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A B S T R A C T   

The present work aimed to test the efficiency of FT-Raman spectroscopy for fruit spirits discrimination by 
developing differentiation models based on two approaches, namely a supervised statistical method (Partial Least 
Squares Discriminant Analysis), and a Machine Learning technique (Support Vector Machines). For this purpose, 
a data set comprising 86 Romanian distillate samples was used, which aimed to be differentiated in terms of the 
raw material used for production (plum, apple, pear and grape) and county of origin (Cluj, Satu Mare and Salaj). 
Eight distinct preprocessing methods (autoscale, mean center, variance scaling, smoothing, 1st derivative, 2nd 

derivative, standard normal variate and Pareto) followed by a feature selection step were applied to identify the 
meaningful input data based on which the most efficient classification models can be constructed. Both types of 
models led to accuracy scores greater than 90% in differentiating the distillate samples in terms of geographical 
and botanical origin.   

1. Introduction 

Fruit spirits represent, especially in Eastern Europe, a highly appre-
ciated product, being related to tradition, as their production ‘secret’ is 
left as a legacy from father to son. The manufacturing process is directly 
reflected in the final personality of this type of alcoholic beverage and 
therefore, brand protection became a very important issue to be 
addressed (Bauer-Christoph, Wachter, Christoph, Roßmann & Adam, 
1997). Authentic fruit spirits are alcoholic drinks with a high commer-
cial value because of the important costs that are involved in their 
production process. Because of the high market price, such alcoholic 
beverages are more prone to falsification with a view to making an illicit 
economical gain. In this regard, common falsification techniques include 
the wrong declaration of the raw material’s botanical or geographical 
origin. For this reason, the development of analytical tools able to 
differentiate the fruit distillates, according to some predefined criteria as 
a function of the classification purpose, is necessary. 

The chemical composition of fruit spirits consists mainly of water 
and ethanol (Dolenko et al., 2015). However, an important component 

of fruit distillates is represented by volatile compounds, which offer to 
spirits the taste and aroma and consist of tannic and polyphenolic sub-
stances, aromatic acids, nitrogen- and sulphur-containing compounds, 
hydrocarbons, unfermented sugars, di- and tribasic carboxylic acids 
(Coldea, Socaciu, Fetea, Ranga, Pop & Florea, 2013; Mangas, Rodríguez, 
Moreno, Suárez & Blanco, 1996). 

For a standard spirit drink quality analysis, higher alcohols and other 
volatile compounds are determined using gas chromatography (Ledau-
phin et al., 2004). Other analytical approaches used and reported in the 
literature for checking the authenticity of fruit spirits were: i) the 
determination of 13C/12C isotope ratios (Winterova, Mikulikova, Mazáč 
& Havelec, 2008); ii) stable isotopes of light elements and mineral 
content (Magdas, Cristea, Pîrnau, Feher, Hategan & Dehelean, 2021), or 
iii) HPLC study of the phenolic acids (Coldea et al., 2013; Mangas et al., 
1996). However, these methods are relatively expensive, time- 
consuming and require highly skilled operators. 

In this light, vibrational spectroscopy became more and more applied 
in food and beverage differentiation studies, being a nondestructive 
technique, with a fast response time. Vibrational methods were also 
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conducted for quantitative studies of some components such as the 
ethanol and methanol of the fruit distillates (Ellis, Muhamadali, Xu, 
Eccles, Goodall & Goodacre, 2019; Mendes, Oliveira, Suarez & Rubim, 
2003; ̌Srámek, ̌Svancara & Sýs, 2019; Vaskova, 2014), but a very limited 
number of studies aimed the botanical or geographical differentiation of 
these beverages based on metabolomics (Berghian-Grosan & Magdas, 
2020; Magdas, David & Berghian-Grosan, 2020). Raman spectroscopy is 
a more suitable technique as compared to infrared (IR) spectroscopy for 
matrices having a high water content, like fruit spirits, mainly due to the 
weak water bending mode in the fingerprint region (Berghian-Grosan & 
Magdas, 2020; Magdas, David, & Berghian-Grosan, 2020). For the last 
purpose, vibrational spectroscopy in corroboration with supervised 
statistical methods, such as Partial Least Squares Discriminant Analysis 
(PLS-DA), Linear Discriminant Analysis or Machine Learning tools 
proved to be very effective for both food and beverage products differ-
entiation with respect to the geographical origin of the raw materials 
and to the fruit or botanical variety (David, Hategan, Berghian-Grosan, 
& Magdas, 2022; Magdas, Guyon, Feher & Cinta Pinzaru, 2018; Magdas, 
Cozar, Feher, Guyon, Dehelean & Cinta Pinzaru, 2019; Magdas et al., 
2020; Magdas, Guyon, Berghian-Grosan, & Muller Molnar, 2021; Para-
star, van Kollenburg, Weesepoel, van den Doel, Buydens, & Jansen, 
2020; Tsakanikas, Karnavas, Panagou & Nychas, 2020). 

This study reports the development of new recognition models 
capable of discriminating fruit spirits with respect to the geographical 
origin and the type of raw material used for distillate production, based 
on statistical methods and Artificial Intelligence algorithms. With the 
aim of performing a step forward in relation to our previous work 
(Berghian-Grosan & Magdas, 2020; Magdas, David & Berghian-Grosan, 
2020), special attention was given to identifying reliable ways to 
improve the classification ability of the prediction models through 
effective preprocessing methods. The assumption was that an adequate 
data preprocessing strategy allowing the construction of recognition 
models based on the variables having statistical significance leads to the 
obtainment of differentiation models with a considerably improved 
performance. The practical importance of the proposed approach is 
related to the application of a rapid, cost-effective, and easy-to-use tool 
for assuring quality standards in the case of alcoholic beverages. 
Therefore, the development of reliable data processing approaches that 
can be incorporated into the software system of already existing portable 
equipment can allow the on-site control of beverages even by non- 
specialists. 

2. Materials and methods 

2.1. Sample description 

The study was based on a sample set consisting of 86 distillate 
samples, whose distribution in terms of the raw material used for pro-
duction included the following varieties: plum (48), apple (11), pear (6), 
grape (5), fruit mixture (5), cherry (3), quince (3), sour cherry (2), beer 
(1), apricot (1) and blackcurrant (1). All samples were produced in 
Romania: 79 distillates originated from Transylvania, while 7 samples 
had as geographical origin other Romanian regions. The highest repre-
sentativeness among the Transylvanian samples corresponded to the 
following counties: Satu Mare (23), Cluj (21) and Salaj (19). 

2.2. FT-Raman measurements 

The samples were investigated using a Bruker Equinox 55 Fourier 
transform Raman (FT-Raman) spectrometer, equipped with an inte-
grated FRA 106S Raman module. The laser was employed to emit at 
1064 nm, with an output power of 350 mW. The Ge detector used was 
cooled with liquid nitrogen. The spectral range was chosen to comprise 
both Stokes and anti-Stokes regions and was situated between − 1000 
and 3600 cm− 1. 450 scans were collected for each sample. 

2.3. Model development 

2.3.1. Data preprocessing 
The data preprocessing workflow consisted of two main steps. The 

first one was represented by the application of eight preprocessing 
methods for determining the most suitable way of transforming the raw 
data acquired through Raman spectroscopy, namely autoscale, mean 
center, variance scaling, Savitzky–Golay smoothing using first order 
polynomial approximation, Savitzky–Golay 1st derivative using second 
order polynomial approximation, Savitzky–Golay 2nd derivative using 
second order polynomial approximation, standard normal variate and 
Pareto. For all Savitzky–Golay filters, a filter width of 15 was applied. 
The second step illustrated the use of a variable selection technique for 
identifying the spectral points that have the highest discrimination 
power with respect to a certain classification criterion (i.e. botanical or 
geographical). In this, regard, a PLS-based feature selection method that 
takes into account variable importance in projection (VIP) and selec-
tivity ratio (SR) scores was applied. This method determines, in an 
iterative manner, the subgroup of variables that conduct to the lowest 
RMSECV (root mean square error of cross-validation) value (Eigenvector 
Research Inc, 2023, https://wiki.eigenvector.com/index.php? 
title=Selectvars). 

2.3.2. Partial Least Squares Discriminant Analysis (PLS-DA) 
Partial Least Squares Discriminant Analysis (PLS-DA) is a supervised 

statistical method that relies on the Partial Least Squares (PLS) regres-
sion and attempts the maximization of the covariance between the 
matrix X representing the independent variables (e.g. the acquired 
spectra) and matrix Y containing the corresponding dependent variable 
(e.g. the classes aimed to be differentiated) of multidimensional data. 
This is achieved by identifying a linear subspace of variables that allows 
predicting Y based on a reduced number of components, also called 
latent variables (LVs) (Gromski et al., 2015). In this study, the number of 
LVs was chosen such that the cross-validation classification error 
average score was minimized. 

All statistical treatments were conducted under the software SOLO 
8.9.1 (2021) (Eigenvector Research Inc., 2022 Manson, WA, USA). 

2.3.3. Support Vector Machines (SVM) 
The second category of fruit distillates classifiers was represented by 

Support Vector Machines (SVM) models, which were implemented by 
means of the svm module available in the scikit-learn library (Pedregosa 
et al., 2011). Three types of SVM kernels were investigated, namely 
linear, polynomial and radial basis function (RBF). For each of these 
kernels, the tested values for the C parameter were: 2-5, 2-4, …, 215. 
Moreover, the experimented values for the degree of the polynomial 
kernel were: 1, 2, …, 10, and the search space of the gamma parameter 
associated with the RBF kernel was: 2-15, 2-14, …, 23. All these hyper-
parameters were optimized using the model_selection.GridSearchCV class. 
In this regard, 10-fold cross-validation was applied and the accuracy 
score was used to evaluate the performance of the models. 

2.3.4. Evaluation 
For evaluating and comparing the developed models, constructed 

either through PLS-DA or SVM, the Venetian Blinds cross-validation 
method (Eigenvector Research, Inc, 2023, https://wiki.eigenvector. 
com/index.php?title=Using_Cross-Validation) was applied, and the 
number of data splits was set to ten. 

3. Results 

The present study prospected the potential given by Raman spec-
troscopy for the development of alcoholic beverage recognition models 
aimed to classify fruit distillates with respect to their geographical and 
botanical origin. In order to improve the classification abilities of the 
constructed models, eight distinct preprocessing methods (i.e. autoscale, 
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mean center, variance scaling, smoothing, 1st derivative, 2nd derivative, 
standard normal variate and Pareto) were applied to the experimental 
FT-Raman spectra and further compared by means of PLS-DA in order to 
identify the most efficient approach for transforming the raw spectra 
into input data for model development. In this regard, Figures S1 and S2 
illustrate an example of a raw FT-Raman spectrum and the corre-
sponding preprocessed spectra, obtained by applying each of the eight 
pretreatment techniques. Corresponding to each type of classification 
and preprocessing technique, a feature selection step was conducted to 
identify the spectral points that have a higher discrimination power. 
Therefore, the input data for constructing the final differentiation 
models (i.e. based on either PLS-DA or SVM) corresponded to the vari-
ables that were transformed through the most suitable preprocessing 
method and that were subsequently selected as relevant markers for a 
certain classification. 

The main signals that dominate the Raman sample spectra, as it can 
be seen in Fig. S1, are located at 884, 1056, 1456, 2713–2780, 2883, 
2932, 2976 and 3100–3400 cm− 1 and can be attributed to the presence 
of the main fruit spirit distillates componence: ethanol and water 
(Magdas et al., 2020; Spaho, 2017; da Silva et. al., 2019). The bands at 
884 and 1056 cm− 1 are present due to the stretching vibration of C–C 
and C–O, respectively. The band at 1456 cm− 1 can be assigned to the 
bending vibration of CH2 and CH3 from ethanol. The broad band be-
tween 2713 and 2780 cm− 1 comes from a combination of frequencies, 
while the bands at 2883, 2932, 2976 cm− 1 are attributed to the 
stretching of the symmetric vibration of CH2 and CH3. The broad band at 
3100–3400 cm− 1 is assigned to the stretching vibrations of the O–H 
groups (Magdas et al., 2020; Spaho, 2017; da Silva et al., 2019; Socrates, 
2001). 

There are a few weaker bands that can be observed between 1560 
and 1770 cm− 1 that are due to the C=C and C=O stretching vibration 
from the minor concentration components such as esters. These com-
pounds are mostly responsible for the flowery and fruity aroma of the 
distillates. Ethyl acetate is the most common ester present in fruit dis-
tillates, while isoamyl acetate, isobutyl acetate and hexanoate (present 
especially in apple distillates) are in lower concentrations (Spaho, 
2017). Other minor components that can present a signal in this region 
are: carbonyl compounds such as acetaldehyde, or low concentrations of 
isobutyraldehyde, 2-propenal (acrolein); benzaldehyde (especially pre-
sent in the plum, cherry and apricot spirits samples) or acetic acid 
(Spaho, 2017). 

Weaker signals at 200–700 cm− 1 can be assigned to the metal oxide 
vibrations, Cu-O, Fe-O, Zn-O, Mn-O, Co-O, whose concentrations depend 
on the floral origin (Barai, Banerjee, & Joo, 2017; Magdas, David, & 
Berghian-Grosan, 2020; Rashad, Rüsing, Berth, Lischka, & Pawlis, 2013; 
Santillan et al., 2017) ). 

3.1. Geographical differentiation 

The geographical recognition models aimed the differentiation of the 
fruit distillates according to three Transylvanian counties of origin: Cluj 
(21 samples), Salaj (19 samples) and Satu Mare (23 samples). 

The first phase of the model development workflow corresponded to 
the application of PLS-DA for the assessment of distinct preprocessing 
techniques. As shown in Table 1, when the entire Raman spectra were 
used as input data for the development of the PLS-DA models, the 
highest accuracy score corresponded to smoothing preprocessing, 
namely 61 % of the samples were correctly attributed to the geograph-
ical class in the cross-validation procedure. The model identified the 
right county of origin for 78 % of the samples originating from Satu 
Mare, while modest true positive rates were obtained for the group of 
distillates produced in Cluj and Salaj. In order to improve the classifi-
cation abilities of the constructed differentiation models, a feature se-
lection step was further performed. The main aim of this step was to 
reduce the variables based on which the model is further constructed 
only to those meaningful for the geographical origin differentiation. 

Thus, as it can be seen in Table 1, conducting a model-based feature 
selection step prior to model development substantially improved the 
performance of the PLS-DA classifiers. The application of different pre-
processing techniques implied the obtainment of distinct sets of signif-
icant variables and, therefore, all classification models built on a 
reduced data set, as function of the type of preprocessing, illustrated an 
increase in accuracy, between 12 % (i.e. in the case when the 1st de-
rivative was used to preprocess the data) and 51 % (i.e. when the data 
was mean centered). The highest accuracy was acquired when the 
lowest number of features selected for the geographical differentiation 
was employed as input data (i.e. 150 spectral points, corresponding to 
mean center preprocessing), while the lowest performance resulted from 
the model built on the data with the highest dimensionality (i.e. 1312 
attributes, corresponding to the 1st derivative preprocessing). Thus, the 
utilization of smoothing, 1st derivative and 2nd derivative as pre-
processing methods generated the lowest accuracy improvement after 
the feature selection step (i.e. between 12 % and 24 %), while this 
dimensionality reduction method proved to be the most effective when 
it was applied on the mean cantered data (100 % accuracy). 

In accordance with the obtained results, the input data for the 
development of the final geographical differentiation models corre-
sponded to 150 Raman variables (Fig. 1) that were preprocessed through 
mean centering. As can be seen in Table 1, the PLS-DA model con-
structed based on this input data allowed a perfect discrimination of the 
distillate samples with respect to the geographical origin. Thus, the 
model, defined by means of the first 17 LVs, conducted to a 100 % ac-
curacy in the cross-validation evaluation procedure (Fig. 2). 

The potential of these 150 Raman features preprocessed through 
mean centering for the geographical discrimination of the fruit distil-
lates was also highlighted by the performance of the SVM model. In this 
regard, the ML classifier correctly identified the county of origin for 57 
of the distillate samples, leading to an accuracy score of 90 %. This 
performance resulted from the fact that during cross-validation, one 
sample from Salaj was predicted as being from Cluj, two samples from 
Satu Mare were attributed to the Salaj group, and three samples from 
Cluj were wrongly assigned to Salaj (one sample) and Satu Mare (two 
samples) counties. An interesting aspect is reflected by the fact that 
among these wrongly classified instances were the samples indexed 38, 
39 and 59, which presented the lowest Y predicted values in cross- 
validation for their actual class (Fig. 2). The SVM model was charac-
terized by a RBF kernel, a C parameter of 213, and a gamma parameter of 

Table 1 
Performance of the PLS-DA geographical discrimination models, before and 
after feature selection, as function of the type of preprocessing applied.  

Preprocessing Number of 
variables 

True Positive Rate 
(Cross-validation) 

Cross-validation 
accuracy 

Cluj 
(21) 

Salaj 
(19) 

Satu 
Mare 
(23) 

Autoscale 2386  0.66  0.15  0.60  0.49 
Mean Center 2386  0.47  0.36  0.60  0.49 
Variance Scaling 2386  0.61  0.05  0.60  0.44 
Smoothing 2386  0.57  0.47  0.78  0.61 
1st derivative 2386  0.47  0.57  0.65  0.57 
2nd derivative 2386  0.66  0.47  0.34  0.49 
Standard Normal 

Variate 
2386  0.42  0.42  0.56  0.47 

Pareto 2386  0.42  0.73  0.47  0.53 
Feature Selection 
Autoscale 257  0.90  0.89  1.00  0.93 
Mean Center 150  1.00  1.00  1.00  1.00 
Variance Scaling 309  0.85  0.84  0.95  0.88 
Smoothing 782  0.71  0.73  0.91  0.79 
1st derivative 1312  0.47  0.73  0.86  0.69 
2nd derivative 469  0.61  0.78  0.78  0.73 
Standard Normal 

Variate 
321  0.95  1.00  0.95  0.96 

Pareto 245  0.95  1.00  1.00  0.98  
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2-4. 
Based on the obtained results, it can be stated that the set of attri-

butes having the highest relevance for the geographical differentiation 
of the distillates corresponds to the 150 spectral points obtained through 

the feature selection method applied to the mean centered data (Fig. 1). 
The differentiation markers that allowed the geographical discrimina-
tion of fruit distillates samples are located all over the spectral domain; 
their assignments are identified in accord with the data from the work of 

Fig. 1. Raman spectrum containing the most important predictors used for geographical differentiation of fruit distillates.  

Fig. 2. Y cross-validation predicted values by the PLS-DA model developed for the geographical classification of the fruit distillates. The input data is represented by 
150 Raman variables preprocessed through the mean center. 
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Socrates, 2001. Thus, while the bands from 3528 and 3469 cm− 1 are 
associated with the O–H stretching vibrations specific to ortho- 
substituted phenols, those from 3409 to 3196 cm− 1 could be mainly due 
to the hydrogen-bonded O–H intermolecular vibrations from water, al-
cohols, wood-derived carbohydrates – originated from the cask-aged 
fruit spirits (Buglass, 2014) – or phenols; 3046 cm− 1 could be the 
result of the asymmetric vibration of –CH3 from methyl esters; the peaks 
from 2962, 2948 and 2931 cm− 1, which are characteristic to –CH3 and 
–CH2 stretching modes could be correlated with the ethyl esters, as well 
as with the –CH3 stretching vibration from 2873 cm− 1; the bands from 
2838 to 2754 cm− 1 could be associated to the –C–H stretching vibration 
of aldehydes and those from 2655 to 1736 cm− 1 to the stretching modes 
of some compounds containing the nitrile group or the hydrogen cya-
nide derivatives. In the region below 1500 cm− 1, some significant con-
tributions of the bands around 1454 cm− 1, due to the –CH2 symmetric 
deformation vibrations of acyclic esters, can be pointed out; the O-CH3 
stretching vibrations of the alkyl ester generally appear in the region 
1315–1195 cm− 1, so the bands from about 1313 and 1259 cm− 1 could 
be associated with various alkyl esters, whereas the peak from 1313 
cm− 1 could be also due to the combination between the O–H deforma-
tion and C–O stretching modes of phenols that can be detected at about 
1313 cm− 1; in the same time, the bands from 1259 and 1133 cm− 1 could 
be the result of the asymmetric and symmetric stretching vibrations of 
the C–O–C group from aromatic esters, formed during the maturation 
process. The peaks from around 1030 cm− 1 could be associated with the 
C–O stretching vibrations of aromatic alcohols or of the carbohydrates 
formed during the aging in wooden barrels, while those from around 
879 cm− 1 to the C–C–O group stretching vibrations of primary or sec-
ondary alcohols. The aromatic =C–H out-of-plane deformation vibra-
tions appeared around 769 cm− 1, whereas the 626 and 576 cm− 1 peaks 
are characteristic of the aromatic ring deformation vibrations; different 
interaction between organic molecules and metals and their appropriate 
M− C, M− N or M− O stretching vibrations could be revealed in the re-
gion 482–276 cm− 1. 

3.2. Varietal differentiation 

The varietal discrimination models aimed to classify the fruit distil-
lates according to the type of raw material used for production. In this 
regard, the fruit spirits having as botanical variety plum (48 samples), 
apple (11 samples), pear (6 samples) and grape (5 samples) were 
included for constructing and validating PLS-DA models. Similar to the 
data processing workflow conducted for the geographical differentia-
tion, the first step consisted in the application of eight distinct methods 
for preprocessing the Raman spectra. The impact of each pretreatment 
was illustrated through the classification performance of the PLS-DA 
models having as input data the Raman spectra preprocessed through 
that preprocessing method (Table 2). It can be observed that the highest 
accuracy score corresponds to the data transformed through the 2nd 

derivative, namely 67 % of the samples were correctly predicted. 
However, in this case, the model had a very low ability in determining 
the botanical source of the distillates that belong to classes represented 
by a smaller number of samples (i.e. apple, pear and grape). Based on 
these results, it can be stated that no matter what preprocessing 
approach was applied, the models developed on the entire Raman 
spectral range did not lead to reliable results. When the input space was 
reduced to the variables having the highest discrimination power, 
determined with respect to each pretreatment, the performance of the 
PLS-DA models constructed based on these sets of significant attributes 
increased. Therefore, accuracy scores ranging between 67 % and 95 % 
were obtained, and the most efficient model proved to be the one 
developed based on the lowest number of variables, namely 133 spectral 
points. This is a total agreement with the results obtained for the 
geographical differentiation of the fruit distillates when a 100 % model 
accuracy was achieved only for the input space having the lowest 
dimensionality (i.e. 150 data points). Moreover, the preprocessing 

methods that proved to be the most efficient ones for the geographical 
discrimination corresponded to Pareto, standard normal variate, mean 
centering and variance scaling, leading to accuracies of 95 %, 94 %, 91 
% and 90 % respectively. On the contrary, the feature selection step led 
to a moderate effect in terms of model accuracy when this treatment was 
applied to the experimental data set preprocessed prior to model 
development through autoscaling, smoothing, 1st derivative and 2nd 

derivative. 
As opposed to the botanical differentiation models built on the entire 

spectral range, the PLS-DA classifiers that had as input data only the 
relevant markers obtained when (i) Pareto, (ii) standard normal variate, 
(iii) mean centering and (iv) variance scaling were used as preprocessing 
methods proved to have a higher ability in correctly predicting the 
samples produced from apples, pears and grapes. Therefore, even 
though the number of fruit distillates produced from these raw materials 
was not as high as the one of plum spirits, these PLS-DA models suc-
ceeded in offering reliable predictions for the botanical origin of the 
samples, leading to true positive rates greater than 63 %. 

Based on these results, the chosen input data for constructing the 
final varietal prediction models corresponded to 133 Raman features 
(Fig. 3) preprocessed through Pareto. Therefore, as previously presented 
in Table 2, the PLS-DA model developed on this data led to a 95 % ac-
curacy score during cross-validation, namely 67 out of 70 samples were 
correctly classified. The true positive rates associated with the plum, 
apple, pear, and grape classes were 97 %, 90 %, 100 %, and 80 %, 
respectively. Nonetheless, the number of LVs used for this model was set 
to 12, as it corresponded to the lowest cross-validation classification 
error average. The PLS-DA plots illustrating the Y predicted values for 
each sample and each varietal class are presented in Fig. 4. 

The SVM model built on the chosen input data (i.e. the Raman 
spectral points depicted in Fig. 3 and preprocessed through Pareto) was 
able to correctly classify 90 % of the fruit distillates with respect to the 
botanical origin during cross-validation. This performance proved the 
differentiation ability of the chosen markers, as well as the efficiency of 
the Pareto preprocessing for the varietal discrimination of fruit spirits 
based on Raman measurements. Therefore, the varietal origin of 81 %, 
66 %, 97 %, and 60 % of the apple, pear, plum, and grape samples 

Table 2 
PLS-DA model performance in predicting the type of raw material used for 
distillate production, as function of the preprocessing method and the type of 
input data (i.e. entire spectra / significant variables).  

Preprocessing Number of 
variables 

True Positive Rate (Cross- 
validation) 

Cross- 
validation 
accuracy plum 

(48) 
apple 
(11) 

pear 
(6) 

grape 
(5) 

Autoscale 2386  0.89  0.00  0.16  0.00  0.62 
Mean Center 2386  0.50  0.18  0.33  0.00  0.40 
Variance 

Scaling 
2386  0.93  0.00  0.00  0.00  0.64 

Smoothing 2386  0.81  0.18  0.00  0.20  0.60 
1st derivative 2386  0.75  0.00  0.00  0.20  0.52 
2nd derivative 2386  0.91  0.18  0.16  0.00  0.67 
Standard 

Normal 
Variate 

2386  0.75  0.18  0.66  0.00  0.60 

Pareto 2386  0.58  0.27  0.16  0.00  0.45 
Feature Selection 
Autoscale 397  0.89  0.54  0.33  0.00  0.72 
Mean Center 281  0.97  0.63  1.00  0.80  0.91 
Variance 

Scaling 
218  0.95  0.81  0.66  0.80  0.90 

Smoothing 218  0.75  0.54  0.50  0.40  0.67 
1st derivative 722  0.91  0.54  0.33  0.40  0.77 
2nd derivative 782  0.93  0.45  0.33  0.00  0.74 
Standard 

Normal 
Variate 

178  1.00  0.63  1.00  1.00  0.94 

Pareto 133  0.97  0.90  1.00  0.80  0.95  
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Fig. 3. Raman spectrum containing the most important predictors used for the botanical differentiation of fruit distillates.  

Fig. 4. Y cross-validation predicted values by the PLS-DA model developed for the varietal discrimination of the fruit distillates. The input data is represented by 133 
Raman variables preprocessed through Pareto. 
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respectively was successfully predicted. Among the seven wrongly at-
tributes instances, three were also misclassified by the PLS-DA model, 
namely samples indexed 56, 87 and 91 (Fig. 4). The other four wrongly 
classified samples corresponded to one grape (sample 58), one apple 
(sample 92) and two pear (samples 26 and 73) distillates that were all 
predicted as plum samples. The incorrect attribution of sample indexed 
73 can be related to the fact that, as can be seen in Fig. 4, the PLS-DA Y 
cross-validation predicted value associated with it was the lowest one 
observed among all six pear samples. The configuration of the SVM 
model, determined by means of a grid search approach, corresponded to 
the use of a RBF kernel, a gamma parameter of 2-5 and a C parameter of 
28. 

The 133 Raman spectral points based on which the best botanical 
differentiation model was constructed can be visualized in Fig. 3. Ac-
cording to Socrates (2001), the bands situated in the region 3569–3470 
cm− 1 or around the 3420, 3406, 3130 cm− 1 are characteristic to the 
vibrations of the hydroxyl group from water, alcohols, phenols or car-
bohydrates; the latter compounds are dependent of the wooden barrel 
type and although there is a similarity with the markers from the 
geographical discrimination, it seems that their contribution is smaller 
in the botanical differentiation model (Figs. 1 and 3). Contrary to the 
previous situation, here, the region between 3036 and 3000 cm− 1 

(assigned to the asymmetric CH3 stretching vibrations from the satu-
rated or unsaturated methyl esters) becomes more important. The al-
dehydes, through the –C–H group stretching or overtone CH in-plane 
deformation vibrations appearing in the domain 2800–2752 cm− 1, and 
the carboxylic acids or phenols, whose the O–H stretching vibrations 
occur in the frequency domain 2695–2242 cm− 1, seems to be relevant 
for the botanical origin recognition too. The signals from about 2075 
cm-1 could be related to the stretching vibration of the cyanide ion from 
some cyanide derivatives that could be found in the distilled products 
(IARC Working Group, 1988). The discriminants from the frequency 
region between 1956 and 1742 cm− 1 could be due to the presence of 
aromatic compounds, while the peak from 1540 cm− 1 could be from the 
asymmetric stretch vibration of CO2

– group or from the CC in-plane/ring 
vibrations of some heterocyclic constituents of fruit spirits. The C=C 
ring stretching vibrations of some furan derivatives could have occurred 
at 1470 cm− 1, whereas the 1440 cm− 1 band could be related to asym-
metric CH3 deformation vibrations of the aliphatic ketones or methyl 
esters, to the in-plane C–H rocking vibrations of aliphatic aldehydes, to 
the O–H deformation vibrations from alcohols, to the symmetric vibra-
tion of the CO2

– group from carboxylic acids salts or acetate salts. At 
1260 cm− 1 are detectable the O–H deformation vibrations of some al-
cohols, around 1010 cm− 1, the aromatic =C–H in-plane deformation 
vibrations, around 880 cm− 1, the CH2 out-of-plane deformation vibra-
tions from esters, while at 647 cm− 1, the rocking or in-plane deforma-
tion vibrations of CO2 group of the aromatic esters. In the anti-Stokes 
region, the -402 cm− 1 could be associated with the M− O stretching vi-
brations, whereas the bands originated from the domain -530–642 cm− 1 

with the O–C–O group vibrations (bending or out-of-plane deformation), 
which indicates the presence of aliphatic esters or acetates. The domain 
from -722 to -965 cm− 1 is specific to the C–H out-of-plane deformation 
vibrations from the aromatic or heterocyclic compounds, and also to the 
C–C–O stretching modes of various alcohols. 

4. Conclusion 

The present work proposes the development of new recognition tools 
for the fast, non-destructive and cost-effective assessment of fruit spirits’ 
botanical and geographical origin based on the association between FT- 
Raman spectroscopy and advanced data processing strategies.. In this 
regard, strategies based on either supervised statistical methods (i.e. 
Partial Least Squares Discriminant Analysis) or Machine Learning ap-
proaches (i.e. Support Vector Machines) were applied for the develop-
ment of the prediction models. With the aim of constructing reliable 
classifiers, a special attention was given to the utilization of an 

appropriate preprocessing method for transforming the raw Raman 
spectra, along with the selection of the most significant variables, 
identified individually for each differentiation criterion. The obtained 
results illustrated that by introducing a data reduction step before model 
development, with the aim of keeping only the attributes that have the 
highest discrimination power, a significant improvement in the predic-
tion accuracy is obtained as compared to the utilization of the entire 
variable set. Based on this approach, recognition models having pre-
diction accuracy higher than 90 % were developed with respect to the 
geographical origin and the type of raw material used for distillate 
production, highlighting the effectiveness of the proposed approach for 
alcoholic beverage origin control. 
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