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Background: Brain connectivity is useful for deciphering complex brain

dynamics controlling interregional communication. Identifying specific brain

phenomena based on brain connectivity and quantifying their levels can help

explain or diagnose neurodegenerative disorders.

Objective: This study aimed to establish a unified framework to identify

brain connectivity-based biomarkers associated with disease progression

and summarize them into a single numerical value, with consideration for

connectivity-specific structural attributes.

Methods: This study established a framework that unifies the processes of

identifying a brain connectivity-based biomarker and mapping its abnormality

level into a single numerical value, called a biomarker abnormality summarized

from the identified connectivity (BASIC) score. A connectivity-based biomarker

was extracted in the form of a connected component associated with disease

progression. BASIC scores were constructed to maximize Kendall’s rank

correlation with the disease, considering the spatial autocorrelation between

adjacent edges. Using functional connectivity networks, we validated the

BASIC scores in various scenarios.

Results: Our proposed framework was successfully applied to construct

connectivity-based biomarker scores associated with disease progression,

characterized by two, three, and five stages of Alzheimer’s disease, and

reflected the continuity of brain alterations as the diseases advanced. The

BASIC scores were not only sensitive to disease progression, but also specific

to the trajectory of a particular disease. Moreover, this framework can be

utilized when disease stages are measured on continuous scales, resulting in a

notable prediction performance when applied to the prediction of the disease.
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Conclusion: Our unified framework provides a method to identify brain

connectivity-based biomarkers and continuity-reflecting BASIC scores that are

sensitive and specific to disease progression.

KEYWORDS

brain connectivity, connectivity-based biomarker, biomarker scores, connected

component, Laplacian regularization, Kendall’s rank correlation, Alzheimer’s disease

1. Introduction

The brain is composed of structurally and functionally

intertwined neurons. This pattern of interconnected

neurons can be disrupted or reinforced by the progression

of neurodegenerative disorders (Zhan et al., 2016; Lee

et al., 2021b; Schumacher et al., 2021; Caravaglios

et al., 2022). The development of various neuroimaging

devices, such as magnetic resonance imaging (MRI),

electroencephalography, and near-infrared spectroscopy,

has allowed for non-invasive extraction of the brain’s

connectivity. The introduction of graph-theoretical methods

has allowed for quantitative analysis of the complex structure

of the brain’s connectivity. Consequently, altered brain

connectivity can be quantified, leading to the discovery of

connectivity-based biomarkers.

Measurability, particularly the ability to be measured on

a continuous scale, is a critical characteristic of diagnostic

biomarkers, given their common objectives of explanation

and prediction (Shmueli, 2010; Bang, 2020). This need is

even more pronounced in neurodegenerative disorders, where

multiple pathological phenomena interact in a complex manner

(Gomez-Ramirez and Wu, 2014; Jack et al., 2018), complicating

attempts to make a diagnosis using a single biomarker. Thus,

constructing a single abnormality score for a biomarker can be

effectively integrated with other clinical manifestations, such as

elucidating the mechanism of the disorder through structural

equation modeling or predicting whether a person has the

disease through logistic modeling. Furthermore, expressing

biomarker abnormalities as a single numerical value assists

physicians and patients in intuitively comprehending patients’

disease states.

Predictive models, such as linear or logistic regression

models, can be used to define biomarker abnormalities, which

can be summarized as model responses indicating the level

of abnormality (Shen et al., 2017; Lee et al., 2018, 2021a).

These models aim to map multiple variables constituting the

biomarker to a target variable, either the presence/absence

of diseases or a proxy measure representing disease stages.

Accurately predicting the target variable in model development

may restrict the association between disease stage and response.

For example, minimizing the mean squared error (MSE) in

linear predictive models maximizes the association but is

limited to a linear relationship. If a disease is represented by a

dichotomous variable, the summarized score can be constructed

by minimizing the binary cross-entropy (BCE). Nevertheless,

this score should ideally be either zero or one, which is

incompatible with the fact that the abnormality level reflects

continuously changing disease stages. It is also challenging

to construct a single model response associated with disease

progression when the disease is classified as having three ormore

consecutive stages.

The structural attributes inherent in biomarkers should

also be considered when dealing with them. One attribute

of neuroimaging biomarkers is derived from the fact that

brain changes can occur over a continuous domain, causing

interconnected brain changes in contiguous regions (Lindquist,

2008). A spatially positive correlation has been accounted

for by representing disease-related alterations as cluster-like

structures comprising adjacent voxels (Poline et al., 1997;

Worsley, 2001). This concept has been extended from physical

to topological cluster in connectivity-based analysis, where the

alteration is mathematically modeled as a graph, and the cluster-

like structure is defined as a connected component composed

of multiple adjacent edges (Zalesky et al., 2010, 2012; Han

et al., 2013). However, spatially autocorrelation should also be

considered between the levels of alteration of the edges that

comprise the connected component.

This study aimed to establish a framework that unifies the

processes of identifying brain connectivity-based biomarkers

and mapping abnormality levels into a single numerical

value, termed a biomarker abnormality summarized from the

identified connectivity (BASIC) score. The framework consists

of two successive steps: extraction of altered brain connectivity

related to neurodegenerative disorders, and construction of a

scoring function with respect to connectivity-based biomarkers.

In contrast to predictive models employing MSE or BCE as

the objective for model construction, this scoring function

was constructed by maximizing Kendall’s rank correlation

coefficient (Kendall, 1938) between its value and the disease

stage, which can be represented by continuous, or even

discrete variables having ordinal scales. Especially when the

disease stage is represented as a discrete variable, Kendall’s

correlation is invariant on the nominal scale for data with
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binary or ordinal scale; therefore, the association with the

disease stage can be measured so long as the nominal scale is

maintained. Neighborhood information in brain connectivity

is considered in the form of connected components that

explicitly reflect spatially positive correlations. We constructed

the BASIC scores associated with the progression of Alzheimer’s

disease (AD) as an example of neurodegenerative disorder,

and validated that the scores are sensitive and specific to

the disease trajectory. We also validated that the scores

also reflect continuous disease-related alterations, resulting

in noticeable prediction performance when used to predict

the disease.

2. Materials and methods

2.1. Dataset information

Two independent datasets were utilized in this study.

Participants in Datasets 1 and 2 underwent MRI scans

and neuropsychological tests at Samsung Medical Center

and Gachon University Gil Medical Center, respectively.

Table 1 details the demographic and clinical information for

each dataset.

Dataset 1 included 116 cognitively unimpaired (CU)

individuals, 198 patients with amnestic mild cognitively

impairment (MCI), and 212 patients with AD. Patients with

MCI and AD were further divided into two subgroups: 57

patients with early MCI (EMCI) and 141 patients with late

MCI (LMCI) for the MCI group; and 173 patients with mild

AD (MildAD) and 39 patients with moderate-to-severe AD

(ModAD) for the AD group. These subgroups were categorized

based on clinical criteria, such as diagnostic criteria for MCI/AD

and neuropsychological tests. See the previous study for more

information on participant recruitment and subgroup division

(Kim et al., 2021). Dataset 2 consisted of 63 CU individuals

and 92 AD patients. Similarly, AD patients in Dataset 2

were identified according to clinical diagnostic criteria,

which were described in the previous study in conjunction

with the recruitment and inclusion/exclusion criteria

(Lee et al., 2021b).

CU participants were further divided into two subgroups

based on their ages: young CU (YC) if their age at recruitment

was greater than or equal to 65, and old CU (OC) otherwise.

Patients with MCI and AD were also subdivided based on

onset age: early-onsetMCI (EOMCI) or early-onset AD (EOAD)

if symptoms developed before age 65, and late-onset MCI

(LOMCI) or late-onset MCI (LOAD) otherwise. According to

these criteria, individuals in Dataset 1 were classified into 46

YC, 69 EOMCI, 75 EOAD, 70 OC, 129 LOMCI, and 137 LOAD;

individuals in Dataset 2 were classified into 33 YC, 51 EOAD, 32

OC, and 41 LOAD.

2.2. MR image acquisition

For Dataset 1, both T1-weighted MRI and resting-state

functional MRI (rsfMRI) data were acquired using a 3.0-Tesla

Intera Achieva MRI scanner (Philips Medical Systems, Best, the

Netherlands) as previously described (Kim et al., 2016, 2021).

For Dataset 2, the T1-weighted MRI data were acquired

using a 3.0-Tesla MRI scanner (Verio, Siemens, Erlangen,

Germany) as previously described (Lee et al., 2021b). The rsfMRI

data was acquired for 9 min using gradient-echo echo planar

imaging (EPI) with the following parameters: TR = 3,000 ms,

TE=30 ms, and voxel size = 3.4 × 3.4 × 3.4 mm3. During

the acquisition of rsfMRI data, participants were instructed to

keep their eyes open, not move their heads, and refrain from

falling asleep.

2.3. Image preprocessing

The T1-weighted MRI data were preprocessed according to

the standard pipeline in FreeSurfer v5.1 to obtain intracranial

volume (ICV). The rsfMRI data were preprocessed using FEAT

(FMRI Expert Analysis Tool) and FAST (FMRIB’s Automated

Segmentation Tool) in FSL (FMIRB’s Software Library) v5.0

(Jenkinson et al., 2012) as described in the previous study (Kim

et al., 2021).

2.4. PET image acquisition and
quantification

Participants in Dataset 2 also underwent [18F]-

Flutemetamol positron emission tomography (PET) scans with

a Siemens Biograph 6 Truepoint PET/computed tomography

(CT) scanner (Siemens, Knoxville, Tennessee, United States)

using a list-mode emission acquisition. We computed the

global amyloid standardized uptake value ratio (SUVR) from

each PET image by averaging AD-related regions, including

the prefrontal, superior/inferior parietal, lateral temporal, and

anterior/posterior cingulate cortices with pons as the reference

region. Amyloid positivity was defined as the global SUVR >

0.62. Detailed information on PET imaging parameters and

SUVR computation are demonstrated in the previous study

(Lee et al., 2021b).

2.5. Functional connectivity network
construction

A whole-brain functional connectivity network (FCN) for

the i-th participant was mathematically modeled as a finite,

simple, undirected, and vertex-labeled graphGi = (V , Ei), where

V is a set of vertices and Ei ∈ V × V is a set of edges. V was
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TABLE 1 Demographic information according to the stage of Alzheimer’s disease continuum.

Dataset 1 Dataset 2

CU EMCI LMCI MildAD ModAD CU AD

N 116 57 141 173 39 63 92

Age, years∗ 65.86

(8.63)

69.63

(7.86)

70.58

(8.86)

71.18

(9.08)

72.51

(9.59)

66.02

(10.97)

68.26

(10.75)

Sex (female), no.† 58 32 82 115 30 29 65

Education level, years∗ 12.07

(4.88)

10.36

(6.41)

11.22

(4.79)

8.95

(5.54)

8.63

(5.66)

12.29

(4.49)

8.57

(4.69)

ICV,ℓ∗ 1.40

(0.22)

1.37

(0.29)

1.34

(0.22)

1.38

(0.21)

1.39

(0.21)

1.50

(0.15)

1.46

(0.16)

MMSE∗ 28.73

(1.39)

26.95

(2.66)

25.69

(2.81)

20.40

(4.16)

13.74

(5.16)

28.02

(2.02)

17.11

(6.41)

CDR-SOB∗ 0.51

(0.39)

1.10

(0.79)

1.40

(0.98)

4.34

(1.88)

10.68

(3.69)

0.00

(0.00)

5.23

(3.23)

Aβ deposition

Global SUVR∗ N/A 0.41

(0.11)

1.00

(0.22)

Positivity (Aβ+), no.† N/A 2 88

CU, Cognitively unimpaired; EMCI, Early mild cognitive impairment; LMCI, Late mild cognitive impairment; AD, Alzheimer’s disease; MildAD, Mild AD; ModAD, Moderate-to-severe

AD; ICV, Intracranial volume; MMSE, Mini-Mental State Examination; CDR-SOB, Clinical Dementia Rating scale-Sum Of Boxes; SUVR, Standardized uptake value ratio.
∗Data are given as the mean with standard deviation in parentheses.
†Data are given as the number of category in parentheses.

defined as the volumetric regions of interest (ROIs) determined

using the Automated Anatomical Labeling (AAL) brain atlas

(Tzourio-Mazoyer et al., 2002). The ROIs consist of 40 cerebral

cortical regions and five subcortical regions for each hemisphere,

resulting in |V| = 90. The presence of an edge e ∈ Ei,

with a weight of ce, representing its connection strength, was

determined by temporal associations between regional blood

oxygenation level dependent signals, which were computed

by averaging the signals of the voxels included in each ROI.

Pearson product-moment correlation coefficient (Pearson’s r)

was used for the association measure, followed by the Fisher r-

to-z transformation. A negative coefficient was set to zero, as

used in our previous studies (Kim et al., 2017, 2021), because

of its ambiguous biological interpretation (Fox et al., 2009;

Murphy et al., 2009; Rubinov and Sporns, 2010; Cao et al.,

2014). Though, our framework described below is not limited

to this thresholding criterion. For convenience, we considered

the nonexistent edge e 6∈ Ei to be equivalent to the edge e ∈ Ei

with ce = 0.

2.6. A unified framework for
connectivity-based biomarkers

2.6.1. Overview

Let D =
{(

Gi, di
)}n

i=1 be a dataset consisting of the whole-

brain connectivity network Gi = (V , Ei), where di is the

realization of a reference variable D representing the stage of

a disease measured on continuous, dichotomous, or ordinal

scales. A connectivity-based biomarker, denoted asH = (S ,F),

was defined as a connected component of an unweighted graph

Ḡ = (V , E1 ∪ · · · ∪ En). The abnormality score ofHwas defined

as a continuous and bounded real number. More formally,

we defined a scoring function s :G → [0, 1], which produces

a biomarker abnormality score from Gi [F] =
(

V ′
i , E

′
i

)

, an

edge-induced subgraph of Gi consisting of E ′i ⊂ Ei with

vertices incident to e ∈ E ′i . The framework was designed to

identify H based on D, and obtain each individual’s biomarker

abnormality score s (Gi [F]), the BASIC score, by finding the

optimal s according to two consecutive steps: identification

and summarization. This process is schematically illustrated in

Figure 1A.

2.6.2. Identification step

This step extracts a set of possible connectivity-based

biomarkers based on D. To satisfy the condition that H is

connected, we employ a network-based statistic (NBS) that

identifies the statistically significant connected component

for specific hypothesis testing (Zalesky et al., 2010). In the

NBS, statistics for the testing, such as t-statistics, correlation

coefficients, and regression coefficients, were calculated on all

edges e ∈ E1 ∪ · · · ∪ En. Edges whose statistics exceeded

a predefined threshold t were chosen, and the connected

components comprising suprathreshold edges were extracted.

This procedure was repeated m times, with the sample being
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FIGURE 1

Methodological overview. (A) The framework established for constructing biomarker abnormality scores associated with disease progression

based on brain connectivity. Using network-based statistics (NBS), a collection of biomarker candidates was extracted in the form of connected

components of varying extent in the identification step. Next, in the summarization step, Biomarker Abnormality Summarized from the Identified

Connectivity (BASIC) scores were constructed in a manner that maximizes Kendall’s rank correlation (τb) to disease stages. In this step, the

spatially positive correlation was considered as a regularization in optimization. (B) To improve generalized performance, the biomarker and

parameters for constructing BASIC scores were determined based on cross-validation (CV). The optimal regularizer that yielded the best CV

Kendall’s τb for all predefined NBS thresholds was chosen. The optimal NBS threshold was then selected according to the one-standard-error

(1SE) rule.

generated from randomization of the original one, resulting

in different statistics for all edges; thus, it yielded distinct

connected components with maximum sizes. It gives a null

distribution of the maximum extent of connected components,

and statistical significance was determined at the level of

connected components rather than at the individual edges.

Edge-level statistics were computed using a general linear

model. For each edge e ∈ E1∪· · ·∪En, ce was used as a dependent
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variable, and the reference variable D, together with an intercept

and nuisance variables, were used as independent variables.

If D is measured on a continuous scale, then the variable of

interest has a single continuous value; otherwise, the variables

of interest are made up of dummy variables. Dummy variables

were encoded using a staircase coding scheme, particularly when

D was measured on an ordinal scale. To generate randomly

permuted samples, we employed the Freedman-Lane procedure

(Freedman and Lane, 1983; Winkler et al., 2014), where the

permutation was performed on the residual of the reduced

model containing only nuisance variables.

2.6.3. Summarization step

H is summarized as a single numerical value in this step. In

constructing s, the following conditions were considered: a) if a

sequence of the scores {s (Gi [F])}was associated with that of the

corresponding disease stage
{

di
}

, b) if the connectivity-specific

structural attribute, a spatially positive correlation on adjacent

edges, was explicitly reflected, and c) if inf s = 0, and sup s = 1.

Complying with these conditions, we defined s = 8µ,σ ◦ f ,

where f is a real-valued function on G, called a summarizing

function, and 8µ,σ is a cumulative distribution function (CDF)

of a normal distribution with mean µ and standard deviation σ ,

which are computed as the sample mean and sample standard

deviation of {s (Gi [F])}ni=1, respectively.

In this study, we defined f (·;w), parameterized by a column

vector w ∈ R
|F |, as the linear combination of the edge

connection strengths, that is,

f (Gi [F] ;w) =
∑

e∈E ′
i

we · (ce)i = wTci, (1)

where we is a parameter of f for an edge e, and c ∈ R
|F | is

a column vector whose element is ce for an edge e. Notably,

Equation (1) can be applied to graphs with different sets of edges

because we set ce = 0 for even e ∈ F \ Ei. w was computed

by maximizing the association between the values of f and the

corresponding ones for D, considering the connectivity-specific

spatial autocorrelation simultaneously, or formally satisfying the

following objective:

minimize
w

−R(wTci, di;D)+ λ‖Bw‖22, (2)

where R(·, ·;D) is the measure of association between two

univariate variables in the dataset D, B ∈ {−1, 0, 1}|S|×|F | is

an oriented vertex-edge incidence matrix, and λ is a Tikhonov

regularizer. For R, Kendall’s tau-b (τb) was used (Kendall,

1938). In contrast to Pearson’s r, τb can be used for the

association between two variables measured on a dichotomous

or ordinal scale, as well as for identifying nonlinear monotonic

relationships beyond linear relationships (Chok, 2010). Further,

as a rank statistic, τb is more resistant to outliers when calculated

for continuous variables (Couso et al., 2018). The second term is

for regularization, which can be rewritten as follows:

wTBTBw =
∑

u,v∈F : u∼v

(wu − wv)
2, (3)

where u ∼ v means that the edges u and v are adjacent. Note

that the BTB is equal to the edge-based graph Laplacian, and

the regularization term results in Laplacian regularization (Ando

and Zhang, 2006). In other words, spatial autocorrelation is

added in the form of minimizing of the difference between the

parameter values of adjacent edges.

We solved the optimization problem with the objective

(Equation 2) using the GRID algorithm that was known to find

a solution comparable to the globally optimal one (Croux et al.,

2007; Alfons et al., 2017). It deals with a slightly modified version

of objective (Equation 2), which has an additional equality

constraint ‖w‖2 = 1, resulting in a new optimization problem

to find the optimal direction of w. Finally, the final objective is

stated as follows:

minimize
w

−R(wTci, di;D)+ λ‖Bw‖22,

subject to ‖w‖2 = 1.
(4)

In the first iteration of this algorithm, the optimal direction was

determined by performing a grid search that divides the angular

intervals [−π/2,π/2) into ng equal parts alternately for each

coordinate. At rth iteration, the search interval was reduced

to
[

−π/2r ,π/2r
)

.

Finally, the BASIC score for a given whole-brain

connectivity network Gi is calculated as ŵTci, where ŵ is

the optimal solution of the optimization problem (Equation 4).

2.6.4. Hyperparameter selection scheme

The BASIC score aims to improve generalized performance

in association with disease progression by selecting the value

of hyperparameters based on cross-validation (CV). Two

hyperparameters were selected for the proposed framework:

t and λ. The former controls the extent of the connectivity-

based biomarker, analogous to controlling the sparsity of

parameters of f . The latter controls for the degree of spatial

positive correlation. The optimal values of the hyperparameters

were determined by simultaneously varying their values within

predefined sets.

For a fixed value of t, K-fold CV was performed at each

value using a set of predefined values of λ, and the value with

the highest averaged τb across K folds was selected. Then, t

was chosen such that the corresponding subnetwork exhibits the

most parsimonious and comparable average τb according to the

one-standard-error (1SE) rule (Hastie et al., 2009). The scheme

for selecting the values of t and λ is illustrated in Figure 1B.
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2.7. Experiments

To validate whether the framework performs well when D

is measured on a continuous or ordinal scale, we identified

connectivity-based biomarkers related to various stages of

AD and Aβ deposition from whole-brain FCNs using the

optimal values of t and λ determined by K-fold CV. We

also computed the corresponding BASIC scores using the

entire dataset. Table 2 provides detailed information on the

experimental settings. The optimal value of t was determined

by computing the generalized association performance of sub-

networks containing 0.1–10% of the total number of possible

edges (i.e., from four to 401) for values within its range

because the NBS is ineffective and has a low statistical

power at too high or too low threshold (Zalesky et al.,

2010).

When D was measured on a dichotomous scale, we

compared the BASIC scores with scores determined by the

logistic model, where the score function was defined as s = g ◦ f

with a sigmoid function g(x) = 1/(1 + e−x). In contrast to

the BASIC score, where w satisfies the objective with respect

to the summarizing function f , the logistic model-based scores

were obtained by minimizing the BCE between s (Gi [F]) =

g
(

f (Gi [F] ;w)
)

and di ∈ {0, 1} as the target variable. ForDwith

continuous values, we compared the BASIC scores with scores

determined by optimizing the least-square form of the classical

canonical correlation with Laplacian regularization (Sun et al.,

2008).

2.7.1. Statistical analysis

Continuous biomarker abnormality scores in two successive

groups along a disease continuum were compared using

the Student’s t-test and Welch’s t-test. The false discovery

rate (FDR) procedure was used for each experiment

to correct for multiple comparisons (Benjamini and

Hochberg, 1995). To examine the relationship between

biomarker abnormalities and cognitive function, we

calculated the coefficients of multiple correlations between

the biomarker score and clinical scores, including the

mini-mental state examination (MMSE) and the clinical

dementia rating scale-sum of boxes (CDR-SOB) scores.

Statistical significance of the coefficient of multiple

correlations was determined by permutation testing

with 10,000 permutations.

2.7.2. Classification analysis

Support vector machine with radial basis function

kernel and uniform class prior probability was used

for binary classification. It is run by MATLAB R2021b

(www.mathworks.com), with all other hyperparameters

set to default.

3. Results

The optimal values of the hyperparameters and

corresponding results for all experiments are presented in

Table 3.

3.1. Continuous disease-related
alteration in BASIC scores

As an example of a neurodegenerative disorder, we first

computed the BASIC scores associated with the presence or

absence of AD for Dataset 1, (Experiment 1). By examining the

distribution of estimated scores for all CU individuals and AD

patients, we found that the likelihood of intermediate scores was

comparable to that of extreme CU or AD scores (Figure 2A).

This phenomenon differed from the biomarker abnormality

scores computed using the logistic model (Experiment 1-1),

demonstrating a higher likelihood of extreme CU and AD scores

and a very low likelihood of the intermediate scores (Figure 2B).

Upon estimating the distributions for CU and AD

individuals, the distribution of BASIC scores in each group was

completely distinguished, as maximizing Kendall’s τb with a

dichotomous variable equivalent to maximizing the area under

the receiver operating characteristic (AUROC) curve (Hanley

and McNeil, 1982; Brossart et al., 2018). However, the score

distributions of the CU and AD groups were differently shaped

for each method. In contrast to the logistic model-based scores,

we discovered that the BASIC scores were evenly distributed

within each score range for each group.

When scores of MCI patients in Dataset 1 were calculated

with the parameters of the summarizing function obtained for

CU and AD individuals in Dataset 1, their BASIC scores had

the highest likelihood in the mid-scores (gray-shaded area in

Figure 2A). Patients with MCI were expected to be distributed

between CU and AD. In contrast, a higher likelihood was

observed in the score range close to AD in the logistic model-

based scores (gray-shaded area in Figure 2B). A similar trend

was observed when the scores were computed for Dataset 2

(Figures 2C,D). This demonstrates that BASIC scores reflect

disease progression along the AD continuum more accurately

than logistic model-based scores.

3.2. BASIC scores for multiple disease
stages

AD is characterized by the gradual progression of cognitive

deficits along a continuum, and its progression can be

discretized into more than two consecutive stages. The proposed

framework is applicable to this situation, producing BASIC

scores that are associated with disease progression. Figure 3
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TABLE 2 List of experimental settings.

Experiment 1 2 3 4 5

Disease/Pathology AD AD AD EOAD/LOAD Aβ deposition

Reference variable (D) Dichotomous Ordinal Ordinal Ordinal Continuous

Subgroups CU, AD CU, MCI,

AD

CU, EMCI,

LMCI,

MildAD,

ModAD

YC, YOMCI,

YOAD /

OC, LOMCI,

LOAD

Dataset (D) Dataset 1 Dataset 1 Dataset 1 Dataset 1 Dataset 2

Hyperparameters

Identification step

Edge-level statistics partial F-statistics

No. of permutation (m) 10,000

NBS threshold (t)
{

k
}30

k=1

{

0.5k
}30

k=1

{

0.5k
}40

k=1

{

k
}30

k=1

{

k
}20

k=1

Nuisance variables age, sex, education level, and ICV

Summarization step

No. of iterations (nr) 100

No. of grid points (ng ) 20

No. of folds (K) 5

Regularizer (λ)
{

e−15 , e−14 , . . . , e1 , e0
}

CU, Cognitively unimpaired; MCI, Mild cognitive impairment; EMCI, Early MCI; LMCI, Late MCI; AD, Alzheimer’s disease; MildAD, Mild AD; ModAD, Moderate-to-severe AD; NBS,

Network-based statistics; ICV, Intracranial volume.

TABLE 3 Selected hyperparameter values and the corresponding results for each experiment.

Diseases Disease
stages

Objective
functions

Regulari-
zations

t λ No. of
edges

5-fold CV
performances∗

Exp. 1 AD 2 stages Kendall’s τb Laplacian 9 e−10 215 0.5493 (0.0308)†

Exp. 2 AD 3 stages Kendall’s τb Laplacian 6 e−4 160 0.4899 (0.0549)†

Exp. 3 AD 5 stages Kendall’s τb Laplacian 4 e−10 132 0.3993 (0.0305)†

Exp. 4a EOAD 3 stages Kendall’s τb Laplacian 8 e−12 80 0.5427 (0.0889)†

Exp. 4b LOAD 3 stages Kendall’s τb Laplacian 7 e−12 39 0.4192 (0.0523)†

Exp. 5 Aβ Continuous Kendall’s τb Laplacian 8 e9 126 0.4839 (0.0566)†

Exp. 1′ AD 2 stages Kendall’s τb None 10 154 0.4824 (0.0319)†

Exp. 2′ AD 3 stages Kendall’s τb None 6 160 0.4298 (0.0574)†

fExp. 3′ Aβ 5 stages Kendall’s τb None 4.5 81 0.3638 (0.0590)†

Exp. 1-1 AD 2 stages BCE Laplacian 7 e−12 360 0.8445 (0.0263)‡

Exp. 5-1 Aβ Continuous Pearson’s r Laplacian 8 e−16 126 0.7019 (0.0527)§

∗5-fold CV performances are given as the mean and standard deviation.
†5-fold CV performances were computed for Kendall’s τb .
‡5-fold CV performances were computed for accuracy.
§5-fold CV performances were computed for Pearson’s r.

CV, Cross-validation; Exp., Experiment; AD, Alzheimer’s disease; EOAD, Early-onset AD; LOAD, Late-onset AD; BCE, Binary cross-entropy.

depicts the estimated distributions when the stages on the AD

continuum are three (CU, MCI, and AD; Experiment 2) and

five (CU, EMCI, LMCI, MildAD, and ModAD; Experiment 3).

In each instance, the distributions of scores for CU individuals

and AD patients were more naturally at their boundaries than

when scores were determined using only two groups. The MCI

patients’ scores exhibited a bell-shaped distribution, with the

highest likelihood between the CU and AD scores. When using

five groups, the median difference between LMCI and MildAD

was larger than that between EMCI and LMCI or between
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FIGURE 2

Violin plots illustrating the estimated distributions of BASIC scores (A) and logistic model-based scores (B) from whole-brain functional

connectivity networks of cognitively unimpaired (CU) individuals and patients with Alzheimer’s disease (AD) in Dataset 1. We also calculated the

scores of patients with mild cognitive impairment (MCI) using both methods with parameter derived from CU and AD people (gray-shaded areas

in (A,B). For external validation, we calculated the BASIC scores (C) and logistic-model based scores (D) of CU and AD individuals in Dataset 2

from parameters obtained using CU and AD individuals in Dataset 1.

MildAD and ModAD, indicating that BASIC scores can reflect

monotonic nonlinear changes across disease stages.

We performed correlation analyses between the BASIC

scores determined using different numbers of stages on the AD

continuum and cognitive functioning scores directly related to

AD (Figure 4). When BASIC scores were calculated using only

two stages, there were significant correlations for all participants

as well as only patients with dementia (including both MCI

and AD patients). However, within each of the MCI and AD

groups, no significant correlation was found. All associations

were strengthened when disease stages were further subdivided,

particularly within the MCI and AD groups, implying that the

greater the number of disease stages utilized, the more truthful

the biomarker score.

3.3. Edge importance in
connectivity-based biomarkers

To determine which edge had the greatest impact on

biomarker scores, we defined edge importance as the square

of the parameter values on edges, similar to how feature

importance is calculated in linear regression (Grömping, 2015).

As a representative example, the profile of edge importance

in constructing BASIC scores associated with AD progression

represented by the five stages is illustrated in Figure 5.

Connections with high edge importance were incident to a

set of regions, including the opercular/orbital parts of the left

inferior frontal gyrus, left thalamus, right parahippocampal

gyrus, right supramarginal gyrus, and right precuneus, where
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FIGURE 3

Violin plot depicting the estimated distributions of BASIC scores of individuals in Dataset 1 in a manner that maximizes the association with

disease progression represented by either three stages (A) or five stages (B) in the Alzheimer’s disease (AD) continuum. For external validation,

we calculated the scores of people in Dataset 2 using parameters derived from three stages (C) and five stages (D). *p < 0.05, **p < 0.01, and

***p < 0.001, with the false discovery rate correction for in each experiment.

functional connectivity is altered as AD progresses (Grady

et al., 2001; Wang et al., 2007; Zhou et al., 2013; Li et al.,

2017).

3.4. Disease trajectory-specific BASIC
scores

AD can be subdivided according to various criteria, one

of which is the subtype divided by onset age: EOAD and

LOAD. Previous research has shown that EOAD and LOAD

can be distinguished by their distinct pathological and clinical

characteristics, including patterns of cortical atrophy, white

matter disruption, and cognitive impairment (Panegyres and

Chen, 2013; Mendez, 2019; Lee et al., 2021b). In this study, our

proposed framework provided BASIC scores for EOAD-related

biomarkers based on EOAD trajectory (YC-EOMCI-EOAD)

and LOAD-related biomarkers based on LOAD trajectory (OC-

LOMCI-LOAD), respectively (Experiment 4a and 4b). BASIC

scores for the EOAD-related and LOAD-related biomarkers

were sensitive to disease progressions of each subtype (left parts

of Figures 6A,B).

Notably, individuals in the LOAD trajectory had relatively

high BASIC scores for the EOAD-related biomarkers; in

contrast, individuals in the EOAD trajectory had relatively

low LOAD-related biomarker scores (gray-shaded areas in

Figures 6A,B). Similar tendencies were observed for individuals

in Dataset 2 when their BASIC scores were calculated using

the parameters estimated from Dataset 1 (Figures 6C,D). This

is in line with previous results that found that LOAD has

a typical memory-disorder manifestation, whereas EOAD is

characterized by deficits in the non-memory domain, such

as visuoconstructional skills, executive function, and memory

function (Joubert et al., 2016; Tellechea et al., 2018). In other

words, the symptoms of EOAD are more extensive than those
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FIGURE 4

Three-dimensional regression plots with cognitive functioning scores, including the mini-mental state examination (MMSE) and clinical

dementia rating scale-sum of boxes (CDR-SOB) as independent variables and BASIC scores as dependent variables. Participants in two (A-D),

three (E-H), and five (I-L) stages of Alzheimer’s disease (AD) were used to determine the BASIC scores. The coe�cients of multiple correlations

(Rmultiple) between BASIC scores and cognitive functioning scores were represented as p-values (pperm) using 10,000 permutations for each plot.

CU, cognitively unimpaired; MCI, mild cognitive impairment.

of LOAD, and features contributing to the EOAD-related

biomarker score may also be present in LOAD, resulting in

relatively high EOAD-related biomarker scores for individuals

in the LOAD trajectory. Similarly, the LOAD-related biomarker

score may be lower in EOAD because LOAD-related scores do

not include all characteristics associated with EOAD. It is also

worth noting that comparing the score distributions of stages

on different disease trajectories, beyond comparing degrees of

increases for the trajectories, may not be meaningful, because

age or other demographic/clinical variables are not considered

when constructing the score. These variables can distort the level

of biomarker abnormality due to their association with disease

manifestation; their effect can be controlled in further analyses

that use the scores.

3.5. Construction of BASIC scores using
continuous measures

There is a need to identify biomarkers associated with

continuous pathological changes, which are sometimes the

direct criteria for brain disorders. For instance, amyloid

deposition is a necessary condition for diagnosing AD

(Jack et al., 2018); consequently, determining whether

an individual is amyloid-positive or amyloid-negative is

essential for distinguishing AD from other neurodegenerative

disorders, which can be determined by global retention

values obtained from amyloid PET. We identified a brain

connectivity-based biomarker and computed its score

in relation to the global amyloid SUVR (Experiment 5).

The BASIC scores were significantly correlated with the

SUVR (Figure 7A). In addition, the distributions of scores

in the amyloid-negative (Aβ-) and amyloid positive

(Aβ+) groups were smoothly connected, with scores

also present near the boundary between the two groups

(Figure 7B).

We also performed a classification analysis between Aβ-

and Aβ+ groups using BASIC scores derived from FCNs

and structural connectivity networks (SCNs) from a previous

study (Lee et al., 2021b). When classification was performed

using BASIC scores obtained by maximizing Kendall’s τb,

the two groups were distinguished with a five-fold CV

accuracy of 0.8987 (Figures 7C,D). However, BASIC scores

obtained by maximizing the canonical correlation coefficient, or

equivalently, Pearson’s r (Experiment 5-1) demonstrated poorer
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FIGURE 5

Edge importance profiles for connectivity-based biomarkers associated with Alzheimer’s disease progression represented by the five stages. (A)

A connectogram in which line thickness and color indicate the corresponding edge importance value. (B) The average value of edge importance

for each brain region’s incident edges.

classification performance (5-fold CV accuracy of 0.7504),

with a high rate of misclassification for the Aβ+ group

(Figures 7E,F). This indicates that the association between

the global amyloid SUVR and connectivity-based biomarkers

cannot be explained solely by a linear relationship. This

nonlinear relationship can be detected more effectively using

Kendall’s τb than Pearson’s r.

4. Discussion

Given the importance of studying brain connectivity

in neurodegenerative disorder research, it is critical to

identify connectivity-based biomarkers associated with

disease progression. Moreover, because multiple pathologies

are involved in explaining or predicting neurodegenerative
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FIGURE 6

Violin plots depicting the estimated distributions of BASIC scores associated with the progression of early-onset Alzheimer’s disease (EOAD) and

late-onset Alzheimer’s disease (LOAD). (A) EOAD-related biomarker scores were determined using three st ages in the EOAD trajectory using

Dataset 1, including young cognitively unimpaired (YC) individuals and patients with early-onset mild cognitive impairment (EOMCI) and EOAD.

The scores of the individuals in Dataset 1 were also calculated for the LOAD trajectory, which included old cognitively unimpaired (OC)

individuals and patients with late-onset mild cognitive impairment (LOMCI) and LOAD. (B) LOAD-related biomarker scores were similarly

determined for the individuals in Dataset 1. (C) EOAD-related biomarker scores of individuals in Dataset 2 were computed for the corresponding

disease trajectories with parameters obtained from Dataset 1. (D) LOAD-related biomarker scores of individuals in Dataset 2 were computed for

the corresponding disease trajectories with parameters obtained from Dataset 1. The p-values (pperm) were computed by permutation testing

with 10,000 permutations. *p < 0.05, **p < 0.01, and ***p < 0.001, with the false discovery rate correction for in each experiment.

disorders, summarizing these biomarkers into a single

numerical value is beneficial. Previous studies have used

various multivariate statistical techniques to either extract

biomarkers from brain connectivity or transform them into

a single score (Zalesky et al., 2010; Shen et al., 2017). We

established a framework that unifies these two respective

steps in a manner that maximizes the nonlinear monotonic

relationship to disease stages represented either continuously

or discretely, providing BASIC scores that are sensitive to

disease progression as well as specific to a particular disease

trajectory. In addition, the BASIC scores successfully captured

continuity in brain changes along with disease progression, with

superior generalizability.

It is natural that biomarker scores change continuously

as the disease advances, given that the associated pathological

phenomenon also changes continuously as the disease

progresses. In this context, individuals with moderate

conditions cannot be ignored in comparison to patients

with severe conditions or healthy individuals, which should

be reflected in the biomarker scores. From this perspective,

the BASIC scores were not only distributed overlapping

of each disease stage but were also approximately evenly

distributed between the upper and lower bounds of the

scores, which was not observed in the responses of the logistic

models. This could be made possible by freeing the binary

prediction model’s assumption that the outcome follows
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FIGURE 7

Using functional connectivity networks (FCNs), the BASIC scores were determined in a manner that maximizes Kendall’s rank correlation

coe�cient (τb) with the global amyloid standard uptake value ratio (SUVR) measured on a continuous scale. (A) Regression plot for the BASIC

scores and the global amyloid SUVR. (B) Violin plots depicting the estimated distributions of the BASIC scores of individuals in Dataset 2

according to amyloid status (i.e., amyloid positive or negative). (C) Decision regions and boundary derived from the classification analysis using

the BASIC scores using FCN and structural connectivity networks (SCNs), determined in an manner that maximizes Kendall’s τb. (D) The

corresponding receiver operating characteristic (ROC) curves for five-fold cross-validation (CV). (E) Decision regions and boundary derived from

the classification analysis using BASIC scores using FCNs and SCNs, determined in a manner that maximizes the Pearson’s product-moment

correlation coe�cient (Pearson’s r). (F) The corresponding ROC curves for five-fold CV.
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the Bernoulli distribution and instead maximizing the rank

correlation. In addition, the BASIC score, computed by the

weighted sum of connection strengths and transformation

by the normal CDF, approximately followed a uniform

distribution according to the central limit theorem; thus,

the proportion of people with intermediate scores was

greater than those with intermediate binary prediction model

responses.

Our framework was designed to be generalizable in

providing connectivity-based biomarker abnormality scores.

This is mainly accomplished by employing a regularization

procedure, in which additional prior information is introduced

to obtain parameters and subsequently construct scores. First,

the structural attributes inherent to brain connectivity were

considered in the form of Laplacian regularization, which

produces a smoothing effect on adjacent edges. If one of the

adjacent edges has extreme connection strengths, its parameter

will have a value similar to that of the adjacent edges.

Hence, their connection strengths were affected at a similar

level when constructing the score. Comparing five-fold CV

performances with and without Laplacian regularization in

our framework’s objective function, we empirically validated

that Laplacian regularization produced superior generalized

performance in reflecting the stage of the disease (Experiment 1

vs. 1′, Experiment 2 vs. 2′, and Experiment 3 vs. 3′ in Table 3).

Controlling the extent of a connectivity-based biomarker and

choosing the most parsimonious one based on the 1SE rule

also reduced the influence of unseen connectivity by decreasing

the number of variables used in the score computation. In

addition, the framework measured the association with the

reference variable using Kendall’s rank correlation, which may

affect generalizability by mitigating the effect of connection

strengths caused by measurement errors. Finally, the framework

selects optimal hyperparameter values based on CV, which

prevents data overfitting (Hastie et al., 2009; Shen et al.,

2017).

Identifying reliable biomarkers, regardless of their

abnormality score, is the focuses of this framework. It

is also possible, for instance, to estimate parameters by

maximizing the association through explicit regularization

while controlling the sparsity for the entire edge set. However,

the collection of selected edges is inappropriate for use as

a biomarker because ae sparsity-controlling procedure may

not produce a unique solution. The framework proposed in

this study identified a biomarker with a connectivity-specific

attribute by leveraging a NBS, which identifies the effect of

interest with high statistical power (Zalesky et al., 2010).

Moreover, given that brain connectivity should be viewed as

a complex system that regulates neural information flow, the

biomarker extracted by the multivariate technique combined

with mass-univariate hypothesis testing can explain network-

topological alterations, as in previous research (Myung et al.,

2016; Kim et al., 2017, 2019). This is why our framework is

not designed as a single method but instead consists of two

separable techniques.

There are several limitations to this study. We used the

continuum of clinical manifestation of AD as an approximation

of the AD continuum when considering continuous brain

alterations for demonstrating the continuity of BASIC scores.

Despite this, it is believed that demonstrating the capability

of our framework is not a concern because it maximizes the

association to any disease stage represented as ordinal scales. In

addition, although BASIC scores capture nonlinear monotonic

relationships through Kendall’s τb, it is limited in its ability to

accurately reflect alterations in brain connectivity as the disease

progresses. Suppose that multiple connected components are

extracted in the identification step, showing distinct dynamic

patterns of changes. In this case, linear summarization is

insufficient to reflect the complex nonlinear relationship with

the behavior of the biomarker. As AD progresses, the default

mode network (DMN) and salient network exhibit an inverse

relationship with functional connectivity (Brier et al., 2012;

Zhou and Seeley, 2014). Furthermore, functional connectivity in

DMN regions has been reported to have a quadratic relationship

with disease progression (Schultz et al., 2017); however, this

tendency cannot be measured using Kendall’s τb. In the future,

we intend to use graph-based deep-learning models to capture

and summarize these complex nonlinear relationships (Kipf and

Welling, 2017; Xu et al., 2018).

In conclusion, our unified framework provides an

explainable connectivity-based biomarker and continuity-

reflecting BASIC scores that are sensitive and specific to

disease progression. The selection of NBS statistics during

the identification step was flexible within the framework.

In addition, the framework is not restricted by the type

of specific association measure, thresholding criterion, or

summarizing function used in the summarization step.

The framework is applicable to other network-based

neurodegenerative disorders, such as Parkinson’s disease,

progressive supranuclear palsy, and amyotrophic lateral

sclerosis, where brain connectivity is disrupted as the diseases

progress (Brown et al., 2017; Brundin and Melki, 2017;

Romano et al., 2022), although this paper focuses on AD-

related brain connectivity. With this flexibility, our framework

establishes a milestone for analyzing complex brain connectivity

networks to explain or predict neurodegenerative disorders by

presenting indicators of the degree to which brain networks

collapse or by utilizing them as one of the features for

predictive models.
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