increased

with the uncertainty of a bandit’s outcome. Within the Delta learning rule models, this was

accomplished with a simple heuristic adopted from Speekenbrink and Konstantinidis,

2015. According to that heuristic, a bandit’s uncertainty increases linearly with the number of

trials since it was last chosen. This is formalized as t � Tið Þ, where Ti is the last trial before the

current trial t in which bandit i was chosen. The third choice rule was a novel extension of

the second choice model called “softmax with exploration and perseveration bonus” (SM+E

+P). This version of the softmax rule includes an extra perseveration bonus, in the form of a

constant value (free parameter) only added to the expected value of the bandit chosen in the

previous trial, but not for all other bandits. Choice rule 4 (SM+E+R+P) further extended

choice rule 3 by adding a random exploration term that is discounted by the estimated total

(i.e. summed) uncertainty of all bandits (Gershman, 2018; Thompson, 1933). This shall

capture the recent observation that choice randomness may increase with increasing overall

uncertainty (Gershman and Tzovaras, 2018).

In analogy to the Bayseian models (see Materials and methods section of the main article),

the four resulting models utilizing the Delta learning rule read as follows:

Choicerule1 ðSMÞ : Pi;t ¼
expðbvi;tÞ

P

j expðbvj;tÞ

Choicerule2 ðSMþEÞ : Pi;t ¼
expðb½vi;tþ ’ðt�TiÞ�Þ

P

j expðb½vj;tþ ’ðt�TjÞ�Þ

Choicerule3 ðSMþEþPÞ : Pi;t ¼
expðb½vi;tþ ’ðt�TiÞþ Ict�1¼i

��Þ
P

j expðb½vi;tþ ’ðt�TiÞþ Ict�1¼j
��Þ

Choicerule4 ðSMþEþRþPÞ : Pi;t ¼
expðb½vi;t þ ’ðt�TiÞþ Ict�1¼i

� þ g
vi;t

Sðt�TiÞ
�Þ

P

j expðb½�̂
pre
j;t þ’ŝpre

j;t þIct�1¼j
� þ g

vi;t
Sðt�TiÞ

�Þ
:

Herein, Pi;t denotes the probability to choose bandit i on trial t, and
P

j indicates a

summation over all four bandits; ’ denotes the exploration bonus parameter, which reflects

the degree to which choices are influenced by the uncertainty associated with each bandit, �

denotes the perseveration bonus parameter, I an indicator function that equals 1 for the

bandit that was chosen in the previous trial (indexed by ct�1) and 0 for all other bandits, and

g denotes the uncertainty-based random exploration bonus.
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Fixed parameters (Bayesian learner)
For all Bayes learner models, the six parameters specifying subjects’ estimation of the

Gaussian random walk (l̂; #̂; ŝ2

0
; ŝ2

d; �̂
pre
1
; ŝpre

1
) (‘random walk parameters’) were fixed to

constrain parameter space for these models, which largely facilitated estimation of the

remaining choice parameters. Also, some of the Bayes learner models did actually not

converge with free random walk parameters, thus fixing these parameters was necessary in

order to include all six cognitive models in the model comparison. In detail, the parameters

l, #, s2

o, and s
2

d were fixed to the values of the true underlying random walk parameters (see

Materials and methods section of the main article). The parameters �pre
1

and s
pre
1
, specifying

the mean and standard deviation of subjects’ prior reward expectation for each bandit in the

first trial, were fixed to �pre
1
=50 and s

pre
1
=4. Note that while these latter parameter values,

which reflect reward expectancies on trial one, were chosen somewhat arbitrarily, they only

influence modeled choice behavior on the first few trials and thus have low impact on the

overall model fit (see Daw et al., 2006).

Discussion

Perseveration boosts model fit
It has been argued before that perseveration, that is, repeating choices regardless of value

(Rutledge et al., 2009; Schönberg et al., 2007; Brough et al., 2008; Worthy et al., 2013)

can negatively impact estimates of directed exploration (Payzan-Lenestour and Bossaerts,

2012; Wilson et al., 2014; Daw et al., 2006; Badre et al., 2012), leading to smaller or even

negative exploration bonus effects. To address this issue, we included a perseveration term

in the exploration bonus model (Daw et al., 2006). This not only improved model fit, but

also substantially increased estimates of directed exploration and reduced the number of

subjects showing a negative ’ estimate.

No evidence for the inverted-U-hypothesis
We found no evidence for the inverted-U-hypothesis of DA function and cognition. This

might be due to several reasons. Despite its popularity, the inverted-U-hypothesis remains

relatively vague regarding the specific DA functions and cognitive domains it applies to, and

is therefore difficult to test and falsify. Animal studies suggest that it specifically describes

the relationship between prefrontal D1 receptor activity and working memory performance,

whereas the relation between other aspects of DA action and cognitive functions may follow

different functions (Floresco and Magyar, 2006; Floresco, 2013).

It remains unclear how to construe the exact shape and turning point (optimum) of the

inverted-U-shape function, since these aspects may vary across tasks, cognitive functions,

and individuals (see Cools et al., 2008; Cools and D’Esposito, 2011; Wiegand et al., 2016).

Obviously, our study also has limitations that exacerbate comprehensive testing of this more

complex hypothesis. First, the sample size of 31 participants may simply be too small to

detect an inverted quadratic relationship between proxies for DA baseline and drug effects

on explore/exploit behavior. It has been argued (Slagter et al., 2012) that healthy subjects

may display only a relatively restricted range in baseline DA levels during resting conditions,

making it more difficult to observe inverted-u-shape effects in these samples. Blink rate

values were strongly left-skewed across subjects, with only relatively few subjects with high

blink rates, supporting this idea. The failure to observe an inverted-U-shaped effect in the

current study might also be due to poor DA proxy measures. While the spontaneous blink

rate has been extensively investigated as a proxy for DA function in animals and humans,

many studies have also yielded conflicting or inconclusive results (Jongkees and Colzato,

2016; Dang et al., 2017; Sescousse et al., 2018). For working memory capacity, the

available evidence is even more limited than for the blink rate, as fewer studies have used

this measure as a DA proxy. While some studies report differential DA drug effects in

relation to individual working memory capacity, the directionality of these effects differs
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between studies (Kimberg et al., 1997; Kimberg and D’Esposito, 2003; Gibbs and

D’Esposito, 2005). Moreover, for both proxy measures, it is not clear which specific aspect

of DA function they might index, and what the underlying mechanism is. Both measures

might reflect aspects of striatal DA function, such as striatal D2 receptor availability

(Groman et al., 2014; Jongkees and Colzato, 2016) and/or striatal DA synthesis capacity

(Cools et al., 2008; Landau et al., 2009). In contrast, the inverted-U-shaped hypothesis

predominantly relates to D1 receptor function in PFC. In conclusion, the DA proxies used in

this study may have failed to validly measure baseline DA function, or specifically measured

an aspect of DA function which was not predictive for the behavioral outcome measure

under study.
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