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Abstract: DNA accessibility to various protein complexes is essential for various processes in the 

cell and is affected by nucleosome structure and dynamics. Protein factor PARP-1 (poly(ADP-ribose) 

polymerase 1) increases the accessibility of DNA in chromatin to repair proteins and transcriptional 

machinery, but the mechanism and extent of this chromatin reorganization are unknown. Here we report 

on the effects of PARP-1 on single nucleosomes revealed by spFRET (single-particle Förster Resonance 

Energy Transfer) microscopy. PARP-1 binding to a double-strand break in the vicinity of a nucleosome 

results in a significant increase of the distance between the adjacent gyres of nucleosomal DNA. This 

partial uncoiling of the entire nucleosomal DNA occurs without apparent loss of histones and is reversed 

after poly(ADP)-ribosylation of PARP-1. Thus PARP-1-nucleosome interactions result in reversible, 

partial uncoiling of the entire nucleosomal DNA.  
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1. Introduction 

Eukaryotic genome is composed of nucleosomes that consist of 145–148 bp DNA segments 

wrapped around the histone octamer in 1.65–1.7 superhelical coils. Nucleosomal organization limits 

DNA accessibility to various proteins, including protein complexes involved in DNA repair [1]. 

Various protein complexes, including ATP-dependent chromatin remodelers and PARP-1 protein 

reorganize chromatin, making it more accessible to other DNA-interacting proteins. 

PARP-1 is an abundant multi-domain protein, localized in cell nuclei of higher eukaryotes, with 

a range of diversity functions, playing role in DNA repair [2,3], chromatin organization and 

transcription [4]. One of the crucial roles of the protein in a cell is detection of DNA damages 

through its DNA-binding zinc-finger domains that recognize single- and double-strand DNA breaks [5]. 

A variety of factors (e.g., ionizing radiation) cause genome damage making double-strand breaks in 

DNA, which can lead to mutations. PARP-1 binding to a DNA strand break induces a conformational 

change in the protein [6,7], which results in its DNA-dependent activation and 

poly(ADP)-ribosylation (pADP-r) of the target proteins (including automodification of PARP-1) 

using NAD
+
 as a substrate. Core histones [8] and linker histone H1 [9] are among the targets for 

pADP-r. Some direct inhibitors of PARP-1 enzymatic activity are important anticancer compounds. 

Thus anticancer compound olaparib interferes with essential nuclear processes in various tumors and 

causes cell death due to synthetic lethality [10,11].  

Although PARP-1 can bind to intact nucleosomes and to a variety of nucleosome substrates 

through double-strand break in nucleosomal DNA with different affinities [12], it is unknown 

whether it affects the structure of the nucleosome core. Using a single-particle Forster resonance 

energy transfer (spFRET) approach [13-16], we report that PARP-1 causes a considerable 

nucleosome unfolding in vitro that can be almost completely reversed by its automodification.  

2. Materials and Methods 

2.1. Protein purification and DNA templates  

Human recombinant PARP-1 was expressed in E.coli and purified as described [17]. 

Fluorescently labeled DNA templates used for nucleosome assembly were synthesized by PCR 

using modified nucleosome-positioning sequence s603-42 [18] as a template. The following 

oligonucleotides were used to introduce fluorescent labels in nucleosomal DNA:  

for nucleosomes N13/91: forward – 5'-ACCCCAGGGACTTGAAGTAATAAGGACGGAGGG 

CCT#CTTTCAACATCGAT-3’ (Т# refers to a nucleotide with a Cy3 label), reverse – 5’-CAAGCG 

ACACCGGCACTGGGCCCGGTTCGCGCTCCCTCCTTCCGTGTGTTGTCGT*CTCT-3’ (T* 

refers to a nucleotide with a Cy5 label). For nucleosomes N35/112: forward – 5’-AAGCGACACCG 

GCACTGGGCCCGGTTCGCGCT#CCCGCCTTCCGTGTGTTGTCGTCTCTCGGGCGT-3’, 

reverse – 5’-ACCCCAGGGACTTGAAGTAATAAGGACGGAGGGCCTCTTTCAACATCGATGC 

ACGGT*GGTTAG; for N57/135: forward – 5’- ACACCGGCACTGGGCCCGGTTCGCGCTCCC 

TCCTTCCGTGTGTTGTCGTCTCTCGGGCGTCTAAGTACGCT#TAGGC-3’, reverse – 5’-ACCC 

CAGGGACTT*GAAGTAATAAG-3’. 
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2.2. Nucleosome assembly and purification 

Nucleosomes were assembled using chicken donor chromatin without linker histone by salt 

dialysis as described [19]. The mononucleosomes were then gel-purified as described [20]. In-gel FRET 

analysis was performed using a Typhoon PhosphorImager. Fluorescence was excited in gel at 532 nm 

wavelength and recorded at 570–610 nm (for Cy3) and 650–700 nm (for Cy5) spectral regions. 

2.3. spFRET measurements 

Fluorescently labeled nucleosomes at 3 nM were incubated with 50 or 100 nM PARP-1 for 

20 minutes in a buffer containing 20 mM Tris-HCl pH 7.9, 5 mM MgCl2, 150 mM KCl and 0.15 mM 

ZnCl2 at +25 °C in siliconized tubes. To induce poly(ADP)-ribosylation, nucleosomes were 

incubated with 50 nM PARP-1 for 20 min and further incubated with 2 or 4 µM NAD
+
 for 15 min. 

spFRET analysis was performed for 15 min using facilities and settings described previously [13]. 

spFRET measurements were repeated in at least two independent experiments. In each experiment, 

data from 700 to 7000 single nucleosomes were analyzed. Preservation of structures of nucleosomes 

and PARP-1-nucleosome complexes during the analysis was further verified by comparing the 

results of two consequent measurements.  

Efficiency of FRET and its changes were characterized by calculating proximity ratio (EPR) for 

each single nucleosome:  

EPR = (I5 – 0.19 × I3)/(I5 + 0.81 × I3)                    (1), 

where I5 and I3 are measured fluorescence intensities of Cy5 and Cy3, respectively, and factors 0.19 

and 0.81 provide correction for the contribution of Cy3 fluorescence in the Cy5 detection channel 

(spectral cross-talk). EPR values calculated for nucleosome samplings were presented as frequency 

distribution histograms and fitted by two Gaussians. Goodness of the fit (R
2
) varied from 0.84 to 0.99.  

3. Results 

3.1. The experimental approach for analysis of PARP-1-dependent changes in nucleosome structure 

To study the effect of PARP-1 on the nucleosomal structure, spFRET microscopy experiments were 

conducted using three mononucleosomal templates; each nucleosome was labeled with a single pair of 

Cy3 and Cy5 fluorophores (Figure 1A). These labels were introduced in DNA based on known crystal 

structure of a nucleosome [21] to obtain efficient FRET between them in assembled nucleosomes without 

interfering with DNA structure or contacts between the DNA and core histones [13-16]. Labels were 

positioned into different parts of nucleosomal DNA: at +13 (Cy3) and +91 (Cy5) base pairs, 

relatively to the entry of linker DNA into nucleosome core (referred to as N 13/91), at positions +35 

and +112 (N 57/135) and at +57 and +135 (N 57/135). In the assembled nucleosome, these positions 

are localized near the entry point of DNA into the nucleosome, near a contact between H2A-H2B 

histone dimers and close to the exit of DNA from nucleosome, respectively (Figure 1A).   

Nucleosome assembly was carried out using chicken chromatin as a donor of core histones and 

a short DNA fragment containing nucleosome positioning sequence 603 [22] and additional terminal 

20 bp linker. This linker provided a DNA end (“dsDNA break”) for PARP-1 binding to the 
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nucleosome (Figure 1A); PARP-1 cannot bind to the other DNA end localized at the nucleosomal 

boundary [12,23]. Quality of the assembly was estimated by native PAGE; the expected changes of 

the FRET signal in the nucleosomes as compared with histone-free DNA were observed in the gel 

(Figure 1B). Single-particle FRET measurements were conducted using gel-purified nucleosomes in 

solution under microscope. The Cy3 label was excited with 514.5 nm laser wavelength in single 

nucleosomes or complexes when they diffused freely through a small focal volume [13] (Figure 1C), 

and fluorescence intensities of both Cy3 (donor) and Cy5 (acceptor) dyes were measured. Proximity 

of the labels in single nucleosomes was characterized by calculating of so-called proximity ratio 

(EPR), and the frequency distribution of EPR was plotted for each nucleosome sample. Absolute 

distances between labels were not calculated because of insufficient data about quantum yields and 

an instrumental factor. 

 

Figure 1. The experimental approach for analysis of PARP-1-dependent changes in 

nucleosome structure. A. Three types of mononucleosomes containing the single pair of 

Cy3 and Cy5 dyes in different positions on the nucleosomal DNA (the positions of Cy3 

and Cy5 are shown by green and red circles, respectively). B. PAGE and in-gel FRET 

analysis of assembled nucleosomes and DNA template. Distributions of Cy3 and Cy5 

fluorescence in a gel at a Cy3 excitation are shown in green and red, respectively. Yellow 

color (superposition of green and red colors) indicates a considerable FRET efficiency. C. 

Experimental approach. spFRET from nucleosomes was measured in the absence or 

presence of PARP-1 and subsequent addition of NAD
+
. 

 



25 

AIMS Genetics  Volume 4, Issue 1, 21-31. 

3.2. PARP-1 induces structural changes in nucleosomal DNA 

In agreement with the previously published data [16], spFRET analysis revealed two 

populations of N 13/91 nucleosomes (Figure 2A, Table S1). A peak with the EPR maximum at 0.69 

corresponds to a major fraction of compact nucleosomes, while a peak with the EPR maximum at 

0.01 likely indicates the presence of a minor fraction of nucleosomes with partially unwrapped DNA. 

After addition of 50 nM PARP-1, the distribution of nucleosomes by EPR is changed (Figure 2A) 

indicating formation of PARP-1-nucleosome complexes. These complexes are characterized by EPR 

with a maximum at 0.31, while a shoulder in a higher EPR region corresponds to PARP-1-free, more 

compact intact nucleosomes. Incomplete PARP-1 binding is observed most likely because the 

dissociation constant for PARP-1 complexes with similar nucleosome constructs is 85 nM [12]. In 

agreement with this proposal, a high EPR shoulder disappears after increasing concentration of 

PARP-1 to 100 nM (Figure 2A). The low-EPR peak at 0.01 is also diminished in the presence of 

PARP-1, suggesting that spontaneous DNA uncoiling from the octamer is diminished in the complex.  

Domination of the single Gaussian peak in the frequency distribution of EPR indicates formation 

of a single uniform population of nucleosome complexes with PARP-1. A shift of EPR maximum from 

0.69 to 0.31 shows that PARP-1 binding causes structural changes in nucleosomal DNA near the 

entrance of DNA into nucleosome, namely in the region, where DNA interacts with the H2A-H2B 

dimer (position +13) and H4-H2B interface (position +91). To evaluate a possibility that PARP-1 

disrupts nucleosomes and forms complexes with histone-free DNA, the same experiments were 

conducted with DNA template used for nucleosome assembly (Figure 2B). In more extended 

histone-free DNA, the Cy3 and Cy5 labels are positioned far from each other and no FRET occurs 

(maximum of EPR is 0.01, Figure 2B, Table S1). The frequency distribution of EPR, which is observed 

for the histone-free DNA, is minimally affected by PARP-1 (Figure 2B).  

 

Figure 2. PARP-1 induces structural changes in nucleosomal DNA. A. spFRET 

analysis of PARP-1 binding to N 13/91 nucleosomes. Typical frequency distributions of 

EPR are shown for N 13/91 nucleosomes before and after addition of 50 or 100 nM of 

PARP-1 (for quantitative and statistical data see Table S1). B. spFRET analysis of 

+13/+91-labeled DNA before and after addition of 50 or 100 nM of PARP-1.  
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In summary, binding PARP-1 to the N 13/91 nucleosome causes considerable structural changes 

in nucleosomal DNA that are accompanied by an increase in the distance between the labels 

introduced near the entrance of DNA into a nucleosome, indicating that gyres of nucleosomal DNA 

are coming apart and, at the same time, by diminished spontaneous DNA uncoiling from the octamer 

in the complex, suggesting that the DNA end has a lower mobility in the PARP-1-nucleosome complex. 

These observations, taken together, suggest that PARP-1 causes a mobility of the end of nucleosomal 

DNA, but, at the same time, induces uncoiling of nucleosomal DNA together with histones. 

3.3. PARP-1 induces similar structural changes in different regions of nucleosomal DNA 

To evaluate how PARP-1 affects other parts of nucleosomal DNA, N 35/112 and N 57/135 

nucleosomes were analyzed (Figure 3). The N 13/91 (Figure 2A) and N 35/112 nucleosomes 

(Figure 3A) are characterized by similar frequency distributions of EPR (see Table S1 for the 

statistical data). Although labels in the nucleosomes N 35/112 were positioned far from the extending 

DNA end (PARP-1 target), FRET between theses labels was significantly affected by PARP-1 

binding. The maximum of the main EPR peak was shifted from 0.63 to 0.37, indicating to 

reorganization of nucleosomal DNA structure near the interface between the H2A/H2B dimers and 

H3/H4 tetramers (position +35) and/or H3/H4 tetramers (position +112) that resulted in the increase 

in the inter-label distance.  

N 57/135 nucleosomes were also characterized by a bimodal distribution of EPR (Figure 3B and 

Table S1). In the presence of 100 nM PARP-1, a broad EPR distribution was formed with a maximum 

at 0.43. This broadening could be explained by an increased mobility of nucleosomal DNA localized 

near the position +135 in the PARP-1-nucleosome complex.  

 

Figure 3. PARP-1 induces similar structural changes in different regions of 

nucleosomal DNA. spFRET analysis of PARP-1 binding to N 35/112 (A) and N 57/135 

nucleosomes (B). Typical frequency distributions of EPR are shown for nucleosomes 

before and after incubation in the presence of 50 or 100 nM of PARP-1 (for quantitative 

and statistical data see Table S1). 
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For every combination of the labels, the shift of the main peak from higher to intermediate EPR 

values was observed. In the case of N 13/91 and N 35/112 the shift was accompanied by a significant 

decrease in the height of the low-EPR peak (Figures 2 and 3). Taken together, the data indicate that 

PARP-1 can partially and similarly uncoil different regions of nucleosomal DNA, and, at the same 

time, can restrict mobilities of the +13, +35 and +112 regions of nucleosomal DNA.  

3.4. PARP-1-induced changes in nucleosome structure are reversed after PARP-1 automodification 

To elucidate how activation of the enzymatic activity of PARP-1 affects the structure of the 

PARP-1-nucleosome complex, pre-formed PARP-1 complexes with N 13/91 nucleosomes were 

incubated in the presence of different concentrations of NAD
+
. DNA-bound PARP-1 is activated, 

auto-poly(ADP)-ribosylated in the presence of NAD
+
 and loses its capability to interact with 

damaged DNA and nucleosomes [23,24]. Therefore, it was expected that nucleosomal EPR 

distribution would be recovered in the presence of NAD
+
. spFRET analysis revealed that incubation 

of the PARP-1-nucleosome complex in the presence of 2 or 4 µM NAD
+ 

results in a progressive, 

stepwise shift of the mean value of EPR peak from 0.31 to 0.43 or to 0.62, respectively (Figure 4 and 

Table S1). In the presence of 4 µM NAD
+
, the main EPR maximum (0.62) approaches the value, 

which is a characteristic of free nucleosomes (0.69), suggesting that nucleosome structure is almost 

completely recovered. Since the principal NAD
+
-dependent reaction is PARP-1 automodification [25], 

the data indicate that after partial automodification (i.e., at 2 µM NAD
+
) PARP-1 remains bound to 

nucleosomes and forms a discrete intermediate PARP-1-nucleosome complex.  

 

Figure 4. PARP-1-induced changes in nucleosome structure are reversed after 

PARP-1 automodification. spFRET analysis of PARP-1 automodification in the 

complex with nucleosomes N 13/91 after addition of NAD
+
. Typical frequency 

distributions of EPR are shown (for quantitative and statistical data see Table S1).  
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Incomplete reversal of the nucleosomal EPR distributions at 4 µM NAD
+
 is likely explained by 

incomplete automodification of PARP-1 that remains bound to the nucleosome. Alternatively, 

poly(ADP)-ribosylation of core histones [8] prevents complete recovery of the nucleosomal 

structure.  

4. Discussion 

Our spFRET experiments suggest that PARP-1 binds to a nucleosome and induces disturbance 

of different regions of nucleosomal DNA: near the entrance/exit of DNA into/from a nucleosome, 

and in the region positioned ~35 bp from the boundaries of nucleosomal DNA (Figures 2 and 3). 

This uncoiling of nucleosomal DNA is accompanied by a reduced mobilities of the +13, +35 and 

+112 regions of nucleosomal DNA (Figures 2 and 3). PARP-1 automodification (self-PARylation) is 

accompanied by formation of an intermediate complex, and eventually leads to nearly complete 

recovery of the initial structure of nucleosome (Figure 4). Thus spFRET is a sensitive method for 

analysis of PARP-1-induced changes in chromatin structure that could also be used for analysis of 

PARP-1 inhibition by various compounds. 

PARP-1 binds to nucleosomes having one linker DNA with an exposed double-strand break 

with stoichiometry of one PARP-1 molecule per nucleosome [12]. Rearrangements in the enzyme 

structure after binding to a double-strand DNA break [7] make HD subdomain unstable, resulting in 

activation of the catalytic center of PARP-1 [26,27]. If PARP-1 is bound in the vicinity of a 

nucleosome, activated PARP-1 can also induce a considerable, partial and reversible disturbance of 

nucleosomal DNA structure (Figure 5). Similar, although less pronounced changes of nucleosomal 

structure have been observed after acetylation of core histones and DNA methylation in a 

nucleosome [28,29]. Much more dramatic uncoiling of nucleosomal DNA together with the 

associated core histones was observed in the complex between yFACT and a nucleosome [16]. It is 

possible that yFACT and PARP-1 induce conformational changes in nucleosomal DNA of similar 

nature, but different magnitude. 

Nucleosome structure can be considerably changed during various processes, such as 

transcription [30-32] and protein binding to nucleosomal DNA [33]. These conformational changes 

include: (i) DNA unwrapping from an intact octamer; (ii) DNA unwrapping accompanied by opening 

of the (H2A-H2B) dimer/(H3-H4)2 tetramer interface; (iii) DNA unwrapping with complete octamer 

disassembly and (iv) the unwrapping involving opening of the (H3-H4)2 tetramer [34-36]. Since 

different regions of nucleosomal DNA are uncoiled in the PARP-1-nucleosome complex to a similar 

degree (Figure 5), the global change in the nucleosome structure involving structural changes in the 

entire histone octamer likely occurs. The nature and extent of these conformational changes in 

nucleosome structure remain to be determined. 

Detection and repair of double-strand breaks in cells require multi-step chromatin remodeling. 

Thus p400/Tip60 chromatin remodeler induces exchange of histones H2A to H2A.Z onto 

nucleosomes at the break, which is important for downstream acetylation of H4 histone and 

maintenance of less compact chromatin structure in the break region [37]. PARP-1-induced DNA 

uncoiling could facilitate the histone exchange and/or displacement during the chromatin remodeling, 

before PARP-1 leaves the DNA break after automodification. It is also possible that the stable 

PARP-1-nucleosome complexes could be formed at transcription start sites [4]. 
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Figure 5. The model of PARP-1-induced conformational changes in nucleosomal DNA 

in the vicinity of double-strand DNA break. DNA is tightly wrapped around histone 

octamer, but there are fluctuations in the structure of the double helix, especially in an area 

near DNA entering or exiting the nucleosome core. Unmodified PARP-1 is inactive and its 

domains (shown by different colors) are connected together by flexible linkers [26]. When 

PARP-1 binds to a DNA damage or available DNA end in the vicinity of a nucleosome, it 

forms a compact structure [7], which induces activation of PARP-1 and partial unwrapping 

of nucleosomal DNA. This nucleosome unfolding is accompanied by a reduced mobilities 

of the +13, +35 and +112 regions of nucleosomal DNA and possibly by destabilization of 

the intranucleosomal interactions between core histones. In the presence of NAD
+
 PARP-1 

is automodified and released from the nucleosome; PARP-1 release is accompanied by 

spontaneous recoiling of nucleosomal DNA. Yellow circles indicate positions of the pairs 

of fluorescent dyes on nucleosomal DNA. 

5. Conclusions 

Nucleosome structure can be considerably and reversibly unfolded after PARP-1 binding. These 

changes include transient and partial uncoiling of nucleosomal DNA along its entire length. These 

PARP-1-dependent changes in nucleosome structure are nearly completely reversed after PARP-1 

eviction due to its auto-poly(ADP)-ribosylation. 
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