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Transcription regulation has been responsible for organismal complexity and diversity in the course
of biological evolution and adaptation, and it is determined largely by the context-dependent
behavior of cis-regulatory elements (CREs). Therefore, understanding principles underlying CRE
behavior in regulating transcription constitutes a fundamental objective of quantitative biology, yet
these remain poorly understood. Here we present a deterministic mathematical strategy, the motif
expression decomposition (MED) method, for deriving principles of transcription regulation at the
single-gene resolution level. MED operates on all genes in a genome without requiring any a priori
knowledge of gene cluster membership, or manual tuning of parameters. Applying MED to
Saccharomyces cerevisiae transcriptional networks, we identified four functions describing four
different ways that CREs can quantitatively affect gene expression levels. These functions, three
of which have extrema in different positions in the gene promoter (short-, mid-, and long-range)
whereas the other depends on the motif orientation, are validated by expression data. We illustrate
how nature could use these principles as an additional dimension to amplify the combinatorial
power of a small set of CREs in regulating transcription.
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Introduction

Transcription is the first step in the universal pipeline of
the biological information flow from genome to proteome.
Accordingly, the regulation of transcription is critical for the
development, complexity, and homeostasis of all living orga-
nisms (Davidson, 2001; Levine and Tjian, 2003). Although
transcription can be regulated at different levels (e.g., chroma-
tin structure level), one fundamental level, first discovered
by Jacob and Monod (Jacob and Monod, 1961), is that the
production of transcripts of a given gene is governed by a
complex combinatorial interplay of cis-regulatory elements
(CREs) (henceforth referred to as motifs) present in the gene’s
promoter region, and associated transcription factors (hence-
forth referred to as regulators) present in the cellular environ-
ment. Because regulators are gene products, their productions
in principle are also controlled by motifs. Therefore, transcrip-
tion of a gene is fundamentally regulated by the motif set
present in such gene’s promoter, acting as the gene’s condition-
independent signal receivers, and the set of functions describ-
ing the dependency of motif strength—the quantitative level
of motif’s influence on gene expression–on promoter context
constitutes the set of principles of transcription regulation.

Major efforts have been made in identifying motifs in
different species using a variety of approaches (McGuire and

Church, 2000; McGuire et al, 2000; Guhathakurta et al,
2002a, b; Siggia, 2005; Tompa et al, 2005; Xie et al, 2005).
Of those organisms, the yeast Saccharomyces cerevisiae has
gained the most attention owing to the availability of multiple
yeast genomes and high-quality mRNA. In fact, many methods
developed for finding motifs and determining condition-
dependent motif (or associated transcription factor) activity
have used yeast as the model organism (Roth et al, 1998;
Tavazoie et al, 1999; Bussemaker et al, 2000, 2001; Hughes
et al, 2000; Wang et al, 2002; Conlon et al, 2003; Liao et al,
2003; Segal et al, 2003; Gao et al, 2004; Pritsker et al, 2004;
Tompa et al, 2005) (also see Siggia, 2005 for a more complete
list of references). However, less attention has been paid to the
effects of motifs on gene expression as a function of their
promoter context, and such effects remain poorly understood.
Works by Pilpel et al (2001) and Sudarsanam et al (2002)
studied the effect of motif cooccurrence on gene expression by
measuring the degree of coexpression within the set of genes
containing motif combinations of interest. Although their
work could infer the combinatorial effects of motif–motif
interactions on gene expression, it did not address how such
effect is influenced by other factors that determine the
properties of the promoter context such as geometric
constraints. A recent study by Beer and Tavazoie (2004) began
to take geometric features into account by way of a Bayesian
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network model of yeast expression profiles in order to learn the
effect of motif position and orientation on gene expression.
Although this later approach works quite well, it does not
consider the individual expression patterns of each single
gene, but instead analyzes the expression profiles of gene
clusters, a process that can potentially cause loss of informa-
tion and may not be suitable for modeling genes in the genome
that do not belong to any well-defined cluster. Because the
common assumption underlying these works is that coexpres-
sion implies coregulation, these approaches are limited by the
need to detect motif influence from statistically aggregated
expression data rather than from individual genes, and this
typically restricts their application to subsets of genes with
large gene expression signals, or those in predefined clusters,
or with specific promoter properties. Furthermore, although
metrics for measuring the degree of gene coexpression using
expression coherence (Pilpel et al, 2001; Sudarsanam et al,
2002) or average of pairwise correlation (Beer and Tavazoie,
2004) employed in these works can infer the effects of motifs
on gene expression well, such metrics do not provide a direct
quantitative measure of motif influence on gene expression.

In this article, we present a deterministic mathematical
strategy, the motif expression decomposition (MED) forma-
lism, whose framework provides just such a quantitative
measure—motif strength. MED operates on all genes in the
genome of a particular organism under consideration, and
assigns a strength to each motif in the promoter of each
individual gene, without depending on averaging or clustering
of gene expression profiles. Motif strength as a function
of promoter context can then be derived using the concept
of gene ensemble and gene ensemble instance illustrated in
Figure 1 and discussed below. To demonstrate the method,
we applied MED to the yeast S. cerevisiae transcriptional net-
works. We identified four functions describing four different

ways that motifs can quantitatively affect gene expression
levels, and validated these predicted functions by expression
data. We will show examples where the computed measure of
motif strength can be used to dissect the appearance of motif
synergy in the yeast S. cerevisiae transcriptional networks.

Results and discussion

The MED computational framework for deriving
principles of transcription regulation

From the physical standpoint, the effect of a given motif
on gene expression—motif strength—must depend on its
context such as its exact sequence, geometry (i.e. location
or orientation), and cooccurrence with other motifs, simply
because these parameters underlie the physical nature of
the complex combinatorial interactions between motifs and
regulators at the atomistic level for regulating transcription.
Similar to the concept of the potential of mean force in
statistical mechanics (McCammon and Harvey, 1987), each of
these attributes of the motif context can be considered as a
reaction coordinate along which the observed motif strength—
a multivariable function—can be projected on. To this end, we
propose the concept of gene ensemble and gene ensemble
instance (Figure 1) as a way of describing quantitatively the
relationship between motif strength and its context. A gene
ensemble is defined as a collection of genes containing a
specific motif set of interest, whereas one of its instances
comprises the subset of genes in such collection containing
the motif set that fits a specific promoter context, which can
be motif’s geometry, sequence, multiplicity, cooccurrence
with other motif set, etc., or combination of these. Within this
conceptual framework, a function representing the depen-
dency of motif strength on its context in the promoter can then
be readily established from the average motif strength of each
gene ensemble instance a posteriori from the motif strength
derivation process. To calculate the strength of each motif
in each individual gene promoter, we determine the extent to
which each motif contributes to the expression level of each
gene it regulates using equation (1), which reflects Jacob and
Monod’s fundamental transcriptional model, without assum-
ing motif context a priori, and the by means of a matrix
decomposition technique. These two steps together constitute
the framework of the MED formalism. The detailed description
of the MED method is presented in the Materials and methods
section.

Transcriptional regulatory principles derived from
S. cerevisiae transcriptional networks

We applied MED to yeast S. cerevisiae transcriptional networks
with a combined gene expression data set covering 255
conditions involving different environmental stresses (Gasch
et al, 2000) and multiple stages of the cell cycle (Spellman
et al, 1998). We used crossvalidation (see Materials and
methods) as an unbiased way to measure MED’s ability to
fit the biological data contained in the data set. We obtained
an average correlation coefficient of 0.52 (Figure 2, blue
diamond) between predicted and actual expression for all
5719 genes (Figure 2, blue curve). To put this number into

Figure 1 An illustration of the concept of the gene ensemble (vertical oval) and
the gene ensemble instance (horizontal oval), representing the essence of the
MED method for deriving principles of transcription regulation. A gene ensemble
is defined as a collection of genes containing a motif set of interest, whereas
one of its instances comprises a subset of this collection containing the motif
set with specified constraints such as motif geometry. Other constraints can
also encompass motif exact sequence (a specific instance motif consensus
sequence), multiplicity, cooccurrence with other motif sets, or any combination.
Each horizontal oval object’s color represents a gene expression pattern
pertaining to such gene ensemble instance.
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perspective, a previous study using a Bayesian network
analysis on the same expression data set reported an average
correlation coefficient of 0.51 on a subset of 2587 genes in
49 expression clusters (Beer and Tavazoie, 2004). On this same
gene subset, MED achieves an average correlation coefficient
of 0.72 (Figure 2, red curve and red circle). However, direct
comparison is complicated by the fact that, unlike MED, Beer
and Tavazoie do not reconstruct individual gene expression
patterns, but rather consider only the profiles of 49 gene
clusters, and then assess the correlations between genes’
actual cluster profiles and the cluster profiles predicted by their
Bayesian network. Nevertheless, this latter result clearly
shows that the more fine-grained MED approach does achieve
a good fit to the expression data without overfitting (see
Materials and methods section). Furthermore, we also comp-
ared MED to the multiple regression method (Bussemaker
et al, 2001; Beer and Tavazoie, 2004) in a similar manner as
above. We obtained the corresponding average correlation of
0.14 for all 5719 genes and 0.22 for 2587 genes. MED’s better
performance in the latter comparison is expected, as our model
introduces variables (which, when solved, correspond to our
motif strengths) where the multiple regression method uses
constants (i.e. number of motif instances), and thus MED
should generate better fit against gene expression profiles.

To demonstrate the proof-of-concept that MED is capable of
deriving principles of transcription regulation, in this study we
chose to focus primarily on motif position and orientation with
respect to the start codon, two geometric constraints known
to play a role in gene coexpression (Beer and Tavazoie, 2004).

We found that motifs do not always have the same level of
influence on the gene expression simply owing to their pre-
sence in the gene promoter, nor exert the largest influence on
the gene expression when they are near the start codon in
yeast, but rather follow a function of a complex shape. Here
we illustrate existence of four functions of motif strength
(Figure 3), distinguishing themselves by their extrema with
respect to motif position and orientation, and describing four
different ways that motifs can affect gene expression levels
given their geometric context. The first function describing
the dependency of motif strength on motif position has the
maximum when the motif is within 150 bp from the start
codon (Figure 3A and B), henceforth referred to as the
so-called short-range type. The second (Figure 3C and D)
and third (Figure 3E and F) functions, also describing
the dependency of motif strength on motif position, have the
maximum when the motif is spaced at an intermediate (150–
300 bp) or longer (300–450 bp) distance from the start codon,
and henceforth referred to as the so-called mid-range and long-
range types, respectively. Unlike the first three functions, the
fourth function (Figure 3E and F) describes the dependency of
motif strength on motif’s relative orientation with respect to
the start codon rather than the position, henceforth referred to
as the so-called orientation-dependent type. In order to derive
this kind of function, one needs to establish the functions of
motif strength for a given motif’s both orientations.

The PAC and RRPE motifs (Tavazoie et al, 1999; Hughes
et al, 2000), which are found in promoters of genes encoding
ribosomal proteins, are examples of the short-range motifs
(Figure 3A). Both of these motifs exhibit significantly higher
average motif strength within 150 bp of the start codon
than would be expected from randomized expression data
(PShuffling � 0.01), and significantly higher than at positions
further upstream (PWilcoxono10�16 for PAC, o1.83�10�5 for
RRPE) (see Materials and methods section for definitions of
PShuffling and PWilcoxon). To validate this form of regulatory
principle, we computed the corresponding function describing
the dependency of the degree of gene coexpression, as mea-
sured by the average pairwise expression correlation (Beer and
Tavazoie, 2004) (e.g., average of expression correlation coeffi-
cients of all gene pairs in a given gene set), on motif position
for the same set of gene ensemble instances (Figure 3B) using
the expression data. The comparison between these two
functions shows that MED’s prediction of regulatory principles
for these short-range motifs agrees very well with the
experimental data, despite some discrepancy while PAC is far
from the start codon. As shown in Figure 3A and B, the PAC
motif retains its strength at such a far distance, whereas the
degree of gene coexpression of such PAC-containing ensemble
instances becomes insignificant. However, our further analysis
shows that the loss of correlation in such PAC-containing
gene ensemble instances arises because the genes split into
clusters with anti-correlated expression profiles, whose
average correlation is therefore close to zero (see Supplemen-
tary information 1). This illustrates how MED’s analysis of
motif strength reveals different information about gene expres-
sion than can be obtained from average correlations.

The MCB motif (Koch et al, 1993), which plays a role in DNA
synthesis and replication during the S1 phase of the cell cycle,
is an example of the mid-range motif (Figure 3C). Unlike the

Figure 2 The distribution of correlation coefficients between actual and MED-
predicted gene expression derived from crossvalidation (see Materials and
methods section). The blue curve, whose average is 0.52 presented as the blue
diamond, is the distribution for all 5719 genes in the S. cerevisiae genome,
whereas the red curve, whose average is 0.72 presented as the red circle, is the
distribution for about 2600 genes earlier work (Beer and Tavazoie, 2004) used for
comparison purpose. the black square represents the average of 10 average
correlation coefficients derived from 10 crossvalidation runs with the input
expression data whose rows were permuted. The superiority of MED lies in its
ability not only to produce good prediction, but also to reduce bad prediction (i.e.
genes with little or even negative correlation). It is worth noting that these B2600
genes used by early work (Beer and Tavazoie, 2004) stand out automatically
as an outcome of MED without the need for heuristically selecting them out in
the first place.
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PAC and RRPE motifs, this motif achieves the greatest strength
when it is further upstream, spaced between 150 and 300 bp
(PWilcoxono1.15�10�4; PShuffling � 0.01). Furthermore, the

MCB motif also exhibits a small degree of orientational effect
around the position of its maximum strength; hence, it may
also weakly belong to the orientation-dependent motif type
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(PWilcoxono0.1). These predicted forms of regulatory princi-
ples are validated by expression data (Figure 3D) in the similar
manner as being carried out for the PAC/RRPE motifs. Note
that although the core of the MCB motif (ACGCGT) is invariant
and palindromic, its full sequence we used in this work is not,
as there is a slight non-palindromic signature in its flanking
bases (see Figure 3C for sequence logo), and individual instan-
ces of this motif often deviate from the palindrome. For exam-
ple, MCB exact sequences like AGACGCGTAA, CAACGCGTAA,
and CGACGCGTAA, which have the top ScanACE scores
(16.17, 15.93, and 15.82, respectively), are clearly not palindro-
mic. Therefore, MED’s ability to distinguish MCB orientation-
dependent behavior is entirely due to the non-palindromic
signature induced by flanking bases, so that any orientation
effect detected by MED suggests a possible role for these
flanking bases in motif function.

Finally, the RAP1 motif (Lascaris et al, 1999), which controls
the production of ribosomal proteins, is an example of the
long-range and orientation-dependent motif (Figure 3E). Un-
like the MCB motif, RAP1 acquires the largest strength when
it is even further upstream, spaced between 300 and 450 bp
(PWilcoxono7.90�10�7; PShuffling � 0.01). In addition, it has a
clear preferential orientation for regulating gene expression
almost over the entire promoter length (PWilcoxono4.84
� 10�8). As with the PAC, RRPE, and MCB motifs, these
predicted forms of regulatory principles by RAP1 are also
validated by expression data (Figure 3F).

Biological relevance

To cope with both a myriad of environmental conditions and
the internal complexity of cellular functions, eukaryotes
are known to employ combinatorial strategies to generate
a variety of expression patterns from a relatively small set of
regulatory motifs (Kellis et al, 2003; Levine and Tjian, 2003).
The combinatorial potential has been understood primarily
in terms of motif cooccurrence and synergy. However, the
transcriptional regulatory principles described here suggest
several avenues of research into how nature may also exploit
motif geometry as another dimension of combinatorial power
for regulating transcription. For instance, given the observa-
tion that PAC motif strength varies along the length of the
promoter, we foresee an experiment that explores the effect
of PAC motif location on a reporter gene in relation to the
hypothesis that reporter expression level should vary as
indicated in Figure 3A in conditions for which the PAC-binding
protein is predicted to be active. It would also be of great
interest to look for evidence that shifts of PAC motif location
have actually been selected over the course of evolution. While
one possibility is to look for PAC location shifts in gene
promoters in related yeast strains, this is complicated by

the difficulty of assessing the functional significance of
any observed shifts, as individual genes may have different
requirements for control by PAC that themselves changed over
evolutionary history, while the PAC transcriptional regulatory
principle of Figure 3A may have changed as well. Therefore, a
clearer initial (if indirect) path towards exploring the possible
evolutionary significance of motif location might be to perform
a high-throughput competitive growth experiment (Winzeler
et al, 1999; Giaever et al, 2002) looking for differential fitness
effects of large numbers of engineered mutations in PAC
location across many PAC-containing genes. Finally, it would
be of great interest to elucidate genetic and biochemical
mechanisms by which motif geometry controls transcription,
for instance, by identifying protein domains or cofactors that
might be responsible for establishing the distance at which a
motif has maximal effect. In some cases, however, including
PAC, this may need to await identification of the proteins that
bind these motifs.

To further illustrate the potential use of motif geometry by
nature for regulating transcription, we use MED to dissect the
appearance of synergism between the PAC and RRPE motifs
(Pilpel et al, 2001; Sudarsanam et al, 2002; Beer and Tavazoie,
2004). This notion of synergism was based on the higher
coherence of gene expression in the gene ensemble containing
both, compared to the PAC-only and RRPE-only ensembles
(Supplementary information 2). However, MED analysis, as
shown in Figure 4A, shows a surprising fact that in the
PAC/RRPE-containing gene ensemble, whereas the strength of
PAC decreases with distance from the start codon, the strength
of RRPE is close to zero at every distance. Analysis of variance
(ANOVA) (see Materials and methods) of PAC motif strengths
obtained from PAC/RRPE-containing gene ensemble supports
these observations, finding a significant main effect of
PAC position on PAC motif strength (PANOVA-PAC¼2.6�10�5),
no effect from RRPE position (PANOVA-RRPE¼0.96), and no
interaction (PANOVA-PAC–RRPE¼0.52). A similar analysis of RRPE
strengths finds insignificant or marginal effects (PANOVA-PAC¼
0.19, PANOVA-RRPE¼0.1, and PANOVA-PAC–RRPE¼0.18). These
findings indicate that there is no actual synergistic effect
between the two motifs, an analysis consistent with the
reported inability by Das et al (2004) to detect PAC–RRPE
interaction in a cell cycle data set also used in this work.
Instead, the appearance of synergism in expression level is
sufficiently explained by the proximity of the PAC motif to the
start codon (Figure 4 and Table 1) in the PAC/RRPE-containing
gene ensemble, and does not require invoking any functional
interaction. Similarly, proximity of the PAC motif to the start
codon also explains an apparent synergy in the order of the two
motifs (Figure 4B and D). Even for the motif arrangement that
favors the closeness of PAC to the start codon (an arrangement
associated with a high degree of gene coexpression), MED

Figure 3 Four classes of transcriptional regulatory principles in S. cerevisiae. These graphs illustrate the dependency of motif strength on motif geometric
constraints for the PAC (A, blue curve), RRPE (A, red curve), MCB (C), and the RAP1 (E) motifs. The position of the start codon is indicated by ‘ATG’. To form instances
of a gene ensemble containing each of these motifs (see Materials and methods section), the motif distance relative to ATG is binned with a bin size of 150 bp, except
the last bin with a bin size of 250 bp. The average motif strength of each of these motif-containing gene ensemble instances (see Supplementary information 3 for the
distribution of correlation coefficients) is plotted in the middle of each bin, with the error bar indicating the standard error of the average. Panels (B), (D), and (F) show the
degree of gene coexpression, as measured by the average pairwise expression correlation, for the corresponding motif-containing gene ensemble instances for panels
(A), (C), and (E). For MCB and RAP1 motifs, their orientational effects (50 represented in red, 30 represented in blue) on gene expression are also presented in addition to
their geometric constraint.
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analysis shows that RRPE possesses no significant strength
(Figure 4B). As for why the RRPE motif behaves almost the
same way as PAC in terms of contributing its influence to
the gene expression in general (Figure 3A) but does not have
a significant role on the expression of PAC–RRPE-containing

gene ensemble, recent work by Tanay et al (2005) observes
that the PAC motif is relatively younger than the RRPE motif
and also provides evidence for mechanisms by which one
motif can replace another by passing through an intermediate
stage in which both are present in gene promoters. We
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hypothesize that the PAC motif may have been evolved to be
better suitable for S. cerevisiae than the RRPE motif, and to
smoothly assume RRPE’s functional role in genes containing
both of them in this way. These two examples clearly
show that nature could use motif geometry as an additional
dimension to regulate transcription.

Conclusion

We have demonstrated a novel mathematical strategy for
deciphering principles of transcription regulation using
S. cerevisiae as a model system. We identify four regulatory
principles that motifs obey in order to regulate transcription.
These principles reveal the complexity of how a motif can exert
its influence on gene expression beyond its mere presence,
absence, or closeness to the start codon. In addition, we have
also illustrated an example showing how nature could exploit
geometry as another means for regulating transcription, hence
increasing the combinatorial power of a relatively small set
of motifs. With the emergence of new research paradigms
in modern biology, where the process of biological research
begins with a system-level theoretical prediction followed by
experimental validation (Gilbert, 1991), we believe that MED
can play an important role in fostering the development of

biological theory necessary for explaining how regulatory
motifs can control transcription. Furthermore, with the
technology recently available to allow the high-throughput
synthesis of oligomers (Tian et al, 2004), we foresee a new
research direction aiming at engineering new and improved
biological systems with desired properties. To this end, we
believe that MED can be a valuable tool for such bioengineer-
ing process by providing necessary knowledge and parameters
regarding motif’s behaviors.

Materials and methods

The MED method

MED is composed of two main steps. In the first step, each individual
gene is analyzed for the strength of each motif in its promoter without
taking into account any information about motif’s context. The way in
which such motif strength is derived in MED is based on the Jacob and
Monod’s model of transcription (Jacob and Monod, 1961), whereby
the log ratio expression level of a gene is a function of a motif
set present in its promoter and regulators’ activities in the cellular
environment (see equation (1)). The outcome of this step consists
of two matrices: a matrix of motif strength, where each element
represents the condition-independent strength of each motif in each
gene promoter; and a matrix of regulator activity, where each element
represents the global proxy activity of each regulator under a particular
environmental condition. In the second step (the regulatory rule
deduction step), regulatory principles are derived from the matrix
of motif strength using the gene ensemble concept as illustrated in
Figure 1.

Step 1: Derivation of motif strength
For a given gene g, let Og be a set of motifs occurring in its promoter;
then its log ratio expression level Egc in a specific environmental
condition c can be approximated using the following :

Egc �
X
j2Og

MgjAjc ð1Þ

where Mgj represents strength of motif jth on the expression level of
gene g and Ajc represents a global proxy for the regulator activity
associated with motif jth under condition c. Unlike previous works
(Bussemaker et al, 2001; Gao et al, 2004), where the matrix element Mgj

is a known constant and equal to the number of instances that motif
jth occurs in the promoter of gene g or ChIP log ratio for transcription
factor jth binding to the promoter of gene g, MED optimizes both Mgj

and Ajc to best fit the expression data. Therefore, for all genes and
conditions, equation (1) becomes

E � M � A ð2Þ
where E is an m genes by n conditions expression matrix, M is an m
genes by k motifs matrix of condition-independent motif strengths,

Figure 4 The analysis of the gene ensemble that contains both the PAC and RRPE motifs. (A) Relative distance of PAC and RRPE to ATG is binned into three bins:
[�150,ATG], [�300,�150], and [�1000,�300] bp, forming a total of nine PAC/RRPE-containing gene ensemble instances for nine combinations of promoter
structures. Average motif strength is plotted against the position of PAC (along the x-axis) and RRPE (different curves). The black diamond curve represents motif
strength averaged over all genes in three ensemble instances corresponding to three binned positions of RRPE (see Supplementary information 2 for motif strength
averaged over all genes in three ensemble instances corresponding to three binned positions of PAC). In (B), predicted PAC and RRPE motif strengths are shown as
a function of their relative order with respect to ATG (50-RRPE-PAC-ATG and 50-PAC-RRPE-ATG). For the 50-RRPE-PAC-ATG ensemble instance, the magnitude of the
PAC motif strength is about three times higher than the instance that contains these motifs in the reverse order, consistent with the corresponding degree of gene
coexpression. Nevertheless, the motif strength of RRPE motif is insignificant regardless of motif order. In (C) and (D), the positions of PAC and RRPE motifs relative to
ATG of gene promoters that contain them are presented. In (C), the location of each motif in RRPE-only (red), PAC-only (blue), and PAC/RRPE-only containing gene
ensembles is represented by a filled circle of appropriate color located at a position it occurs in gene promoter relative to ATG. The choice of these ‘only’ ensembles is
discussed in Supplementary information 2. Likewise, in (D), the positions of PAC and RRPE are plotted for PAC/RRPE gene ensemble with two different motif order
arrangements. Data in (A) and (B) clearly indicate that there is no actual synergism between PAC and RRPE. This finding appears to contradict the appearance of PAC
and RRPE synergic behaviors suggested in Supplementary information 2 and earlier work (Beer and Tavazoie, 2004). However, data shown in (C) and (D) and average
pairwise expression correlation coefficient date in Table 1 not only confirm MED’s prediction but also illustrate nature’s use of geometry as another dimension for
regulating transcription.

Table 1 Average expression correlations for various instances of PAC/RRPE-
containing gene ensemble

PAC
A[ATG,�150]

bp

PAC
A[�150,�300]

bp

PAC
A[�300,�1000]

bp

RRPE
A[ATG,�150] bp

0.72 0.36 0.12

RRPE
A[�150,�300] bp

0.70 0.27 0.03

RRPE
A[�300,�1000] bp

0.64 0.34 �0.02

Degree of gene coexpression measured for different PAC and RRPE geometric
configurations in the PAC/RRPE-containing gene ensemble. Average gene
expression correlation coefficients derived from expression data for nine
different instances of the PAC/RRPE-containing gene ensemble are shown. This
is the same set of ensemble instances used to calculate both PAC and RRPE motif
strengths shown in Figure 4A. As shown, the degree of coexpression of the PAC/
RRPE-containing gene ensemble depends primarily on the position of the PAC
motif with respect to ATG, and is not affected significantly by the position of
RRPE.
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and A is a k regulators by n conditions matrix of condition-dependent
global proxy activity of regulators for k motifs. Note that if a particular
motif jth does not exist in the promoter of gene ith, then the matrix
element Mij of the above matrix M is zero and remains so. The problem
posed in equation (2) becomes a matrix decomposition problem. This
portion of the MED algorithm consists of the procedure for decom-
posing the data matrix E into a product of matrices M and A uniquely
using the motif–gene relationship as constraints (see proof in
Supplementary information 4). The procedure we employed here is
based on the factor analysis (Anderson, 1984; Gifi, 1990; Paatero et al,
2002; Liao et al, 2003) with Tikhonov regularization (Tikhonov and
Arsenin, 1977) imposed on the matrix M to ensure uniqueness. To
compute matrices M and A:

a. Initialize the non-zero elements of the motif matrix M using a
weighted sum of the number of motif instances if motifs are
represented in the position-specific weight matrix form, or simply
the number of motif occurrence in each gene promoter (see
Supplementary information 5 for details).

b. Given E, M, and let E be the product M .A, use least squares (see
Supplementary information 6 for exact formula) to find the matrix
A, the current global proxy activity of regulators for all motifs with
current estimate of matrix M that minimizes

Xm

j¼1

ðEjc � EjcÞ2 for each condition c ¼ 1; . . . ;n ð3Þ

c. Normalize the matrix A in such a way that each row has unit
norm.

d. Given E and A computed in (c), find the optimal strength Mgj for
each motif jth in the promoter of each gene g that minimizes

Xn

i¼1

Egi �
X
j2Og

MgjAji

2
4

3
5

2

þ l
X
j2Og

M2
gj ð4Þ

for each gene g¼1,y, m. Alternatively, note if a predefined target
Mgi* for the strength of motif jth in the promoter of gene g is known
a priori, one may wish to use the following instead:

Xn

i¼1

Egi �
X
j2Og

MgjAji

2
4

3
5

2

þ l
X
j2Og

½Mgj � M
gj�

2 ð5Þ

e. Repeat step (b) with the newly computed matrix M until
convergence condition is met.

In the above algorithm, steps (b) to (d) are sufficient to ensure a
unique solution M and A from the expression matrix E (see proof
in Supplementary information 4). In equations (4) and (5), the
second term is critical for producing a unique matrix M regardless
of the linear dependency or near linear dependency of the rows of
matrix A (see proof in Supplementary information 4). It can also
be used to constrain the strength of motif jth in the promoter of
gene g to a predefined value Mgi* if such value is known a priori.
Although the parameter l can be chosen using more sophisticated
methods (Shock, 1984; Engl and Neubauer, 1985; Guacaneme, 1988;
Wahba, 1990), in this work it is chosen in such a way that it does
not noticeably affect the test error computed from crossvalidation
(Supplementary information 7). We used equation (4) to compute the
motif strength and lwas set to a scalar value of 10�4, although it can be
a vector quantity in general for weighting motifs in different gene
promoters differently. The convergence criterion used in this work is
the total variance of the residual matrix defined in Supplementary
information 7. Note that, as each motif has its own binding strength to
regulators and hence having its own scale of influence on gene
expression, only relative motif strengths of the same motif across
different instances of gene ensemble are meaningful for comparison
purposes. Finally, equation (1) can be extended to include the
nonlinear term accounting for the motif–motif interactions (Supple-
mentary information 8) and the MED formalism shown above can still
be applied transparently.

Step 2: Deduction of regulatory principles
We construct the gene ensemble containing a specific motif set of
interest, partition this ensemble into instances based on the specific
promoter properties of interest, and calculate the average motif
strength and standard error across these instances (Figure 1) using
motif strength data obtained from the previous step. Regulatory
principles can then be derived from the relationship between motif
strength and its context in the promoters (or constraints). Apart from
the geometric constraints illustrated in this work, other constraints
could include motif multiplicity (number of motif instances in a
promoter), spacing, exact motif sequence, motif–motif cooccurrence,
or any combination of these. Note that as the space between
transcription start site and translation start site is usually fixed in
yeast S. cerevisiae (Hurowitz and Brown, 2003), it is equally good
to choose either one of them as the origin for geometric constraints.
For convenience, we chose the latter. As for the discretization of the
promoter length into bins for projecting motif strength in deriving
distance-based regulatory principles, the choice of bin size (i.e. how
many base pairs in each bin) is a non-trivial task. A large bin size will
effectively bury all important signals, whereas a small bin size will
allow noise to be manifest. Therefore, the goal in choosing a good bin
size should be to choose the one that maximizes extractable signals
contained in the data set as possible whereas minimizing noise. In this
work, we used a bin size of 150 bp, which seems to be an optimal one,
for deriving data presented in Figure 3 and the PWilcoxon values confirm
our choice of the bin size.

Data

We used a combined gene expression data set obtained from
environmental stresses (Gasch et al, 2000) and cell cycle (Spellman
et al, 1998) with a total of 255 conditions. Ideally, we want to use
motifs that are derived directly from the ChIP-chip data without
depending on the clustering in the gene expression space (Harbison
et al, 2004); however at the time of this work, such data were not
available. Therefore, we used 62 DNA regulatory motifs, represented
as position-specific weight matrices, that were generated using
literature (37 motifs) and the multiple sequence alignment program
AlignACE (Roth et al, 1998) (25 motifs) as described previously (Roth
et al, 1998; Hughes et al, 2000; Pilpel et al, 2001). We used ScanACE
(Roth et al, 1998; Hughes et al, 2000; Pilpel et al, 2001) to find motif
occurrences in promoter regions up to 1000 bp upstream. The
expression data matrix E was centralized to remove column and row
means.

Crossvalidation

To analyze the performance of MED, we used crossvalidation, in which
we partitioned the expression data matrix into 100 blocks, each of
which consists of 20% of random genes and 5% of random conditions
(of these genes). For each run, we left out one of these blocks and
trained the model on the remaining data. This allowed us to use gene
expression data on all 255 conditions (but only across 80% of the
genes) in order to compute matrix A in step (b) of the MED algorithm,
and likewise, to use information on all the genes (but only across 95%
of the conditions) to compute the motif matrix M in step (d) of the MED
algorithm. Upon convergence, we then used the resulting matrices
M and A to predict gene expression of the block of 20% genes and
5% condition the model has not been trained on. This process was
repeated for each of the 100 blocks, each time predicting expression on
the block of data that was left out, in order to obtain a complete
expression matrix, each element was predicted by this crossvalidation
scheme. The result presented in Figure 2 was computed by plotting the
histogram of correlation coefficients between predicted and actual
expression. Although we have a large number of parameters (i.e. the
total number of non-zero elements in matrices M and A), we still have
roughly 40 times more data points in our data set, and at each step of
the algorithm we only fit a small number of parameters. In addition,
crossvalidation ensures that the model performance is always tested
on data that were not used to train the model. We also repeated the
whole crossvalidation procedure as outlined above 10 times. Each
time, all the rows of the input data matrix E were randomly permuted.
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We obtained the average and standard deviation (s.d.) of these 10
average correlation coefficients of 0.0014 and 0.0057 for all 5719 genes,
respectively, making the average correlation coefficient derived from
real data about 91 s.d. away. For the subset of 2587 genes early work
used (Beer and Tavazoie, 2004), we obtained the corresponding
average and s.d. of �0.0012 and 0.0101, respectively, making the
corresponding average correlation coefficient derived from real data
about 71 s.d. away. These results are shown as the black square in
Figure 2. Therefore, the results obtained from crossvalidation to
measure MED’s predictive power are without the risk of overfitting
to the training data.

Statistical tests

To further ensure that the type of each motif presented in this work is
statistically significant in addition to the degree of gene coexpression,
we performed two additional statistical tests: one is the Wilcoxon rank
sum test (Wilcoxon, 1945; Lehmann, 1975) and the other is from the
100 random shuffling of complete gene expression profiles. In the
Wilcoxon test, we determined if the motif strength at the position of
extremum is statistically different from the motif strengths elsewhere.
For the MCB and RAP1 motifs, we also determined if the strength of a
motif oriented along one direction is statistically different compared to
that of reversed direction. The level of statistical significance in the
Wilcoxon rank sum test is measured by the Wilcoxon P-value
(PWilcoxon). In the random shuffling test, we permuted all elements of
the expression matrix E 100 times, generating 100 expression matrices
Ei, i¼1,y, 100, for computing the strengths of each motif presented
in this work. In this test, we determined if the strength of a motif at a
particular promoter position obtained from the actual expression data
is statistically more significant than the corresponding one derived
from the random shuffling of expression data. The level of statistical
significance in this test is measured by the P-value (Pshuffling): the
fraction of motif strengths obtained from the random shuffling of
expression data larger than the corresponding one obtained from the
actual expression data. Note that, as there are 100 random shuffling
runs, the smallest P-value, Pshuffling, attainable in this test is 0.01 if no
assumption is made about the distribution of motif strengths derived
from the randomly shuffling of expression data. However, as shown in
Supplementary information 10 and Supplementary Figure SF6a–c, the
P-values for these observed motif strengths can be much smaller than
0.01 owing to the Chebyshev’s inequality (PChebyshev) (Abramowitz
and Stegun, 1972), as the computed motif strengths of the PAC, RRPE,
MCB, and RAP1 motifs at the promoter location of their extremum
derived from the actual data are far away from the mean of the
distribution of the corresponding ones derived from the random
shuffling of expression data (by at least 28 s.d.).

We also performed two-way ANOVA on PAC and RRPE motif
strengths derived from the PAC/RRPE-containing gene ensemble using
the MatLab’s anovan command (MatLab) using the model¼‘full’ and
default ss-type parameters. Two factors were specified, PAC distance
from start codon, whose P-value is denoted as PANOVA-PAC, and RRPE
distance from start codon, whose P-value is denoted as PANOVA-RRPE,
where each consisted of three levels corresponding to the distance bins
in Figure 4. The P-value for the interaction between these two factors is
denoted as PANOVA-PAC–RRPE.
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