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Abstract
We are capable of storing a virtually infinite amount of visual information in visual long-term memory (VLTM) storage. At the same
time, the amount of visual information we can encode and maintain in visual short-term memory (VSTM) at a given time is severely
limited. How do these two memory systems interact to accumulate vast amount of VLTM? In this series of experiments, we exploited
interindividual and intraindividual differencesVSTMcapacity to examine the direct involvement ofVSTM in determining the encoding
rate (or “bandwidth”) of VLTM. Here, we found that the amount of visual information encoded into VSTM at a given moment (i.e.,
VSTM capacity), but neither the maintenance duration nor the test process, predicts the effective encoding “bandwidth” of VLTM.
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Although visual long-termmemory (VLTM) has large enough
capacity to store a virtually infinite amount of visual informa-
tion (Brady, Konkle, Alvarez, & Oliva, 2008; Standing,
1973), not every information that we wish to remember is
encoded. What limits our access to the unlimited memory
storage? According to Atkinson and Shiffrin’s influential
modal model of memory (Atkinson & Shiffrin, 1968, 1971;
Rundus & Atkinson, 1970; Shiffrin & Atkinson, 1969), infor-
mation is first encoded into short-term memory (STM) in
which information is actively maintained. And this active
maintenance is what grants access to long-term memory
(LTM) storage. Despite its elegant simplicity, this model later
received criticisms particularly on the proposed role of the
STM maintenance in LTM encoding (Craik & Watkins,
1973; Naveh-Benjamin & Jonides, 1984). This criticism led
to a discovery of the importance of the nature of encoding
processes that information undergoes (Craik, 1983; Craik &
Lockhart, 1972; Craik & Tulving, 1975; Craik & Watkins,
1973; Fisher & Craik, 1977; Moscovitch & Craik, 1976) and
the characterization of the interaction between the encoding

and retrieval processes became a central theme of LTM re-
search. As a result, one aspect of LTM encoding proposed in
the modal model—namely, its capacity limitation—received
little attention to this date. That is, is there a capacity limitation
in the amount of information encoded into LTM at a given
time? If so, is this initial encoding bottleneck analogous to
STM capacity? Recent studies that examined the limit of vi-
sual memory encoding had participants remember one object
at a time, and therefore, their results do not directly inform us
about the existence of such encoding bottleneck (e.g., Brady
et al., 2008; Endress & Potter, 2014). In order to fully charac-
terize the mechanism of VLTM encoding, it is important to
examine whether there exists a capacity-limited encoding bot-
tleneck by directly manipulating the amount of information
that needs to be encoded into VLTM at the same time. Here,
by manipulating the number and the quality of visual infor-
mation that needs to be encoded into VLTM simultaneously,
we found that VSTM capacity predicts the “bandwidth” of
VLTM encoding due to a shared encoding bottleneck.

Individual difference approach to examine
the influence of VSTM capacity on encoding
of VLTM

VSTM allows us to actively represent a limited amount of
visual information in mind at a given time (Cowan, 2001; K.
Fukuda, Awh, & Vogel, 2010a; Luck & Vogel, 2013).
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Although it is currently under debate as to how we should best
characterize this capacity limitation (K. C. S. Adam, Vogel, &
Awh, 2017; Bays & Husain, 2008; Fougnie, Asplund, &
Marois, 2010; Luck & Vogel, 1997; Ma, Husain, & Bays,
2014; Rouder et al., 2008; van den Berg & Ma, 2018;
Wilken & Ma, 2004; Zhang & Luck, 2008), researchers agree
that, at a given moment, individuals on average can represent
three to four simple objects worth of information in VSTM in
a precise enough format to inform their decisions onwhat they
remember. In other words, when individuals are presented
with a visual display that contains more than three to four
simple objects worth of information to remember, their
VSTM representation of some parts of the display becomes
incomplete or too imprecise to make accurate judgments
about what they remember.

Furthermore, individuals reliably differ in their VSTM ca-
pacity (K. C. Adam, Mance, Fukuda, & Vogel, 2015; Awh,
Barton, &Vogel, 2007; Cowan et al., 2005; K. Fukuda, Vogel,
Mayr, & Awh, 2010b; K. Fukuda, Woodman, & Vogel, 2015;
Shipstead, Harrison, & Engle, 2015); some individuals can
represent four or more objects worth of information, while
others can represent as little as two or fewer objects worth of
information in a precise enough format to inform their deci-
sions about what they remember. Here, we took these reliable
individual differences in VSTM capacity to our advantage to
test whether VSTM capacity determines the “bandwidth” of
VLTM encoding. If VSTM capacity determines the amount of
information successfully encoded into VLTM, individuals
with high capacity should encode more items at a given time
than those with lower capacity. Critically, this relationship
should only emerge when the amount of visual information
to encode saturated their VSTM (e.g., above Set Size 3 or 4).1

Experiments 1a and 1b: VSTM capacity
predicts object VLTM encoding when VSTM is
saturated

In Experiments 1a and 1b, we focused on the encoding of a
relatively simple form of VLTM—namely, the object VLTM.
After measuring individuals’ VSTM capacity, we had partici-
pants encode a varying number of pictures of real objects at a
time. Subsequently, participants’ VLTM for the encoded pic-
tures were assessed. If VSTM capacity determines the band-
width of VLTM encoding, we should expect that individual
differences in VSTM capacity predict the VLTM performance
only when the encoding set size saturated individuals’ VSTM
capacity. To examine the effect of encoding intention on VLTM

encoding, we ran the same experiment in both an incidental
learning condition (i.e., individuals were unaware of the object
recognition task; Experiment 1a) and an intentional learning
condition (i.e., individuals were informed about the object rec-
ognition task prior to the object encoding task; Experiment 1b).

Method

Participants

After signing the consent form approved by the Institutional
Review Board, 55 students at the University of Oregon (28 for
Experiment 1a and 27 for Experiment 1b) with normal (or
corrected-to-normal) vision participated for the introductory
psychology course credits.

Power calculation

In order to test our key prediction about the effect of VSTM
capacity on VLTM encoding, we conducted a repeated-
measures ANOVA, with one within-subjects factor of set size
and one between-subjects factor of intention for learning.
Anticipating that we will obtain a moderate effect size (i.e., f
= 0.25; J. Cohen, 1988) of set size, the a priori-power calcula-
tion with alpha level of 0.05, the statistical power of 0.8, and 0.6
correlation coefficients among the repeated measures, indicated
that we would need 24 subjects (Faul, Erdfelder, Lang, &
Buchner, 2007). This assures that our sample size was sufficient
to detect a moderate size effect with 0.8 statistical power.

As for the correlational analyses, we predicted that there
will be a strong correlation (r = .6) between individuals’
VSTM capacity and VLTM performance for the objects pre-
sented in the supracapacity set size (i.e., Set Size 6). This is
because of the causal role that we hypothesized VSTM capac-
ity plays in VLTM encoding. Based on this assumption, we
would have needed 19 participants to reliably observe the
result with the statistical power of 0.8. This assures that our
sample size was sufficient to observe the targeted effect.

For the comparison of the correlational strengths for indi-
viduals’ VSTM capacity and VLTM performance across set
sizes, we were not able to estimate the sufficient sample size to
reliably observe the results for our within-subjects design.
However, the power for detecting the difference in correlation
strengths increases when two correlations share one variable
in common and the correlation between the other variables is
available (Steiger, 1980). That is exactly how our experiments
were designed.

Bayes factor analysis

In addition, to appreciate the statistical significance and
nonsignificance of our results, we used JASP software
(JASP Team, 2019) and calculated Bayes factor using a

1 Although our experiments were inspired by the models of VSTM that incor-
porate discrete high-threshold representations, our predictions can be easily
conceptualized in any VSTMmodels that acknowledge some form of capacity
limit in the amount of visual information that can be represented precisely
enough to inform mnemonic decisions.
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default parameter setting (Cauchy prior centered on zero with
a scale = 0.707). BF10 denotes the odds ratio favoring the
alternative hypothesis over the null hypothesis, and BF01 de-
notes the odds ratio favoring the null hypothesis over the
alternative hypothesis.

Stimuli and procedure

Color change detection task A standard color change detec-
tion task was administered first to measure individuals’
VSTM capacity (see Fig. 1). In this task, either four or eight
colored squares (1.15° × 1.15°) were presented for 150 ms on
the screen with a gray background (memory array), and indi-
viduals were instructed to remember as many of them as pos-
sible over a 900-ms retention interval during which the screen
remained blank. Then, one colored square was presented at
one of the original locations in the memory array (test array),
and participants judged if it was the same colored square as the
original square presented at that location with a button press
(“Z” if they thought it was the same, and “/” if different). The
test array remained on the screen until their response. The
change frequency was 50% to make sure that any response
bias would neither benefit nor penalize their performance. The
colors of the memory array were randomly selected from a
highly discriminable set of nine colors (red, green, blue, yel-
low, magenta, cyan, orange, black, and white) without re-
placement. Participants performed 60 trials each for Set
Sizes 4 and 8 conditions in a pseudorandom order.

Object encoding task Then, participants performed the object
encoding task (see Fig. 2). This task was identical to the color
change detection task except for two modifications. First, the
stimuli presented were pictures of real objects (mean radius =
4.9°) borrowed from Brady and colleagues study (2008), and
second, the tested set sizes were two, four, and six. Pictures
were selected from a set of 2,400 different pictures without
replacement so that none of the pictures appeared on the mem-
ory arrays were presented more than once during the encoding
task. Participants performed 40 trials each for Set Sizes 2, 4,
and 6 in a pseudorandom order.

Object recognition task Following the encoding phase, par-
ticipants performed the object recognition task (see Fig.
2). In this task, participants were presented with one pic-
ture of real objects (mean radius = 4.9°), and they were
asked to judge, with a button press, if it was a picture
that was presented anytime, anywhere during the
encoding phase (“O” for “Old” or studied, and “N” for
“New” or never seen). The picture stayed on the screen
until their response. Forty previously presented (old) pic-
tures for each set size and 120 new pictures were tested
in a pseudorandom order. Of note, a picture that was
tested during the object encoding task was never tested
in this task.

Results

Color change detection task

First of all, individuals’ performance on the color change
detection task was converted to VSTM capacity estimate
for each set size (K4 for Set Size 4 and K8 for Set Size 8)
using a standard formula (Cowan, 2001). K4 and K8 were
averaged to compute a single metric for individuals’ VSTM
capacity estimates (Kcolor). The mean Kcolor score was 2.6
(SD = 0.87) and 2.7 (SD = 0.71) for Experiments 1a and 1b,
respectively. For a demonstrative purpose, individuals were
divided by a median split, into high K (mean K = 3.4, SD =
0.52 for Experiment 1a, and mean K = 3.3, SD = 0.44 for
Experiment 1b) and low K (mean K = 1.9, SE = 0.47 for
Experiment 1a, and mean K = 2.1, SE = 0.40 for
Experiment 1b) groups (see Fig. 3).

150ms 900ms Until Response

VSTM task: the color change detection task

Fig. 1 The color change detection task. In this task, an array of colored
squares is briefly presented, and participants are asked to hold it in in
mind during the retention interval. When a single square is presented,
participants indicate if it is the same square as the one that was
originally presented in that location. (Color figure online)

VLTM test:the object recognition test

Encoding Phase:the object change detection task

150ms 900ms Until Response

Until Response

Fig. 2 The schematic of Experiments 1a and 1b. The top figure shows the
schematic of the encoding phase. In this phase, participants performed an
object change detection task. The bottom figure shows the schematic of
the object recognition memory test. In this test, participants judged if the
picture presented was presented anytime or anywhere during the
encoding task. (Color figure online)
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Object encoding task

In the object encoding task, the change detection accuracy for
each set size was converted to the capacity estimate. The ca-
pacity estimate for each set size was K2 = 1.7 (SD = 0.26), K4
= 2.0 (SD = 0.94), and K6 = 2.2 (SD = 0.92) for Experiment
1a, and K2 = 1.6 (SD = 0.21), K4 = 2.1 (SD = 0.50), and K6 =
1.7 (SD = 1.01), for Experiment 1b (see Fig. 3). The results
were analyzed by a repeated-measures ANOVAwith two fac-
tors (learning intention, set size). As expected, there was a
significant set size effect, F(2, 106) = 5.85, p < .01, ηp

2 =
0.1, BF10 = 3.53. In other words, the K estimates increased
from Set Size 2 to Set Size 4 and stopped increasing thereafter
(as supported by marginally significant linear, F(1, 53) = 3.4,
p = .07, ηp

2 = 0.06, and significant quadratic, F(1, 51) = 8.9, p
< .01, ηp

2 = 0.14, effects. There was no main effect of learning
intention, F(1, 53) = 1.1, ns, BF01= 2.71. Furthermore, we
examined the correlation between individuals’ VSTM capac-
ity estimated from the color change detection task and from
the object encoding task. Here, we found that there was a
significant positive correlation between the two estimates for
both Experiment 1a (r = .65, p < .01) and 1b (r = .49, p <
0.01). This suggests that VSTM capacity estimated by the
canonical color change detection task predicted the amount
of object representations that participants encoded into their
VSTM.

Object recognition task

Here, we measured individuals’ corrected recognition per-
formance (Pr = hit rate − false alarm) for each set size. The
hit rate was calculated as the proportion of correct re-
sponses for old trials, and the false alarm was calculated
as the proportion of incorrect responses for new trials. The
results were first analyzed by a repeated measures ANOVA
with two factors (learning intention, set size; see Fig. 3).
First of all, there was a strong set size effect, F(2, 106) =
22.0, p < .001, ηp

2 = 0.29, BF10 = 8.60×105). In other
words, Pr scores decreased from Set Size 2 to Set Size 4
and stopped decreasing thereafter (as supported by both
significant linear, F(1, 53) = 37.5, p < .001, ηp

2 = 0.41,
and quadratic, F(1, 53) = 5.6, p < .05, ηp

2 = 0.1, effects.
There was no main effect of learning intention, F(1, 53) =
2.61, ns, BF01 = 1.26. Importantly, this set-size-dependent
reduction in the recognition accuracy does not necessarily
mean that participants encoded a smaller number of visual
objects from the display as the set size increased. That is,
even if one can remember two objects, regardless of the set
size, the likelihood that the encoded objects get tested in
the recognition test decreases as the set size increase be-
yond two. Rather, our results demonstrate that there is a
capacity limit in how much information we can encode into
VLTM at a given time.
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Fig. 3 The results of Experiment 1a and 1b. The top row shows the result
of Experiment 1a, and the bottom shows the results of Experiment 1b.
The left panels show the object change detection performance of high and
low capacity (K) groups across set sizes, and the recognition performance

of high and low capacity (K) groups across set sizes. The right scatterplots
show the correlations between individuals’ visual short-term memory
capacity estimate and recognition performance for each condition. The
error bars represent the standard error of the mean. (Color figure online)
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Next, we examined the correlations between individuals’
VSTM capacity and corrected recognition performance. Here,
we found that although the correlations between the capacity
estimate and the recognition performance was not significant
for subcapacity set size (r = .19, ns, and r = .20, ns, for Set Size
2 in Experiments 1a and 1b, respectively), they became stron-
ger as set size surpassed their VSTM capacity (r = .47, p < .01,
and r = .25, ns, for Set Size 4 in Experiments 1a and 1b,
respectively; r = .67, p < .01, and r = .43, p < .05, for Set
Size 6 in Experiments 1a and 1b, respectively). Critically,
Steiger’s (1980) Z test revealed that the difference in the
strength of the correlation with VSTM capacity for
subcapacity set size (i.e., Set Size 2) and supracapacity set size
(i.e., Set Size 6) was statistically reliable for both experiments.
(Steiger’s Z test: Z = 2.74, p < .01 for Experiment 1a with
correlation between VLTM for Set Size 2 and Set Size 6 =
0.42; Steiger’s Z test: Z = 2.17, p < .05 for Experiment 1b with
correlation between VLTM for Set Size 2 and Set Size 6 =
0.69). Thus, these results confirmed our hypothesis that
VSTM capacity predicts the “bandwidth” of VLTM encoding.

Discussion

In Experiments 1a and 1b, we confirmed the first and the most
basic corollary of our “bandwidth” account of VLTM
encoding irrespective of the intention for learning. That is,
VSTM capacity predicts the amount of VLTM encoded from
a display only when the displayed information exceeds indi-
viduals’ VSTM capacity. This specificity is critical because it
negates the possibility that high capacity individuals were bet-
ter at any memory tasks because they are those who tend to be
more motivated.

Experiment 2a and 2b: VSTM capacity
predicts relational VLTM encoding when
VSTM is saturated

To extend our finding to arguably different types of VLTM,
we investigated the role of VSTM capacity in creating rela-
tional VLTM. Relational memory refers to the memory of
interrelations among multiple memory representations, and
researchers have argued that it has a specific reliance on the
hippocampus and related medial temporal lobe regions (N. J.
Cohen, Poldrack, & Eichenbaum, 1997; Davachi, 2006;
Davachi & Wagner, 2002; Hannula & Ranganath, 2008;
Kumaran & Maguire, 2005; Prince, Daselaar, & Cabeza,
2005; Squire, 1992). The experimental design was very sim-
ilar to Experiment 1. After the measurement of VSTM capac-
ity, participants proceeded to the relational encoding task
followed by a VLTM recognition test. Here, we chose the
arrays of colored squares as the relational stimuli because,
unlike pictures of real objects, each array is nearly identical

in terms of their components (i.e., a selection of squares from
nine possible colors), but the difference is determined by the
relative positions of the squares (i.e., where is the red square in
relation to the blue square?). Therefore, to perform well on the
later recognition test, it is critical to have encoded the relation-
al information of the squares. If VSTM capacity also deter-
mines the “bandwidth” of VLTM encoding for relational in-
formation, individuals’ VSTM capacity should be positively
correlated with the VLTM recognition performance only
when their VSTM capacity is saturated during encoding
(i.e., Set Size 8). Similarly to the previous experiments, we
ran two versions of the same studies to test both incidental
(Experiment 2a) and intentional (Experiment 2b) learning.

Method

Participants

After signing the consent form approved by the Institutional
Review Board, 51 students at the University of Oregon (27 for
Experiment 2a, and 24 for Experiment 2b) with normal (or
corrected-to-normal) vision participated for the introductory
psychology course credits.

Power calculation

In order to test our key prediction about the effect of VSTM
capacity on the encoding of relational VLTM, we conducted a
repeated-measures ANOVA, with one within-subjects factor
of set size and one between-subjects factor of intention for
learning. Anticipating that we will obtain a moderate effect
size (i.e., f = 0.25; J. Cohen, 1988) of set size, the priori-power
calculation with the same parameter setting as Experiment 1
indicated that we would need 24 subjects (Faul et al., 2007).
This assures that our sample size was sufficient to detect a
moderate size effect size with 0.8 statistical power.

As for the correlational analyses, we predicted that there will
be a strong correlation (r = .60) between individuals’ VSTM
capacity and VLTM recognition performance for the
supracapacity set size arrays (i.e., Set Size 8). Based on this
assumption, we would have needed 19 participants to reliably
observe the result with the statistical power of 0.8. This assures
that our sample size was sufficient to observe the targeted effect.

Stimuli and procedure

Color change detection task The task was identical to the ones
used in the previous experiments.

Relational encoding task Next, participants performed the re-
lational encoding task. The task was identical to the color
change detection task except for the following modifications.
First, we created 15 Set Size 4 and 15 Set Size 8 arrays that
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participants encoded repeatedly throughout the encoding
phase (old arrays). To do so, 15 different spatial layouts were
created by selecting eight (Set Size 8) locations on the 6 × 6
grid spanning across the entire visual field. To avoid high
similarity amongst spatial layouts for Set Size 4 old arrays,
the 15 layouts for Set Size 4 arrays were manually created
using the same 6 × 6 grid (see Fig. 4). Then, for each layout,
a color value was randomly assigned to each location from the
set of nine colors without replacement. Participants performed
the change detection task on these arrays for 15 blocks. In
each block, each old array was presented twice in a pseudo-
random order. Therefore, by the end of block 15, each old
array was exposed 30 times. Importantly, the tested location
for each old array was randomly determined at every expo-
sure. This ensured that the change detection performance is
not contaminated by associative learning between each old
array and its tested location. After block 15, participants per-
formed another block of the change detection task in which
they saw 30 old arrays (15 Set Size 4 arrays and 15 Set Size 8
arrays) twice and 60 newly created arrays (30 Set Size 4 arrays
and 30 Set Size 8 arrays) once in a pseudorandom order. This
allowed us to measure the effect of repeated exposures on
VSTM capacity while controlling for the general practice
benefit.

Relational recognition test After the VLTM encoding task,
which lasted for approximately an hour and a half, participants
performed the relational recognition task. In this task, partic-
ipants were presented with one spatial array of colored squares
at a time, and they were asked to judge, by a button press, if it
was an array that was presented during the encoding phase.
The array stayed on the screen until response. Fifteen previ-
ously presented old arrays for each set size and 15 new arrays
for each set size were tested in a pseudorandom order.

Results

Color change detection task

Individuals’ VSTM capacity score (K) was calculated as the
average of K estimate for Set Size 4 (mean K4 = 2.6, SD =
0.59 for Experiment 2a, and mean K4 = 2.6, SD = 0.62 for
Experiment 2b) and Set Size 8 (mean K8 = 2.1, SD = 1.04 for
Experiment 2a, and mean K4 = 2.5, SD = 1.34 for Experiment
2b). This resulted in themeanK score of 2.3 (SD = 0.69) and 2.6
(SD = 0.90) for Experiments 2a and 2b, respectively. The dif-
ference in the K scores between experiments did not reach the
statistical significance (p > .20). For a demonstrative purpose,
individuals were divided into high (mean K = 2.9, SD = 0.54

Set size 4 array examples Set size 8 array examples

Encoding phase (Block1-15): the change detection task

Encoding phase (Block16): the change detection task

VLTM test: the array recognition test

Old Old Old Old

Old OldNew New

Old New New Old

Fig. 4 The example stimuli and the schematic of Experiments 2a and 2b.
The top panel shows some examples of Set Size 4 and Set Size 8 arrays
used in the experiments. The bottom panel shows the schematic of the
experiments. In the first 15 blocks of the encoding phase, participants
performed the color change detection tasks on 30 arrays (15 each for
Set Size 4 and Set Size8) that were repeatedly presented across 15
blocks. Old indicates that the array shown above was a repeating array.

In the 16th block of the encoding phase, participants performed the color
change detection task on the old arrays as well as 60 (30 each for Set Size
4 and Set Size 8) new arrays that were never presented during the
encoding phase so far. In the VLTM test, participants were presented
with old and a different set of new arrays and judged whether they have
seen the arrays during the encoding phase. (Color figure online)
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and mean K = 3.3, SD = 0.64 for Experiments 2a and 2b) and
low K (mean K = 1.8, SD = 0.31 and mean K = 1.8, SD = 0.35
for Experiments 2a and 2b) groups by amedian split (see Fig. 5).

Relational encoding task

For both experiments, individuals were presented with each
old array 30 times across the span of the encoding task. To test
the learning effect on the change detection performance, we
tested if there was an improvement in performance over time
(see Fig. 5). Although there was a reliable set size effect, F(1,
49) = 12.79, p < .01, ηp

2 = 0.21 for K4 > K8 (BF10 =
3.15×1012) and a reliable effect of learning intention, F(1,
49) = 9.22, p < .01, ηp

2 = 0.16 for intentional learning >
incidental learning (BF10 = 9.43), there was no interpretable
effect of repetition, F(14, 686) = 0.74, ns (BF01= 2.68×104).
In other words, the capacity estimates for each set size
remained constant across repetitions for both set sizes in both
experiments. There was no interpretable interaction among the
three factors (ps > 0.32, BF01 > 1.2)

To further test the effect of repetition on VSTM capacity
estimate, the K scores for old arrays and new arrays in the last
block of the encoding task were compared (see Fig. 5). A
repeated-measures ANOVAwith three factors of learning in-
tention, set size, and array repetition revealed a significant set
size effect, F(1, 49) = 13.2, p < .01, ηp

2 = 0.21 (BF10 =
1.10×103). In addition, there was a significant effect of

learning intention, F(1, 49) = 4.55, p < .05, ηp
2 = 0.09

(BF10= 1.86). There was no effect of array repetition, F(1,
49) = 0.10, ns (BF01 = 6.21) or interpretable interactions
among the three factors (ps > 0.16, BF01 > 1.8). In addition,
strong correlations between the K estimates for old and new
arrays (rs > .70, ps < .01) revealed that the individual differ-
ences were also preserved even after repeated exposures to the
arrays. This is consistent with previous observation by Olson
and colleagues (Olson, Jiang, & Moore, 2005).

Relational recognition test First, to examine the difference in
distinctiveness for Set Size 4 and Set Size 8 arrays, we com-
pared the false-alarm rates for Set Size 4 and Set Size 8 arrays.
If one type of array was less distinctive than the other, the new
arrays of less distinctive set size would be more likely to be
confused as old than would those of more distinctive set size.
The paired t tests revealed that the false-alarm rates for Set
Size 4 and Set Size 8 arrays were somewhat different in
Experiment 2a, but not in 2b, t(26) = 2.01, p = .06, BF01 =
0.87 for Experiment 2a; t(23) = 0.83, ns, BF01 = 3.41 for
Experiment 2b. These results showed that our manipulation
was somewhat successful in reducing the differences in the
distinctiveness between Set Size 4 and Set Size 8 arrays.

Next, to assess the relational VLTM, we measured the
corrected recognition performance (Pr = hit rate − false alarm).
A repeated-measures ANOVAwith two factors (instruction, set
size) revealed the following results (see Fig. 5). First, there was a

During encoding

V
S

TM
C

ap
ac

ity
(K

)

0

1

2

3

O
ld

N
ew

Encoding blocks

1 5 10

Set size 4
Set size 8

Incidental
learning
(Exp 2a)

0

1

2

3

O
ld

N
ew

Encoding blocks

1 5 10

Set size 4
Set size 8

V
S

TM
C

ap
ac

ity
(K

)

Intentional
learning
(Exp 2b)

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5
-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

R
ec

og
ni

tio
n

pe
rfo

rm
an

ce
(P

r=
H

it
ra

te
-F

al
se

A
la

rm
ra

te
)

VSTM Capacity (K)

Set size 4 Set size 8

r = .59

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5
-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

R
ec

og
ni

tio
n

pe
rfo

rm
an

ce
(P

r=
H

it
ra

te
-F

al
se

A
la

rm
ra

te
)

VSTM Capacity (K)

Set size 4 Set size 8

r = .64

0

1

2

3

4

4 8

V
S

TM
C

ap
ac

ity
(K

)

Set size

High K
Low K

-0.2

0

0.2

0.4

0.6

4 8

R
ec

og
ni

tio
n

pe
rfo

rm
an

ce
(P

r=
H

it
ra

te
-F

al
se

A
la

rm
ra

te
)

Set size

High K
Low K

0

1

2

3

4

4 8

V
S

TM
C

ap
ac

ity
(K

)

Set size

High K
Low K

-0.2

0

0.2

0.4

0.6

4 8

R
ec

og
ni

tio
n

pe
rfo

rm
an

ce
(P

r=
H

it
ra

te
-F

al
se

A
la

rm
ra

te
)

Set size

High K
Low K

Fig. 5 The results of Experiments 2a and 2b. The top row shows the
result of Experiment 2a, and the bottom shows the result of Experiment
2b. The left panels show the color change detection performance of high
and low capacity (K) groups for Set Sizes 4 and 8 across the relational
encoding blocks. Old and new indicate the performance for the repeated
arrays and unrepeated new arrays in the last encoding block. The middle
panels show the mean visual short-term memory capacity estimate for

each set size across the encoding blocks and the recognition performance
of high and low capacity (K) groups for each set size. The right
scatterplots show the correlation between individuals’ visual short-term
memory capacity estimate and recognition performance for each
condition. The error bars represent the standard error of the mean.
(Color figure online)
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main effect of set size, F(1, 49) = 97.36, p < .001, ηp
2 = 0.67,

BF10 = 1.99×1012, that Pr scores for Set Size 4 arrays were
larger than that for Set Size 8 arrays. Although there was a main
effect of learning intention, F(1, 49) = 4.78, p < .05, ηp

2 = 0.09,
BF10 = 0.88, there was no significant interaction between learn-
ing intention and set size, F(1, 49) = 1.34, ns, BF01 = 1.99.

Next, we examined the correlation between VSTM capacity
and VLTM recognition performance. Here, we found that indi-
viduals’K scores did not significantly correlate with Pr scores for
Set Size 4 (r= .10, ns, and r = .28, ns, for Experiments 2a and 2b,
respectively), but they did with those for Set Size 8 (r = .59, p <
.01, and r= .64, p< .01 for Experiments 2a and 2b, respectively).
Critically, Steiger’s (1980) Z test revealed that the difference in
the strength of the correlationwithVSTMcapacity for Set Size 4
and Set Size 8 was statistically reliable for both experiments
(Steiger’s Z test: Z = 2.03, p < .05 for Experiment 2a with
correlation between VLTM for Set Size 4 and Set Size 8 =
0.07; Steiger’s Z test: Z = 2.15, p < .05 for Experiment 2b with
correlation between VLTM for Set Size 4 and Set Size 8 = 0.56).
Thus, these results confirmed our hypothesis that VSTM capac-
ity predicts the “bandwidth” of VLTM encoding only when the
information to encode surpasses one’s VSTM capacity.

Discussion

The results demonstrated that VSTM capacity also predicted
the encoding of relational VLTM only when individuals’
VSTM capacity was saturated. The finding was consistent
regardless of participants’ intention for learning. Together
with the results of Experiments 1a and 1b, our results demon-
strated that VSTM capacity predicts the “bandwidth” for
VLTM encoding regardless of the type of information (i.e.,
object LTM or relational LTM) and the subjects’ intention
for learning (i.e., incidental learning or intentional learning).

Determining the locus of the “bandwidth” of VLTM encoding

Across all the experiments, we consistently observed that the
amount of information represented in VSTM predicted the
amount of information encoded into VLTM—namely, the
“bandwidth” of VLTM encoding. One critical caveat, however,
is that our evidence so far is all correlational. Given that individ-
ual differences in VSTM capacity predict a variety of higher
cognitive functions (e.g., Cowan et al., 2005; Cowan, Fristoe,
Elliott, Brunner, & Saults, 2006; K. Fukuda, Vogel, et al., 2010b;
K. Fukuda et al., 2015; Shipstead et al., 2015; Shipstead, Redick,
Hicks, & Engle, 2012; Unsworth, Fukuda, Awh, & Vogel,
2014), demonstrating that a positive correlation between
VSTM capacity and VLTM encoding is not sufficient to claim
a causal link between them. Therefore, to gain more direct evi-
dence for our account, we conducted additional experiments in
whichwe causallymanipulated the dissociable aspects of VSTM
and examined their impact on VLTM encoding.

More precisely, our VLTM encoding tasks involved three
dissociable VSTM processes. First, visual information had to
be encoded into VSTM. Second, the encoded information had
to be maintained in VSTM across the retention interval. Third,
the maintained representation had to be evaluated to select an
appropriate response for the task at hand (e.g., change detec-
tion task). At this point, it is unclear whether these three pro-
cesses are directly involved in VLTM encoding.

For instance, researchers have theorized that the act of ac-
tive maintenance (Atkinson & Shiffrin, 1971; Khader,
Ranganath, Seemuller, & Rosler, 2007; Ranganath, Cohen,
& Brozinsky, 2005; Rundus, 1971) determines the encoding
success. In other words, VSTM serves as the incubator for
information to become VLTM representations. Although this
view has received both support and criticism, it is plausible
that VSTM maintenance has a direct contribution to VLTM
encoding.

Alternatively, the evaluation of maintained VSTM repre-
sentations could have contributed to VLTM encoding. In our
experimental designs so far, VSTM representations were al-
ways evaluated at the end of each encoding trial (e.g., com-
pared against the test item), and thus it is also plausible that
VLTM was created at this stage of VSTM processes. Thus, in
the next experiments, we decided to manipulate each VSTM
processes to examine their roles on VLTM encoding.

Experiment 3a: VSTM maintenance
and evaluation do not contribute to VLTM
encoding

To determine the effect of VSTM encoding, maintenance and
evaluation on VLTM encoding, we orthogonally manipulated
the number of encoding opportunities, the maintenance dura-
tion, and the necessity of the evaluation in the VLTM
encoding task. If the number of VSTM encoding opportunities
is the key for VLTM encoding, then the stimuli that were
encoded more times should be better remembered than those
that were not. On the other hand, if the duration of VSTM
maintenance is the key, then the stimuli that were maintained
longer should be better remembered than those that were not.
Alternatively, if it is the evaluation of VSTM representation,
then the stimuli whose VSTM representations were evaluated
should be better remembered than those that were not.

Method

Participants

After signing the consent form approved by Institutional
Review Board, 23 students with normal (or corrected-to-nor-
mal) vision at the University of Oregon participated for the
introductory psychology course credits.
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Power calculation

In order to test our key prediction about the role of VSTM
maintenance on VLTM encoding, we conducted a repeated-
measures ANOVA, with one within-subjects factor of
encoding condition (i.e., base, base3, short3 and long).
Anticipating that we will obtain a moderate effect size (i.e., f
= 0.25; J. Cohen, 1988) of encoding condition, a priori-power
calculation with the same parameter setting as Experiment 1
indicated that we would need 19 subjects (Faul et al., 2007).
This assures that our sample size was sufficient to detect a
moderate size effect size with 0.8 statistical power.

Procedure

Object encoding task Participants performed a modified ver-
sion of the object change detection task used in Experiments
1a and 1b (see Fig. 6). In this task, every trial presented two
pictures of real objects for 150ms, and participants were asked
to remember them across the retention interval. In the base

condition, the retention interval was 1.5 seconds long, and the
pictures were presented only once throughout the encoding
phase. In the base3 condition, each trial had a 1.5-second-long
retention interval, but each picture was encountered three
times over the course of the experiment to ensure that pictures
in this condition were encoded into VSTM three times. In the
long condition, the retention interval was three times longer
(4.5 seconds) than that of base condition to equate the total
duration of the VSTM maintenance with the base3 condition.
In the short3 condition, the retention interval was a third in
duration (.5 second) in comparison to the base condition, but
each trial was encountered three times across the experiment
to equate the total duration of VSTM maintenance with the
base condition.

Orthogonal to the retention interval manipulation, the type
of the test was also manipulated. In one half of trials in each
condition, the retention interval was followed by a typical
VSTM test, in which, participants had to judge if the picture
presented at the center was identical to the pictures presented
in the preceding memory array (VSTM test condition). The
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Fig. 6 The schematic and the results of Experiment 3a. The top panel
shows the schematic of the object encoding task. The bottom right panel
shows the recognition performance for two test types. The bottom left

panel shows the recognition performance for four maintenance
conditions. The error bars represent the standard error of the mean
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change frequency was 50% to control for any response bias.
On the other trials (Z/ test condition), the retention interval
was followed by the presentation of “z” or “/” at the center
of the screen. Here, participants were asked to simply press the
corresponding key on the keyboard.

The number of encoding trials was 60 for the base and long
conditions, and 180 for the base3 and short3 conditions to
ensure that the same number of pictures would be tested in
the following VLTM recognition test. Importantly in VSTM
test condition, the same picture was tested across multiple
exposures in order to leave one picture untested for the
VLTM recognition test. The encoding phase lasted for approx-
imately 1.5 hours.

Object recognition test The VLTM recognition test was iden-
tical to the one used in Experiment 1a and 1b. Thirty old
pictures for each condition, 30 × 4 (base, base3, long and
short3) × 2 (VSTM test and Z/ test) = 240 pictures in total,
and 60 new pictures were presented during the test. Of note,
none of the pictures presented as a test item in the VSTM test
condition were presented.

Result

Object encoding task

The performance on the encoding task was analyzed for each
condition. For Z/ test conditions, not surprisingly, the accuracy
was at ceiling across all conditions (accuracies > .98 for base,
base3, short3, and long), F(3, 66) = 1.58, ns, BF01= 2.88. For
VSTM test conditions, there was a small but reliable effect of
the VSTMmaintenance duration such that the accuracy for the
short3 condition (mean = 0.94, SD = 0.04) was better than
those for the base and base3 conditions (mean = 0.91, SD =
0.08 for base; mean = 0.92, SD = 0.07, for base3), t(23) >
2.27, ps < .05, BF10 > 1.82, which were all better than that for
long condition (mean = 0.84, SD = 0.09), t(23) > 4.69, p < .01,
BF10 = 2.44×102. This resulted in a small but detectable re-
duction in the number objects maintained in VSTM as the
retention interval got longer (K = 1.8, 1,7, 1.6, and 1.4 for
short3, base3, base, and long, respectively). Although there
was a small difference in VSTM performance across retention
intervals, we believe that this effect of maintenance duration is
fairly limited considering the magnitude of our manipulation
(1.5 seconds vs. 4.5 seconds) and previous findings (Naveh-
Benjamin & Jonides, 1984).

Object recognition test

First of all, the effect of the test was analyzed by averaging
across all base, base3, short3 and long conditions. Markedly,
there was no difference in recognition performance based on the
type of the test (mean Pr = 0.22, SD = 0.10 for Z/ test condition,

mean Pr = 0.21, SD = 0.10 for VSTM test condition), t(23) =
0.73, ns, BF01 = 3.60 (see Fig. 6). This, together with the recent
findings by Schurgin and Flombaum (2018, Experiment 7),
clearly demonstrated that the link between VSTM and VLTM
encoding was not mediated by the evaluation of VSTM repre-
sentation. Next, the effect of VSTMmaintenance was analyzed.
Given the null effect of the test types, the Pr scores were aver-
aged across the test types for the later analyses. A repeated-
measures ANOVA revealed that there was a significant effect
of learning conditions, F(3, 66) = 24.3, p < .001, ηp

2 = 0.53,
BF10 = 7.95×107 (see Fig. 6). To further characterize the results,
a series of planned t tests were conducted. First, as expected, the
Pr scores for the base3 (mean Pr = 0.29, SD = 0.12) condition
were significantly better than those for the base condition (mean
Pr = 0.15, SD = 0.09), t(22) = 5.7, Cohen’s d = 1.19, p < .001,
BF10= 2.14×103. Strikingly, the Pr scores for the long condition
(mean Pr = .16, SD = 0.11) were statistically equivalent to those
for the base condition, t(22) = 0.28, ns, Cohen’s d = 0.06, BF01
= 4.40, and significantly lower than those for the base3 condi-
tion, t(22) = 7.4, p < .001, Cohen’s d = 1.55, BF10 = 7.94×104.
On the other hand, the Pr scores for the short3 condition (mean
Pr = 0.26, SD = 0.13) was significantly better than those for base
condition, t(22) = 4.6, Cohen’s d = 0.95, p < .001, BF10 =
1.89×102, and statistically equivalent to those for the base3 con-
dition, t(22) = 2.0, p = .06, Cohen’s d = 0.41, BF01 = 0.88.
These results clearly point to the fact that longer VSTM main-
tenance did not positively impact VLTM encoding.

Discussion

In Experiment 3a, we directly tested what VSTM processes
govern the “bandwidth” of VLTM encoding. Here, we ob-
served no evidence that VSTM evaluation or VSTM mainte-
nance affected VLTM encoding. Taken together,
postencoding VSTM processes had a negligible effect on
VLTM encoding. As a result, it seems that it was the number
of VSTM encoding opportunities that had a significant impact
on VLTM encoding.

Experiment 3b: VSTM encoding governs
VLTM encoding

Experiment 3a suggested that postencoding VSTM processes
have no direct influence on VLTM encoding. This effectively
leaves one process, namely VSTM encoding, as a candidate
that governs VLTM encoding. Although this account explains
our findings that more encoding opportunities led to better
VLTM encoding, it is not the only explanation. One alternative
explanation is that when the same stimulus is presented again
during the encoding task, it provides an opportunity for partic-
ipants to retrieve the stimulus from their VLTM, and this inci-
dental retrieval may improve VLTM. Another alternative
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explanation may be that it is the repeated perceptual exposures,
rather than VSTM encoding, that lead to better VLTM
encoding. In order to rule out these alternatives, we parametri-
cally manipulated the quality of VSTM encoding through a
postperceptual masking procedure while fixing the number of
encoding opportunities constant. If VSTM encoding deter-
mines VLTM encoding, postperceptual interruption of VSTM
encoding should lead to an analogous effect on VLTM
encoding. More precisely, we presented masks at various ISIs
from the offset of the stimuli. It is established that
postperceptual masks disrupt VSTM encoding at various de-
grees depending on the stimuli to mask ISIs such that the
shorter the ISI, the more disruption there is to VSTM encoding
(Vogel, Woodman, & Luck, 2006). If VSTM encoding governs
VLTM encoding, we should expect that the parametric
postperceptual disruption of VSTM encoding leads to the anal-
ogous parametric disruption of VLTM encoding. In other
words, when we control for the well-known difference in mem-
ory strengths between VSTM and VLTM (e.g., Brady, Konkle,
Gill, Oliva, & Alvarez, 2013; Schurgin, 2018; Schurgin &
Flombaum, 2018), there should be no interaction between the
memory types and the effect of stimulus-to-mask ISIs.

Method

Participants

After signing the consent form approved by the Institutional
Review Board, 26 students with normal (or corrected-to-nor-
mal) vision at the University of Oregon participated for the
introductory psychology course credits.

Normalization of memory performance

We quantified the VSTM and VLTM performance using the
same corrected recognition performance, namely the Pr (i.e.,
hit rate − false alarm). More precisely, for VSTM perfor-
mance, the hit rate was defined as the proportion of correct
responses for different trials and the false-alarm rate was de-
fined as the proportion of incorrect responses for same trials.
Of note, the calculated Pr values are mathematically equiva-
lent when they are calculated by defining the hit rate as the
proportion of correct responses for same trials and the false-
alarm rate as the proportion of incorrect responses for different
trials. For VLTM performance, we calculated the Pr in the
same way as the previous experiments by defining the hit rate
as the proportion of correct trials for old condition and the
false-alarm rate as the proportion of incorrect trials for new
condition.

Furthermore, to control for a substantial difference in mem-
ory strength between two types ofmemories (e.g., Brady et al.,
2013; Schurgin, 2018; Schurgin & Flombaum, 2018), we nor-
malized the difference in Pr scores between masking and no

mask conditions (i.e., Pr difference) in a memory-specific
manner. That is, for each memory type, we calculated the
relative Pr difference for each masking condition by calculat-
ing the proportion score in the range defined by the smallest
and largest Pr differences across all masking conditions. In
other words, the normalized Pr difference was calculated
using the following formula: normalized Pr difference = (Pr
difference − min(Pr differences)/(max(Pr differences) −
min(Pr differences)) where min(Pr differences) represents
the smallest Pr difference across all masking conditions and
max(Pr differences) represents the largest Pr differences
across all masking conditions. This normalization procedure
allowed us to directly compare the effect of postperceptual
masking while controlling for the substantial difference in
memory strengths between VSTM and VLTM.

Power calculation

First, in order to verify that our postperceptual masking ma-
nipulation worked, we conducted a repeated-measures
ANOVA, with one within-subjects factor of stimulus-to-
mask ISIs (i.e., no mask, 0 ms, 100 ms, 300 ms, 600 ms,
and 1,500 ms) on VSTM Pr scores. Anticipating that we will
obtain a moderate effect size (i.e., f = 0.25; J. Cohen, 1988), a
priori-power calculation with the same parameter setting as
Experiment 1 indicated that we would need 15 subjects
(Faul et al., 2007).

Next, to examine the effect of stimulus-to-mask ISIs on
VLTM encoding, we conducted a repeated-measures
ANOVA, with one within-subjects factor of stimulus-to-
mask ISIs (i.e., no mask, 0 ms, 100 ms, 300 ms, 600 ms,
and 1,500 ms) on VLTM Pr scores. Anticipating that we will
obtain a moderate effect size (i.e., f = 0.25; J. Cohen, 1988), a
priori-power calculation indicated that we would need 15 sub-
jects (Faul et al., 2007).

Lastly, in order to test our key prediction, we conducted a
repeated-measures ANOVA on normalized Pr differences
with two within-subjects factors of memory types (VSTM
and VLTM) and stimulus-to-mask ISIs (i.e., 0 ms, 100 ms,
300 ms, 600 ms, and 1,500 ms). Anticipating that we will
obtain a moderate effect size (i.e., f = 0.25; J. Cohen, 1988),
a priori-power calculation indicated that we would need 18
subjects (Faul et al., 2007). Taken together, our sample size
was sufficient to detect a moderate size effect size with 0.8
statistical power.

Stimuli and procedure

Object encoding task Participants performed a modified ver-
sion of the object change detection task used in Experiments
1a and 1b (see Fig. 7). In this task, every trial presented three
pictures of real objects for 150ms, and participants were asked
to remember them across the retention interval that was
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followed by the same VSTM test as in Experiment 3a. In 200
out of 280 trials, short rapid serial presentations of mask stim-
uli (50 ms each for three stimuli) were presented at each mem-
ory item location during the retention interval at 0 ms, 100 ms,
300 ms, 600 ms, or 1,500 ms after the offset of the memory
array with equal probabilities. The mask stimuli were created
by overlaying multiple pictures not used in the entire experi-
ment. The duration of the retention interval was 1,500 ms for
the 0-ms, 100-ms, 300-ms, and 600-ms mask conditions. For
the 1,500-msmask condition, it was set to 2,400 ms to provide
enough temporal separation between the mask presentation
and the test stimulus.

In the rest of the trials, no mask was presented during the
retention interval. To have an equal duration of the retention
interval for all masking conditions, one half of the trials had a
1,500-ms-long retention interval, and the other half had a
2,400-ms-long interval. This encoding task lasted for approx-
imately an hour.

Object recognition test The VLTM recognition test was iden-
tical to the one used in Experiments 1a and 1b. Forty old
pictures for each condition (280 total) and 40 new pictures
were presented during the test. Of note, none of the pictures
used as the test items in the object encoding task were
presented.

Result

First, we verified that VSTM and VLTM differed substantially
in memory strength by comparing their Pr scores for no mask
conditions. The comparison revealed a significant effect of
memory types such that individuals were much better in
VSTM performance than in VLTM performance (mean Pr =
0.53, SD = 0.13 for VSTM; mean Pr = 0.15, SD = 0.10 for
VLTM), t(25) = 12.1 p < .001, BF10 = 1.54×109. This expect-
ed finding is consistent with recent findings (Brady et al.,
2013; Schurgin, 2018; Schurgin & Flombaum, 2018), and

150ms

No Mask

Mask

Until Response

VSTM
VLTM

0.25

0.45

0.65

N
o

0m
s

10
0m

s

30
0m

s

60
0m

s

15
00

m
s

0.05

0.15

0.25

V
S

TM
P

r(
H

it
ra

te
-F

al
se

al
ar

m
ra

te
)

V
LT

M
P

r(
H

it
ra

te
-F

al
se

al
ar

m
ra

te
)

0

0.2

0.4

0.6

0.8

0m
s

10
0m

s

30
0m

s

60
0m

s

15
00

m

N
or

m
al

iz
ed

P
rd

iff
er

en
ce

s

VSTM
VLTM

ISIs:
0ms, 100ms, 300ms, 600ms, 1500ms

Fig. 7 The object encoding task and the results from Experiment 3b. The
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thus necessitated the memory-specific normalization of mem-
ory performances to properly compare the effect of
postperceptual masks.

Next, we verified that our postperceptual masks were ef-
fective in disrupting VSTM encoding in a parametric manner.
A repeated-measures ANOVA revealed that there was a sig-
nificant main effect of stimulus-to-mask ISI on Pr scores, F(5,
125) = 10.4, p < .001, ηp

2 = 0.29, BF10= 7.75×105,(see Fig. 7)
such that mask-induced disruption monotonically decreased
as the stimulus-to-mask ISI got longer. Planned t tests revealed
that the Pr score was statistically worse than no mask condi-
tion at 0 ms and 100 ms ISI conditions, t(25) = −7.78, p < .01,
Cohen’s d = 1.53, BF10 = 3.66×105; t(25) = −2.31, p < .05,
Cohen’s d = 0.45, BF10 = 1.92 for 0 ms and 100 ms ISI,
respectively, and it became no worse than the no mask condi-
tion afterwards, t(25) = −1.63, ns, Cohen’s d = 0.32, BF01 =
1.51; t(25) = 0.66, ns, Cohen’s d = 0.13, BF01 = 3.95; t(25) =
−0.40, ns, Cohen’s d = 0.08, BF01 = 4.48 for 300 ms, 600 ms,
and 1,500 ms ISI, respectively). Using a conventional Bayes
factor cutoff of 3 (Jeffreys, 1961), this suggests that VSTM
encoding was likely complete by 600 ms after the offset of
stimulus.

Next, we examined the effect of postperceptual masks on
VLTM encoding. A repeated-measures ANOVA revealed that
there was a significant main effect of stimulus-to-mask ISI on
Pr differences, F(5, 125) = 5.71, p < .01, ηp

2 = 0.19, BF10=
2.53×102 (see Fig. 7) such that mask-induced disruption
monotonically decreased as the stimulus-to-mask ISI got lon-
ger. Planned t tests revealed that the Pr score was statistically
worse at 0 ms ISI conditions, t(25) = −2.58, Cohen’s d = 0.51,
p < .01, BF10 = 3.13 for 0-ms ISI, and it became no worse, if
not better, than the nomask condition afterwards, t(25) = 1.16,
ns, Cohen’s d = 0.23, BF01 = 2.65; t(25) = 0.83, ns, Cohen’s d
= 0.16, BF01 = 3.52; t(25) = 2.22, p < .05, Cohen’s d = 0.44,
BF10 = 1.65; t(25) = 1.37, ns, Cohen’s d = 0.27, BF01 = 2.09
for 100 ms, 300 ms, 600 ms, and 1,500 ms ISI, respectively.
This slight benefit of postperceptual masks presented after the
completion of VSTM encoding (i.e., 600-ms ISI) is consistent
with the idea that the presence of the postperceptual masks
encouraged individuals to “refresh” their VSTM representa-
tions, and thus led to better VLTM encoding (Johnson,
Reeder, Raye, & Mitchell, 2002).

Lastly, we directly compared the effect of postperceptual
masks across two memory types using the normalized Pr dif-
ferences. As predicted, a repeated-measures ANOVA revealed
that there was a significant effect of stimulus-to-mask ISI, F(4,
100) = 16.5, p < .001, ηp

2 = 0.40, BF10 = 1.93×10
13. However,

there was no main effect of memory types, F(1, 25) = 0.5, ns,
ηp

2 = 0.0, BF01 = 6.71, or an interaction between memory
types and stimulus-to-mask ISI, F(4, 100) = 0.8, ns, ηp

2 =
0.0, BF01 = 12.7. These results, particularly the large Bayes
factor in favor of the null result, provide strong evidence for
the lack of the interaction between memory types and

stimulus-to-mask ISIs, and thus are in line with our hypothesis
that postperceptual disruption of VSTM encoding translates to
VLTM encoding.

Discussion

In Experiment 3b, we directly manipulated VSTM encoding
to test its impact on VLTM encoding. As predicted, we suc-
cessfully modulated VLTM encoding by disrupting VSTM
encoding. Taken together with the results from Experiment
3a, VSTM encoding governs the encoding of VLTM.

General discussion

In this study, we attempted to fill in an overlooked hole in our
theories of VLTM encoding by characterizing its initial bot-
tleneck. More specifically, we hypothesized that VSTM ca-
pacity determines the encoding bandwidth, or the amount of
visual information that can be encoded at a given moment, of
VLTM. By taking advantage of reliable individual differences
in VSTM capacity, we demonstrated that individuals’ VSTM
capacity predicted the bandwidth for VLTM encoding regard-
less of the type of visual information (i.e., object memory or
relational memory) and learning intention only when their
VSTM is saturated. Furthermore, we causally manipulated
the dissociable VSTM processes and found that post-
VSTM-encoding processes had a negligible impact on
VLTM encoding. Instead, postperceptual disruption of
VSTM encoding had a directly translative impact on VLTM
encoding. Taken together, our results provided converging
evidence that VSTM capacity determines the “bandwidth”
of VLTM encoding via the shared encoding bottleneck.

Alternative Hypothesis 1: Motivation rather than
VSTM capacity?

Although we have demonstrated that VLTM encoding can be
causally manipulated through direct manipulations of VSTM
processes, the correlational evidence for the link between
VSTM capacity and VLTM encoding in Experiments 1 and 2
might raise a concern that what underlies these correlations are
the individual differences in intrinsic motivation to perform the
task well. More precisely, one could argue that those with
higher intrinsic motivation might perform any memory tasks
better than those with lower motivation. This alternative expla-
nation is certainly compatible with the reliable positive correla-
tions between individuals’ VSTM capacity and VLTM recog-
nition performance for supracapacity set sizes. However, this
alternative account cannot explain why such a correlation was
not observed for the recognition performance for subcapacity
set size even though the recognition performance was clearly
below ceiling. This, in turn, suggests that the robust relationship

Mem Cogn (2019) 47:1481–1497 1493



between VSTM capacity and VLTM encoding only emerges
when individuals’ VSTM is saturated. Although it is still pos-
sible that low capacity individuals selectively lowered their
motivation when presented with supracapacity set sizes, our
results demonstrated that the performance for VSTM and
VLTM tasks were affected in parallel. This is consistent with
our “bandwidth” account of VLTM encoding.

Alternative Hypothesis 2: Systematic differences
in stimulus properties and encoding strategies?

Other important factors that could influence the observed pat-
tern of memory performance include systematic variations in
stimulus properties and individual-specific encoding strate-
gies. Indeed, recent studies have demonstrated that some stim-
uli are more memorable than others for both stimulus-specific
and context-specific reasons (e.g., Bainbridge, Dilks, & Oliva,
2017; Bainbridge, Isola, & Oliva, 2013; Borkin et al., 2016;
Bylinskii, Isola, Bainbridge, Torralba, & Oliva, 2015; Konkle,
Brady, Alvarez, & Oliva, 2010). To avoid such contamination,
we have assigned our stimuli randomly across all encoding
(e.g., set sizes, number of repetitions, masking) and testing
(e.g., old and new) conditions in each experiment. This made
it unlikely that the stimuli in a specific encoding condition
were more memorable than those in other conditions. Thus,
our results are not likely driven by systematic variations in the
stimulus properties that determine their memorability.

Next, it is also plausible that individuals utilized various
encoding strategies that have different implications for VLTM
performance. For example, it is well established that semantic
encoding strategies benefit LTMmore than perceptual encoding
strategies (e.g., Craik, 1983; Craik & Lockhart, 1972; Craik &
Tulving, 1975; Craik & Watkins, 1973; Fisher & Craik, 1977;
Moscovitch & Craik, 1976), and it is possible that some indi-
viduals (i.e., high VSTM capacity individuals) engaged more in
semantic encoding strategies than the others do (i.e., low VSTM
capacity individuals). This alternative would predict that high
capacity individuals show superior VLTM performance irre-
spective of encoding set sizes. However, that is not what we
found.Whatwe found insteadwas that high capacity individuals
outperformed low capacity individuals only when their VSTM
capacity was saturated, and thus this pattern of the results is most
compatible with our hypothesis that VSTM encoding governs
the “bandwidth” of VLTM encoding.

Alternative Hypothesis 3: Attentional capacity rather
than VSTM capacity?

VSTM capacity measures are heavily influenced by individ-
uals’ ability to regulate what gets encoded into their limited
mental workspace (K. Fukuda, Awh, et al., 2010a; K. Fukuda
& Vogel, 2009, 2011; K. Fukuda et al., 2015; Liesefeld,
Liesefeld, & Zimmer, 2014; Linke, Vicente-Grabovetsky,

Mitchell, & Cusack, 2011; McNab & Klingberg, 2008,
Unsworth et al., 2014; Vogel, McCollough, & Machizawa,
2005). Does this mean that the encoding “bandwidth” for
VLTM encoding is set by individuals’ attentional capacity
instead? Our results are consistent with this account to a cer-
tain extent. In fact, it is our view that individuals’ ability to
attentionally regulate what gets VSTM explains a major por-
tion of the individual differences in VSTM capacity (K. C.
Adam et al., 2015; K. Fukuda, Awh, et al., 2010a; K.
Fukuda et al., 2015; Unsworth et al., 2014). Importantly, how-
ever, our results in Experiment 3b demonstrated that it is not
the attentional allocation to perceptually available stimuli but
rather the successful encoding into VSTM that determines
VLTM encoding. More precisely in this experiment, we para-
metrically interrupted VSTM encoding after stimuli were per-
ceptually attended for a fixed amount of time. If the attentional
allocation to the perceptually available stimuli was sufficient
to create VLTM representations, the parametric postperceptual
disruption of VSTM encoding should not have affected
VLTM encoding. However, we found that the degree of
postperceptual disruption of VSTM encoding transferred to
VLTM encoding. This indicates that the attentional allocation
to perceptually available stimuli is not sufficient to explain the
pattern of our results. Instead, it is the VSTM encoding that
continues on postperceptually that contributes to VLTM
encoding. Of note, some theories state that this VSTM process
is subserved by internally oriented attention (e.g., Chun,
Golomb, & Turk-Browne, 2011), and in that sense, our results
demonstrate that a particular aspect of attention is directly
involved in the encoding of both VSTM and VLTM.

Alternative Hypothesis 4: Distinct rather than shared
encoding processes between VSTM and VLTM?

Another plausible interpretation of our results is that VSTM and
VLTM representations are encoded separately by dissociable
mechanisms that are equally disrupted by postperceptual
masking. Although our “bandwidth” account provides a more
parsimonious explanation without necessitating multiple
encodingmechanisms, our current data alone cannot rule out this
alternative account. Interestingly, however, Brady et al. (2013)
found that the fidelity of VLTM representations is set by the
fidelity of VSTM representations, thus demonstrating another
parallel between VSTM and VLTM. Together with this finding,
the most parsimonious interpretation of our results is that VSTM
encoding governs the “bandwidth” of VLTM encoding.

On the other hand, our data are in line with a current theo-
retical perspective that STM is an embedded process that re-
sides in LTM. More precisely, STM is not a set of distinct
mental operations but rather is an activated portion of LTM
(Cowan, 2001; K. Fukuda & Woodman, 2017; Jonides et al.,
2008; Nairne, 2002; Ruchkin, Grafman, Cameron, & Berndt,
2003). In other words, VSTM capacity is conceptualized as
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the amount of VLTM that can be activated at a given time. Our
findings contribute to this theoretical framework by demon-
strating that the bandwidth at which one can encode new
VLTM is explained by one’s capacity to actively represent
already-encoded VLTM.

Implications and future directions

Our “bandwidth” account offers a plausible explanation for
the robust relationship between fluid intelligence (gF) and
crystallized intelligence, namely the accumulated LTM. For
many years, fluid intelligence has been theorized to determine
the rate of acquisition of crystallized intelligence (Cattell,
1957, 1963; Schweizer & Koch, 2001). However, its specific
mechanisms have yet to be identified. Given the tight relation-
ship between VSTM capacity and fluid intelligence (Cowan
et al., 2005; K. Fukuda, Vogel, et al., 2010b; Shipstead et al.,
2012; Unsworth et al., 2014), our “bandwidth” account pro-
poses a plausible mechanism that fluid intelligence explains
the acquisition rate of crystallized intelligence via the shared
encoding “bandwidth” between VSTM and VLTM.

Relatedly, future studies should expand the generalizability
of the “bandwidth” account. For instance, although our work
examined a variety of VLTM that are consciously retrievable,
not all VLTM are consciously retrievable (e.g., Chun & Jiang,
1998; Turk-Browne, Scholl, Chun, & Johnson, 2009). Is such
implicit memory encoded with the same “bandwidth”?
Although the finding by Turk-Browne and colleagues (Turk-
Browne, Yi, & Chun, 2006) that attention serves as a common
encoding factor for both explicit and implicit memory is sug-
gestive of the common encoding “bandwidth,” future studies
should directly assess this hypothesis. In addition, future studies
should examine whether the “bandwidth” account generalizes
to LTM encoding for other modalities. Given the limited capac-
ity of STM in other modalities (Cowan, 2001; Gallace, Tan,
Haggard, & Spence, 2008; Saults & Cowan, 2007; Visscher,
Kaplan, Kahana, & Sekuler, 2007) and its relationship with
attentional control (Ford, Pelham, & Ross, 1984; Van Hulle,
Van Damme, Spence, Crombez, & Gallace, 2013; Wood &
Cowan, 1995), our “bandwidth” account might provide a
modality-general mechanism for LTM encoding.
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