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The role of the endoplasmic reticulum (ER) has evolved from protein synthesis, processing, and other secretory pathways to
forming a foundation for lipid biosynthesis and other metabolic functions. Maintaining ER homeostasis is essential for normal
cellular function and survival. An imbalance in the ER implied stressful conditions such as metabolic distress, which activates a
protective process called unfolded protein response (UPR). This response is activated through some canonical branches of ER
stress, ie., the protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme la (IREla), and
activating transcription factor 6 (ATF6). Therefore, chronic hyperglycemia, hyperinsulinemia, increased proinflammatory
cytokines, and free fatty acids (FFAs) found in diabesity (a pathophysiological link between obesity and diabetes) could lead to
ER stress. However, limited data exist regarding ER stress and its association with diabesity, particularly the implicated proteins
and molecular mechanisms. Thus, this review highlights the role of ER stress in relation to some proteins involved in diabesity
pathogenesis and provides insight into possible pathways that could serve as novel targets for therapeutic intervention.

1. Introduction sedentary lifestyles [2, 3]. Obesity is a significant risk factor

for the development of diabetes [4]. In turn, obesity may
Diabetes is a complex condition associated with a high  coexist with diabetes, a condition referred to as diabesity
amount of glucose in the blood resulting from an absolute  [5]. About 30% of obese patients are at risk of advancing into
or relative lack of insulin [1]. Its increasing global prevalence ~ diabesity, owing to decreased tyrosine phosphorylation levels
has been attributed mainly to the pandemic of obesity and on insulin receptor substrate 1 (IRS-1) [6, 7]. Usually, the
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insulin activates the insulin receptor via dimerization and
transautophosphorylation, which phosphorylate the tyrosine
residues site on IRS-1 and IRS-2, leading to the activation
and recruitment of other cellular components needed for an
insulin signaling cascade, such as phosphatidylinositol 3-
kinase/protein kinase B (PI3k/Akt/eNOS).

Diabesity as a metabolic disorder that presents with
hyperglycemia and hyperlipidemia, leading to endoplasmic
reticulum (ER) stress and ultimately contributing to insulin
resistance. The ER structure is the central station for protein
synthesis and serves other metabolic functions [8]. The cellu-
lar activation of IRS-1 by insulin receptors stimulates sus-
tained cell growth and an antiapoptotic response, whereas
insulin resistance from ER stress leads to inhibition of the
IRS-1 functions [9]. ER stress results in serine phosphoryla-
tion of IRS-1 via ¢ Jun N terminal kinases (JNK), leading to
insulin resistance. Insulin resistance stimulates serine/threo-
nine kinases that phosphorylate IRS-1, thereby inhibiting its
normal functions. Several studies have proposed mediators
such as endothelin-1, free fatty acids (FFA), tumor necrosis
alpha (TNFa), amino acids, angiotensin II (ang II), and
hyperinsulinemia as catalysts for insulin resistance [10-17].
However, little is known about the relationship between ER
stress and proteins such as endothelial nitric oxide synthase
(eNOS), endothelium-derived endothelin-1 (ET-1), insulin
receptor substrate (IRS-1 and IRS-2), nicotinamide adenine
dinucleotide phosphate (NAD(P)H) oxidase, and caveolin 1
(Cav-1), all of which are implicated in diabesity.

At the cellular level, a drop in glucose uptake as a result of
a decline in IRS-1 tyrosine phosphorylation and phos-
phatidylinositol 3-kinase (PI3k) stimulation in animal
models leads to high levels of glucose in the blood, which ini-
tiate ER stress [6, 18]. In the pathogenesis of diabesity, hyper-
glycemia and hyperinsulinemia cause more glucose to be
oxidized via the pentose phosphate pathway (PPP), creating
a massive NADPH electron donor to fuel superoxide anion
production [19]. A large amount of superoxide anion in the
cell may lead to ER stress [20]. ER stress, in turn, may affect
normal physiological conditions in the cell.

Several mechanisms of diabesity in relation to ER stress
have been reported. It is believed that ER stress leads to
abnormal cell signaling in response to insulin, causing insulin
resistance, as seen in diabesity. To date, no study has identi-
fied cellular proteins implicated in ER stress signaling path-
ways in diabesity. Therefore, this review is aimed at
highlighting the roles of ER stress and its relationship with
some cellular proteins implicated in diabesity, such as eNOS,
ET-1, IRS-1 and IRS-2, NAD(P)H oxidase, and Cav-1.

2. The Endoplasmic Reticulum (ER)

The ER was first discovered in cultured mice fibroblast and
later established in all eukaryotic cells, except matured red
blood cells [21]. Borgese et al. [22] later reported the exis-
tence of smooth ER and rough ER. Shibata et al. [23] pro-
posed a new concept that grouped ER into a membrane
structure. The ER’s architectural nature is organized into a
nuclear envelope, sheet-like cisternae, and a polygonal array
of tubules connected by three-way junctions [23]. The ER is
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the central station for protein synthesis, protein secretions,
and other cellular metabolic functions [8]. It also serves as a
signaling pathway between the cell cytosol and the nucleus
[24]. Factors such as an oxidative environment, folding
enzymes, chaperones, and a high amount of Ca>" are needed
for effective ER function [25]. Almanza et al. [26] reported
that ER has advanced from a major role in protein synthesis
to a foundation for metabolic functions. It is believed that the
level of glucose in the body has a profound effect on ER sta-
bility, leading to a pathway activation called unfolded protein
response (UPR). UPR acts via coping mechanisms such as
enlarging the ER’s size, among other responses, for cell sur-
vival [27]. When these coping mechanisms fail, a condition
called ER stress results [28].

The mitochondria-associated ER membrane (MAM) is a
structure that exists between the ER and mitochondria. The
MAM plays a crucial role in Ca*" stability [29]. Endolysoso-
mal system circulation also helps maintain cellular homeosta-
sis since it controls the internalization and processing of a
broad range of integral proteins, such as signaling receptors,
adhesion molecules, nutrient transporters, and lysosomal
hydrolase receptors [30]. Morphology-1 comprises new
mitochondria-vacuole membrane contact sites (MCSs)
responsible for tethering protein for ER-vacuole/lysosome,
which precisely locates nuclear ER-vacuole junctions.
Mitochondrial-mediated interaction between ER and endoly-
sosomal system circulation and morphology-1 complexes
suggests ER participation in autophagy [31]. The omegasome
(a structure in the ER) interacts with the phagophore (a tiny,
nanomembrane sac-like structure), resulting in the formation
of autophagosomes, which play an essential role in the cell
degradation pathway [32, 33]. Thus, it is imperative to under-
stand the in-depth relationship between ER and other cellular
organelles, such as mitochondria, lysosomes, Golgi body, per-
oxisomes, endosomes, and plasma membrane, to gain insights
that may pave the way to optimal management of diabesity.

3. The ER Stress Mechanism

ER homeostasis plays a critical role in cellular function and
growth, while ER stress causes a physiopathological process
that can lead to diabetes, obesity, cancer, and diabesity [34-
36]. ER stress sets in when the ER condition is unstable
because of unfolded proteins that exceed its handling ability
[34]. ER stress in human tissues has also been shown to be
caused by hyperglycemia and hyperinsulinemia [37]. Hyper-
glycemia and hyperinsulinemia are associated with enhanced
protein production and posttranslational protein modifica-
tions such as ubiquitinations, indicating an amplified mis-
folded or unfolded protein, a significant source of ER stress
[37, 38]. Prior to ER stress, cells primarily adjust to misfolded
protein overload in the ER lumen by increasing the amount
of molecular chaperones, called binding immunoglobulin
protein (BiP) [39]. BiP is a molecular chaperone found in
the ER lumen only. In the absence of stress, BiP is primarily
known to bind to the three kinds of ER arm sensors, namely,
inositol-requiring kinase 1 (IRE1), PKR-like ER kinase
(PERK), and activating transcription factor 6 (ATF6) trans-
membrane, thereby avoiding ER stress initiation [34, 40],
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and BiP is known to be sensitive to glucose concentration in
the cell [41, 42]. The literature contains no clear indication of
which of the three above-named ER arm sensors is activated
first. However, Hu et al. [43] reported that the first pathway
activated among the three ER protein membranes is PERK.
When ER stress has been initiated due to unfolded protein,
the three-arm sensors are usually all affected [27]. The molec-
ular mechanisms underlying ER stress are not clearly under-
stood in association with diabesity.

IRE1 is expressed in two forms, either IRE1f or IREla.
IRE1f is mainly found in the epithelium of the gastrointesti-
nal tract [44], while IREl« is pervasively present in all cells
but particularly prolific in the eukaryotic cells and is excep-
tionally well preserved [27]. Usually, IRE1 binds to BiP in
the ER lumen to form a nonactive complex. A high concen-
tration of misfolded proteins in the luminal area of ER leads
to kinase activities that cause IREla activation to elicit its
RNase activity during ER stress. IRElq, type 1 ER transmem-
brane protein, undergoes kinase/endoribonuclease, oligo-
merization, and autophosphorylation. IRE-1 has a novel
endoribonuclease function that contributes to its substrate,
the 26-nucleotide sequence X box-binding protein 1
(XBP1) mRNA, being excised and spliced. Spliced XBP1
results in the overexpression of genes responsible for
unfolded protein degradation and ER protein translocation,
folding, and secretion [45, 46]. Also, spliced XBP1 translo-
cates to the promoter region of the ER stress-mediated
response and binds to it, enabling it to control many genes
associated with UPR that are crucial in stimulating the degra-
dation of dysregulated cells [47, 48]. IREla can also break
precursor microRNAs (miRNAs) or a small collection of
mRNAs in a process called regulated IRE1-dependent decay
(RIDD). RIDD may lead to the degradation of mRNA and
prevent protein load. RIDD has been found to control multi-
ple signaling pathways on the ER, including selectively cleav-
ing mRNAs [49, 50]. Recently, IRE1a was discovered to form
complexes with the machinery of translocation and transla-
tional parts, such as transfer RNA, signal recognition particle
RNA, and ribosomal RNA. However, the biological essence
of these interactions remains to be elucidated. IRE1w interac-
tions with RNA are unknown, but its biological activities
remain to be seen. The crosstalk between IRElx and some
noncanonical mediators such as mitogen-activated protein
kinase (MAPK) and macroautophagy is of great interest.
Also, IRE-1 interacts with tumor necrosis factor « receptor-
associated factor 2 (TRAF2) to activate inflammatory
response-related protein kinases and cellular apoptosis, such
as apoptosis signal-regulating kinase 1 (ASK1) and triggers
the activation of JNK [28]. JNK is activated in the mitochon-
dria and facilitates the phosphorylation of proapoptotic pro-
teins, leading to the initiation of cell death and inhibiting
antiapoptotic proteins [51].

There are three physiological variants of IREla, i.e.,
monomeric, dimeric, and multimeric forms. The monomeric
form is bound to the BiP at the N-terminal luminal domain
(NLD) to form an inactive complex, while the dimeric and
multimeric are active forms. It is crucial to understand
IRE1 from a broader perspective as an ER stress arm-sensor,
not limited to mechanisms and structure.

When PERK is dissociated from BiP, it will undergo
dimerization and autophosphorylation. The phosphorylated
PERK stimulates and phosphorylates eukaryotic initiation
factor 2a (pelF2a) [27]. pelF2« leads to a downstream signal-
ing cascade that attenuates protein production and transcrip-
tional factors such as activation transcription factor-4 (ATF-
4) and CCAAT/enhancer-binding protein (C/EBP) homolo-
gous protein (CHOP). These transcriptions promote genes
responsible for survival [52, 53]. The downstream signaling
cascade is a reversible process that limits the entry of newly
formed proteins into the ER lumen. It also promotes main-
taining ER homeostasis and proper protein folding, as well
as assembling. PERK also takes part in tethering the associa-
tion between the ER and mitochondria, which may involve
ROS production [54]. The initial activation of activating
transcription factor-4 (ATF-4) is for cell survival during
UPR. The ATF-4 is involved in negative feedback to dephos-
phorylate eIlF2« via protein phosphatase 1 (PP1) regulatory
subunit growth arrest and DNA damage-inducible protein
(GADD34). The GADD34 and the constitutive repressor of
elF2a phosphorylation (CReP) are essential agents in restor-
ing normal protein production via PERK, as the cell has been
relieved of ER stress. ATF-4 also takes part in the dephos-
phorylation of eIF2 via a negative feedback mechanism as
protein production is being restored (using protein phospha-
tase 1 as a subunit of GADD34).

During chronic ER stress, PERK activates the down-
stream signaling of elF2/ATF-4/CHOP, which alters the
translational and transcriptional process, resulting in
enhanced activation of nuclear factor-kappa B (NF-xB)
[55]. Therefore, activation of NF-xB will lead to the elimina-
tion of the damaged cells. Cells that are deficient in PERK or
phosphorylated eIF2a may increase the accumulation of mis-
folded or unfolded proteins in the ER lumen [25]. Several
studies have demonstrated the relationship between ER stress
and PERK. Elouil et al. [56] and Hou et al. [57] reported that
prolonged hyperglycemia for more than 18 hours leads to
PERK activation, thereby causing ER stress. However,
Gomez et al. [58] reported that exposure to lower glucose
levels and a shorter time is likely to facilitate PERK activa-
tion, resulting in the phosphorylation of elF2a.

The ATF6p90, as the last arm sensor of ER stress, is a
transmembrane transcriptional factor with both C terminal
and N terminal domains [59]. It has two forms of mammal
genes, namely, ATF6a and ATF6f [60]. During ER stress,
there is an upsurge in the aggregation of misfolded proteins
in the ER’s lumen that leads to BiP detachment from ATF-
6p90. When ATP6p90 reaches the Golgi apparatus, it is then
cleaved via the protease site 1 and protease site 2 to discharge
ATP6p50 containing basic leucine zipper, transcription acti-
vation domain, nuclear localization signals, and DNA bind-
ing domain. The nucleus receives this processed ATF-6p50
from the Golgi apparatus and induces the gene expression
[61, 62]. Although ATF6p50 and XBP1s are parallel to each
other, they intersect in their downstream signaling cascade
to control gene transcription, such as endoplasmic
reticulum-associated protein degradation (ERAD), enhanced
protein folding, secretion and maturation, and ER chaper-
ones [63, 64]. When the UPR fails to free the cell from ER



stress, the cell will prepare for cell death by CHOP activation
via ATF-6. For example, studies conducted by Wu et al. [65]
and Yamamoto et al. [36] show that mice using ATF-6
inducers without ATF-6 had amplified ER stress. Also, it is
worth noting that there are other basic leucine zipper tran-
scription factors in the ER, such as cyclic adenosine mono-
phosphate- (cAMP-) responsive element-binding protein H
(CREB-H), cAMP-responsive element-binding protein-4
(CREB4), also known as Luman, and old astrocyte specifi-
cally induced substance (OASIS), which may be engaged dur-
ing ER stress signaling [66]. This indicates how complex the
ER stress signaling cascade is in association with other non-
canonical pathways.

Therefore, understanding the complex mechanisms
involving the three ER arm sensors and their interconnec-
tions is necessary if diseases such as diabesity are managed.
It is crucial to establish which of the arm proteins is activated
first, at what point, and the interswitch during ER stress. It is
also essential to identify the impact of noncanonical path-
ways in diabesity.

4. Diabesity

Diabesity or obese diabetes occurs in subjects with obesity,
who then develop type 2 diabetes [35]. Sims et al. [67] were
the first investigators to coin the word diabesity in 1973, rec-
ognizing the cooccurrence of diabetes and obesity. The prev-
alence of obesity is increasing globally, as is that of type 2
diabetes. Diabesity exhibits common features in diabetes
and obesity (such as adipose tissue, skeletal muscle, vascular,
endothelial cell, and liver dysfunctions). Diabesity is associ-
ated with the disruption of metabolic cell signaling pathways
and attenuated insulin signaling, that is, insulin dysfunction,
which raises the risk of type 2 diabetes [68]. Diabesity, type 2
diabetes, and obesity alter many metabolic cascades, such as
mitogen-activated protein kinase (MAPK), mammalian tar-
get of rapamycin (mTOR), and phosphoinositide-3-kinase/-
protein kinase B (PI3K/Akt), which has a systemic effect
[69]. The attenuation of the above signaling cascade presents
a condition called insulin dysfunction. Insulin dysfunction is
also one of the main symptoms of obesity and diabesity. ER
stress has been identified as one of the molecular mecha-
nisms linked to insulin dysfunction [70]. ER stress has been
seen in patients with diabesity, obesity, and type 2 diabetes,
with significant effects on skeletal muscles, the fetoplacental
vascular endothelium, visceral adipose tissue, and the liver.
ER stress initiation via IRE-1a mediates stimulation of JNK
and inhibitory kappa B kinase (IKK) [71]. The activation of
JNK mediates the impairment of insulin via the serine phos-
phorylation of insulin receptor substrate (IRS) [72]. The end
product of these metabolic cascades is called diabesity. The
relationship between impaired insulin, ER stress, and diabe-
sity is shown in Figure 1.

5. Cellular Proteins Implicated in Diabesity

Cellular proteins are macromolecules that are essential in
many cellular functions in a living system. These proteins
are involved in daily cellular activities, regulations, opera-
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tions, and structures, one function being to help maintain
the hemodynamic and structural integrity of a cell. Some cel-
lular proteins affected by the physiopathology of diabesity
include eNOS, ET-1, IRS-1, NADPH oxidase, and Cav-1.
eNOS, as a cellular protein or enzyme, is essential for the pro-
duction of nitric oxide (NO), while ET-1 is responsible for
the vasoconstriction effect on the blood vessels. Also, IRS-1
plays an essential role in the insulin signaling pathways;
meanwhile, NAD(P)H oxidase is responsible for producing
reactive oxygen species that participate in the protein folding
process. Cav-1 is the site for diverse signaling mechanisms,
which could be interrupted due to ER stress.

6. ER Stress and Endothelial Nitric Oxide
Synthase (eNOS)

For decades, the endothelium was viewed first as an inert bar-
rier that coats all blood vessels along the vasculature. Exten-
sive studies led to a breakthrough in understanding its
dynamic roles and its function in sustaining cardiovascular
stability. The endothelium is currently identified as a funda-
mental unit of the endocrine organ that possesses various
metabolic, immunological, and secretory features rather than
as an inert barrier. The endothelium begins from the heart
and runs through the blood vessel walls in the body. Also,
structurally endothelium-derived relaxing factor (EDRF), in
the form of nitric oxide (NO) or a nitrogen oxide-
containing compound, plays a crucial role in maintaining
homeostasis in the vasculature and producing an antithrom-
botic effect. The total formation of NO in mice has been doc-
umented to be approximately 0.2 mmol/kg/day, of which
nearly 70% is obtained from eNOS [73]. The NO synthesis
rate in humans is approximately 0.9 umol/kg/h, while in
Wistar rats, it is about 0.33-0.85 ymol/kg/h [74-77]. NO
generation is achieved through endothelial nitric oxide syn-
thase (eNOS) [78].

eNOS consists of two similar subunits that exist as a
homodimer structurally. The eNOS subunits contain the
oxygenase domain and the reductase domain. The reductase
domain has a binding site for the following cofactors: flavin
mononucleotide (FMN), NADPH, and flavin adenine dinu-
cleotide (FAD). In contrast, the oxygenase domain has bind-
ing sites for L-arginine, heme, and tetrahydrobiopterin
(BH,). The calmodulin (CaM) binding domain serves to link
the oxygenase domain and the reductase domain. The CaM
binding domain plays a potential role in both functions and
in maintaining the structure of eNOS. For eNOS to function
under normal physiological conditions, the reductase
domain and the oxygenase domain must come together in a
homodimer in the presence of the cofactors (CaM, BH,,
and heme) [79, 80]. The activation of eNOS could be
calcium-dependent or calcium-independent (G protein,
shear stress, and cyclic strain) [81-83].

The eNOS mechanisms are highly complex and can be
divided into protein and genetic levels. The eNOS protein
mechanism involves phosphorylation by Akt, CaM complex
formation, transfer of electrons from the reductase domain
to the oxygenase domain, and the translocation of eNOS. In
the resting state, eNOS is attached to Cav-1 at the cell
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FI1GURE 1: Relationship between insulin impairment, ER stress, and diabesity. JNK: c-Jun N-terminal kinase; NF-xB: nuclear factor-kappa B;
IR: insulin resistance; NO: nitric oxide; Akt: protein kinase B; MAPK: mitogen activated protein kinase; mTOR: mammalian target of
rapamycin; PI3K: phosphoinositide-3-kinase; eNOS: endothelial nitric oxide synthase; IRS-1 and 2: insulin receptor substrate; ER stress:
endoplasmic reticulum stress; IL6; interleukin-6; IL-4: interleukin-4; TNFa: tumour necrosis factor a; ROS; reactive oxygen species; BH,:
tetrahydrobiopterin; NAD(P)H: nicotinamide adenine dinucleotide phosphate oxidase; Cav-1: caveolin-1; Et-1: endothelin-1.

membrane. Cav-1 is bound to both the reductase domain and
the oxygenase domain to prevent the heme iron from being
in contact with eNOS, hindering electron movement from
the reductase domain. It has been reported that eNOS and
Cav-1 interact with two new proteins, ie., eNOS traffic
inducer (NOSTRIN) and eNOS interacting protein (NOSIP),
to form a ternary complex. Such a complex triggers eNOS
relocation from the cell membrane and significantly
decreases eNOS activity [84, 85]. In response to various ago-
nists such as shear pressure and bradykinin or acetylcholine
(Ach), intracellular Ca*" concentrations may increase. This
causes Cav-1 to dissociate from eNOS, enabling CaM and
heat shock protein 90 (hsp90) to bind to eNOS [86]. The
binding of CaM to eNOS allows Akt to phosphorylate eNOS
in both human and animal models at serine''’” and ser-
ine''”®, respectively, while at the same time, Akt causes
dephosphorylation at the inhibitory site of eNOS at threo-
nine**® (Thr**®) [83, 87]. When Akt phosphorylates eNOS
at serine, NO production starts with amino acid L-arginine
oxidation to generate NO and L-citrulline [88]. Akt often
exists inactively in the cytoplasm; its activation and phos-
phorylation of eNOS are caused by translocation of Akt to
the cell membrane [89]. The phosphatidylinositol-3 kinase
pathways (IRS/PI3K/Akt) directly regulate this, Akt being
recruited to the cell membrane and phosphorylated by
PI3K [90]. It is important to note that increased intracellular
Ca®" concentration is needed for sufficient eNOS activation
and NO bioavailability. This process is known as calcium-
dependent eNOS phosphorylation. Bradykinin and 5-
hydroxytryptamine (5-HT) interact with plasma membrane
receptors, resulting in increased cytoplasmic Ca** and CaM
activation [91].

The expression and stability of eNOS genes are linked to
eNOS behavior at the genetic level. A substantial number of

binding sites for transcription factors are included in the
eNOS promoter region, comprising the endothelin family,
neurofibromin 1 (NF-1), activator protein-1 (AP-1), nuclear
factor-xB (NF-xB), and activator protein-2 (AP-2). These
complexes in the transcription factor can control eNOS
expression. It is now known that various factors affect eNOS
expression, among them are estrogen, exercise, and hypoxia
[92-94].

In pathological conditions such as diabetes, there is
reduced bioavailability of BH, and NADPH [95]. NAD(P)H
oxidase is more active in diabesity than in normal physiolog-
ical conditions, owing to hyperlipidemia, cytokines, ang II,
and hyperglycemia [96]. The increased NAD(P)H oxidase
activity results in the oxidation of BH,, a cofactor of eNOS,
and the production of reactive oxygen species (ROS) [97].
ROS production by NAD(P)H oxidase may amplify ER stress
[98]. The association between eNOS and ER stress may be
due to chronic hyperglycemia, which increases oxidative
stress [99]. ER stress signaling and increased NAD(P)H oxi-
dase may be the initiators of eNOS uncoupling because of
decreased NO bioavailability and amplified ROS generation
[100, 101], as depicted in Figure 2. Hyperglycemia wholly
or partially leads to increased oxidative stress, resulting in
endothelial dysfunction [102]. Also, eNOS expression
decreases when protein kinase C (PKC) is activated because
of chronic hyperglycemia, which similarly in diabesity
enhances the stimulation of NAD(P)H oxidase [103-105].

The dysfunction of endothelial cells occurs via eNOS
uncoupling and increased ER stress. A study by Mokhtar
et al. [106] reported decreased eNOS expression in the dia-
betic rat model; such a reduction could likely be due to ER
stress. The high amount of glucose in the blood prompts
the endothelial cell to initiate ER stress [107], which may be
due to diabesity. First and foremost, it must be noted that
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F1GURE 2: eNOS, NADPH, and ER stress consequential generation of NO and superoxide anion from coupled and uncoupled NOS. eNOS
requires substrates such as oxygen, BH, cofactors, L-arginine, NADPH, FMN, and heme. In the physiological circumstances, the
availability of BH, is sustained by guanosine triphosphate (GTP), such that the rate-limiting step is catalyzed by GTP cyclohydrolase I
(GTPCH). The enzyme dihydrofolate reductase (DHFR) mediates the reprocessing of BH, to produce BH, as the primary nonenzymatic
oxidation. eNOS uncoupling leads to the generation of superoxide anion. The superoxide anion produced results in decreased
bioavailability of BH,. As such, superoxide anions generated owing to uncoupled eNOS reacts with NO to produce ONOO-, a highly
reactive anion that quickly oxidizes BH,. Furthermore, self-propagating oxidative stress can stabilize eNOS uncoupling. Other
demonstrated mechanisms that enhance the uncoupling of eNOS include high concentrations of endogenous NO synthase inhibitors,
increased levels of oxidized glutathione relative to decreased glutathione, and reduced availability of arginine. BH2: dihydrobiopterin;
BH4: tetrahydrobiopterin; DHFR: dihydrofolate reductase; OS: oxidative stress; NO: nitric oxide; eNOS: endothelial nitric oxide synthase;
NADPH: nicotinamide adenine dinucleotide phosphate; ONOO-: peroxynitrite; L-NMMA: NG-monomethyl-L-arginine; ADMA:

asymmetric dimethylarginine; GSSG: oxidized glutathione; GSH: reduced glutathione.

ER stress contributes to insulin dysfunction, which leads to
an enhanced progression of hyperglycemia in the blood ves-
sels. The result of insulin dysfunction affects insulin signaling
pathways (IRS/PI3K/Akt), which decreases the availability of
Akt and in turn results in a small amount of NO because of
eNOS uncoupling. Also, chronic hyperglycemia causes eNOS
uncoupling, leading to endothelial dysfunction via many
unidentified pathways. Thus, identifying these pathways
can serve as a first step in preventing or reducing morbidity
and mortality associated with diabesity.

7. ER Stress and Endothelium-Derived
Endothelin-1 (ET-1)

Endothelin consists of three family isoforms (ET-1, ET-2,
and ET-3), of which ET-1 is the most widely distributed
member of the family [108]. ET-1 is recognized as an
endothelium-derived contracting factor (EDCF) [109]. It is
produced by many types of cells and contains 21-amino acid
peptides [110]. ET-1 has a half-life of around 1min in a
healthy individual [111]. It is involved in the pathogenesis
of many diseases, including type 1 diabetes, diabesity, hyper-
tension, fibrosis, and atherosclerosis [112]. Endothelin recep-
tors (ETRs) are G protein-coupled receptors comprising
endothelin A receptor (ET,R) and endothelin B receptor

(ET4R), which demonstrate opposite actions in cardiovascu-
lar conditions [113]. ET 4R is found on the smooth muscle
cells and mediates vasoconstriction. It also induces prolifera-
tive responses linked with type 1 diabetes, diabesity, hyper-
tension, and other related cardiovascular diseases. However,
ETgR is found on the vascular endothelial cells and mediates
vasodilation [112]. It plays an essential role as a clearance
receptor for the ET-1 in the system. The two ETRs are impli-
cated in the development of many diseases, including diabe-
sity. ET-1 is known to stimulate proteins associated with
many signaling pathways, such as PI3K, NFkB, MAPK, phos-
pholipases, beta-catenin, hypoxia-inducible factor 1 alpha,
protein kinase C, RHO, and protein kinase A [114].
Vasoconstrictors enhance the production of ET-1, which
results in increased vasoreactivity in response to serotonin,
norepinephrine (NE), and ang II [115]. Typically, insulin
binds to the insulin receptor (IR) and activates the receptor
via dimerization and transautophosphorylation of the tyro-
sine residue. IR phosphorylation leads to activation and
phosphorylation of the IRS family (IRS-1 and IRS-2). The
Src homology 2 domain docks on the IRS-1, bound by
growth factor receptor-bound protein 2(Grb-2) [116]. Grb-
2 serves to stimulate the preassociated guanine nucleotide
exchange factor Son of Sevenless (SOS). The SOS protein
activates Ras-bound guanosine diphosphate (GDP) to Ras-
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bound guanosine triphosphate (GTP). Ras becomes more
active with GTP, which activates and phosphorylates a cyto-
plasmic protein called Raf (MAPKKK). The activation of Raf
initiate kinase signaling by, for example, MAPKK and
MAPK. An MAPK insulin signaling cascade regulates actions
associated with differentiation, growth, mitogenesis, ET-1
[117, 118], plasminogen activator inhibitor type 1 (PAI-1),
vascular cell adhesion molecule-1 (VCAM-1), and E-
selectin [119]. It is important to note that impairment of
IRS/PI3K/AKkt signaling pathways results in overexpression
of ET-1, E-selectin, and VCAM-1 and decreases the bioavail-
ability of NO owing to the overactivation of MAPK signaling
pathways [119]. The consequences for the endothelial func-
tion of both insulin dysfunction and hyperinsulinemia due
to diabesity are more severe than the individual effects.

The overexpression of ET-1 in the endothelium causes an
amplified expression of genes responsible for lipid produc-
tion in the vascular cells [120]. This could lead to an overload
of misfolded and unfolded proteins in the ER lumen, result-
ing in ER stress. Sustained periods of cellular stress may cause
a build-up of misfolded proteins in the ER lumen, exceeding
its protein-folding capacity and thence leading to activation
of a coping signaling mechanism known as UPR [121-123].
Enhanced levels of ET-1 are a sign of pathology in many dis-
eases that trigger processes such as ER stress, inflammation,
and oxidative stress. Physiological messengers like ROS are
essential in maintaining homeostasis in vasculatures, but
their increased generation may contribute to ER stress pro-
gression, leading to diabesity. A study by Mian et al. [124]
demonstrated that ET-1 is overexpressed in the endothelium
of mice, owing to impairment of IRS/PI3K/Akt pathways
with an increase in voltage-dependent potassium channel
activity. Also, ET-1 activates ETR, which in turn stimulates
phospholipase C (PLC) and inositol 1,4,5-trisphosphate
(IP3) in the ER to discharge Ca?*. These actions initiate ER
stress in the placenta tissue [125]. ET-1 also causes the over-
expression of molecular chaperones (GRP78 and GRP94)
and enhanced phosphorylation of eIF2«, ER stress indicators
[125]. A study by Wang et al. [126] on mice showed an
increase in ER stress biomarkers (GRP78 and CHOP). There-
fore, it is suggested that ER stress is activated by ET-1 in dis-
eases. In diabesity, ET-1 is likely a potent initiator of ER
stress via a dual action by disrupting the Ca**ER balance.
In some studies, it was found that ET-1 is increased in dia-
betic patients compared to controls [127, 128].

8. ER Stress and Inhibition of the Insulin
Receptor Substrate

Nutrient overload may be implicated in the etiology of diabe-
tes, diabesity, and insulin resistance [35, 129]. Resistance to
insulin causes dyslipidemia, hyperinsulinemia, hypertension,
and hyperglycemia [35]. Many factors lead to insulin resis-
tance, including IRS-1 and IRS-2 [130-133]. Insulin signal-
ing in physiological and pathological circumstances is
modulated by the insulin receptor substrate (IRS) family.
IRS has an amino and carboxyl group domain that contains
the serine/threonine and tyrosine sites for phosphorylation
[134]. The concentration of insulin required to activate and

phosphorylate PI3K/Akt/eNOS pathways is less than the
concentration required to phosphorylate the Ras/MAPK
pathway [135]. Usually, insulin activates the insulin receptor
via dimerization and transautophosphorylation of the insulin
receptor. This process leads to the recruitment and phos-
phorylation of tyrosine residues on IRS-1 and IRS-2, which
activate and recruit Src homology domain proteins. The Src
homology domain provides a docking site for Grb-2 and
SOS [130]. Grb-2 results in the activation and recruitment
of PI3K, which leads to a downstream signaling cascade of
insulin. The duration or strength of these mechanisms is
influenced by many factors, including the stability of the
insulin isoform receptors (IRA and IRB) or postreceptor
activities such as insulin signaling cascade (IRS/PI3K/Akt/e-
NOS) [136]. Other regulatory proteins and signaling cas-
cades can have a negative impact on the insulin signaling
pathway by heightening insulin resistance, for example,
phosphatidylcholine transfer protein [137], the Lin28/Let-7
axis [138], muscle-specific mitsugumin 53/tripartite motif
72 (MG53/TRIM?72) [139], Grb10 [140], and the cullin RING
E3 ubiquitin ligase-7 (CRL-7) [141]. Insulin receptors can be
negatively controlled by phosphatase and tensin homolog
(PTEN) and tyrosine-protein phosphatase nonreceptor type
1 (PTPN-1) [142, 143].

IRS-1 and IRS-2 tyrosine phosphorylation are responsi-
ble for the insulin signaling cascade, but the serine and thre-
onine residues are phosphorylated before, during, and after
insulin activation [130, 144]. IRS-1 has about 200 serine/-
threonine residues, of which around 30 are known to be
phosphorylated [145, 146]. Of all the serine and threonine
residues, S*”” is the most investigated because it is implicated
in physiological and pathological conditions, including insu-
lin resistance, hyperinsulinemia, obesity, and ER stress [130,
147-149]. It is essential to note that s°>*” contributes to insulin
resistance, but its phosphorylation is also critical in the phys-
iological insulin cascade [150]. In the study by Copps et al.
[150], this remained the case when s’ was replaced with
Ala->"; it equally did not show hypersensitivity, but it did
promote significant insulin resistance in the mice used
[150]. Insulin resistance may worsen due to hyperinsuline-
mia, which then compounds the problem of serine and thre-
onine phosphorylation on IRS-1[151]. To date, there is no
holistic understanding of insulin signaling cascade and regu-
latory mechanisms, the challenge in particular being the high
serine and threonine residues on IRS-1.

In pathological conditions such as diabesity, multiple
sites of IRS-1 containing serine and threonine may be phos-
phorylated by many kinases, for example, pelle-like kina-
se/interleukin-1  receptor-associated  kinase = (mPLK),
lipid/inflammatory stimulated JNK, an inhibitor of nuclear
factor kappaB kinase beta (IKKB), PKC, and sympathetic-
activated protein-coupled receptor kinase 2 [130] and ER
stress [152]. ER stress is part of the physiopathological pro-
cesses that feature in beta cell failure, leading to the disease
progression.

ER stress is believed to cause insulin resistance via the
activation of JNK, which leads to the inhibition of IRS-1 by
phosphorylating the serine residue [153]. The activated
JNK causes insulin resistance in obesity and possibly in



diabesity in four ways: inhibition of IRS-1 phosphorylation
directly, the inhibition of PPARa-FGF21 axis hormones,
induction of cytokines and inflammation, and enhanced
metabolic and adipogenesis efficiency [153, 154]. Also, Liang
et al. [152] have shown that ER stress leads to phosphoryla-
tion of IRS-1 at $*°” and reduced Akt phosphorylation via
JNK. In contrast, a study by Brown et al. [155] has shown that
ER stress does not affect Akt phosphorylation at $** and
tyrosine IRS-1 phosphorylation. During ER stress, there is a
reduction in the availability of matured insulin receptors
and, at the same time, inhibition of phosphorylated Akt. It
is important to note that the half-life of insulin receptors
increases during ER stress [155].

ER stress and IRS exhibit a complex association, so it is
necessary to determine if IRS affects ER stress in a feedback
mechanism. The importance of IRS-1 or IRS-2, particularly
under ER stress conditions, has not been thoroughly investi-
gated in diabesity. Moreover, it remains unclear whether
there is a phenotypic difference between IRS-1 and IRS-2 in
diabesity during ER stress.

9. ER Stress and Nicotinamide Adenine
Dinucleotide Phosphate (NAD(P)H) Oxidase

A transmembrane enzyme known as NAD(P)H oxidase
(NOX) generates reactive oxygen species (ROS) as its major
function. It consists of many subunits, among which are 2-
activator subunits (NOXAI and p67ph°x), 7-NOX, 2-
DUOX-specific maturation factors, and 2-organizers
(p47°"°* and NOXO1) [156-158]. Specifically, NADPH oxi-
dase families such as NOX-1, NOX-2, NOX-3, NOX-4, and
NOX-5 generate superoxide anion, as well as hydrogen per-
oxide as a downstream metabolite [156]. NOX oxidase has
an electron transfer system consisting of the C terminal cyto-
plasmic region and the N terminal. NOX facilitates the move-
ment of electrons from cytosolic NADPH via flavin adenine
dinucleotide (FAD), which leads to superoxide anion (O,")
production in the cytosol [34]. NOX, mitochondria, xanthine
oxidase (OX), uncoupled eNOS, cytochrome P-450 oxygen-
ase, and cyclooxygenase (COX) are some sources of ROS,
as depicted in Figure 3.

NOX-2 is often colocalized with p22P"* in the mem-
brane of intracellular vesicles, but the phosphorylation of
p47P"° results in the translocation of p47P***-p67P"** from
the cytoplasm to the plasma membrane. The p47°"*/p67°"*
interacts with p22P", followed by translocation of p40P"°%;
this sequence of events activates the NOX-2 [159, 160]. The
activated NOX-2 results in the fusion of the vesicle to the
plasma membrane releasing superoxide anion [156]. Some
studies reported that NOX-2 and NOX-4 produce hydrogen
peroxide (H,O,) only; however, other research has shown the
production of superoxides (O*) as well [161]; the different
results perhaps being attributable to the methods used or
experimental conditions. NOX-2 has phagocytic and electron
activities associated with phagosomes and proteases [162-
164]. The expression and stimulation of NOX families (espe-
cially NOX-2) are associated with amplified Ca** release
[156] and UPR stimulation [165]. The two lipids (cholesterol
and 7-ketocholesterol) induce Ca*" release and CHOP via
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ER-receptors called the inositol-1,4,5-triphosphate receptor
type-1 (IP3R-1) and Ca®*/calmodulin-dependent kinases-II
(CaMK-II), respectively. The activation of these ER-
receptors leads to ROS production, especially via the activa-
tion of NOX-2. The ROS produced by NOX-2 is thought to
be sustained by CHOP and eIF2« activation, serving as a
feedback mechanism during ER stress [165]. The activation
of ER stress through CHOP leads to more significant intra-
cellular Ca** release and eventually causing more NOX-2
stimulation [165]. The ROS generated by NOX-2 is impli-
cated in physiological processes such as cellular differentia-
tion, proliferation, cytoskeletal organization, and migration
[166].

The ER-localized NOX-4 has been found to lead to eNOS
uncoupling and increased ROS [98]. Under prolonged ER
stress, the JNK and ASK-1 signaling cascade is activated via
IRE-1, leading to ER dysregulation and apoptosis [167].
The lack of NOX-4 hindered the transcription of many
UPR markers, such as CHOP and Bax, associated with cell
death initiation due to the activation and phosphorylation
of JNK and ASKI1, a signaling cascade of IRE1 activation
[168]. The disulfide isomerase (PDI) enzyme on the ER is
associated with NOX-4 and leads to reduced phosphoryla-
tion of Akt [169], which affects the survival of the cells. The
physical association between p22P"* oxidase and PDI has
been demonstrated in macrophages and neutrophils [170,
171]. The PDI-NOX-induced ROS downstream function
remains unclear but may be linked to phagocytosis mediated
by the ER [164]. ER-localized NOX-4 mediates oxidation;
thus, inactivation of protein tyrosine phosphatase (PTB1B)
during UPR, PTP1B may trigger IRE1-dependent signaling,
an essential target for NOX-4 [172].

The generation of ROS is likely to happen during ER
stress reaction and the orchestrated three-arm sensors. Also,
an increase in ROS generation from the stimulated NOX may
lead to diabesity. NOX-1, NOX-2, and NOX-4 oxidases are
associated with ER stress redox signaling and metabolism
for proapoptotic or prosurvival consequences. NOX-
mediated ROS (hydrogen peroxide and superoxide) genera-
tion may stimulate other enzymatic systems to generate
ROS [173, 174]. For instance, NOX generates ROS, which
leads to oxidation of BH,, a crucial factor for NO production
in eNOS [175-178]. NOX has recently emerged as a critical
oxidase mechanism that underlies oxidative stress in diabetic
complications [179, 180] and diabesity [35]. Animal models
of type 1 and type 2 diabetes have also registered NOX acti-
vation [181]. Prolonged activation of NOX has been associ-
ated with endothelial dysfunction in diabetes and diabesity.
Notably, a few of the critical implications of NOX induction
are stimulating several other oxidase mechanisms called
NOX-dependent ROS production to maintain oxidative
stress; these include ER stress, eNOS uncoupling, mitochon-
dria, OX, cytochrome P-450 oxygenase, and COX. The func-
tions of NOX families in association with ER stress are not
fully elucidated.

ROS production is increased through the NOX family
enzymes, primarily through the NOX-1, NOX-2, and NOX-
4 isoforms under ER stress [182, 183]. NOX-1 [182], NOX-
2 [165], and NOX-4 are the three NOX isoforms hitherto
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peroxide (H,0,) by superoxide dismutase (SOD). H,O, can be catalyzed to H,O. NO can react with superoxide anion to produce reactive
nitrogen species (ONOO) that could be changed into NO,, reacting with tyrosine residues to produce nitrotyrosine. These factors result in
the reduced availability of NO and also lead to endothelial impediments.

confirmed to have been involved in ER stress [95, 165, 168,
184]. Camargo et al. [182] demonstrated that NOX-1 and
NOX-4 are responsible for the irreversible oxidation and
phosphorylation of PERK and IRE-1, respectively. NOX
involves a different process in ER stress modulation, involv-
ing NOX-1-regulated PERK and NOX-4-regulated IRE-1.
The plasma membrane is localized with NOX-1 and NOX-
2, while the ER is localized with NOX-4, leading to increased
ROS production in a cell.

During ER stress, hyperoxidation of the ER environment
occurs, which initiates a UPR signaling cascade, resulting in
the transfer of electrons from NADPH. These have a redox
effect on ER and promote enhanced consumption of glutathi-
one and thioredoxin reductase. Zeeshan et al. [185] identified
that numerous external agents might stimulate intracellular
ROS production, which decreases the antioxidant defense
mechanism that can lead to an increase in oxidative stress
and ER stress. Therefore, to achieve the therapeutic potential
of targeting NOX isoforms and downstream oxidase systems
to prevent and treat diabesity, innovative, reliable, and spe-
cific NOX isoform inhibitors are required. Also, the design
of new approaches targeting other sources of ROS is crucial
in diabesity.

10. Caveolin 1 (Cav-1) and eNOS

Caveolae are cell surface plasma membrane invaginations of
50 nm to 100 nm in diameter. They play a critical role in sig-
nal transduction, transcytosis, mechanosensation, mechano-
protection, maintenance of plasma membrane integrity,
endocytosis, and lipid homeostasis [186]. They were once
called simple membrane structures and are now regarded as
more complex systems. The caveolae’s primary membrane
proteins contain caveolins that invaginate the cell membrane.
The caveolins are divided into three types, ie., caveolin-1,
caveolin-2, and caveolin-3 (Cav-1/2/3) [187]. The protein

Cav-1 is oligomerized in the ER, after which it translocates
to the Golgi body, where it may interact with cholesterol mol-
ecules before final release to the cellular membrane [188]. In
most cell types, Cav-1 is expressed and crucial for the biosyn-
thesis of caveolae. Cav-1 is usually expressed in endothelial
cells, adipocytes, fibroblasts, and pneumocytes, along with
Cav-2, which indicate they both play an essential function
in the caveolar [189]. A total absence of caveolae results in
loss of Cav-1 [190]. Other proteins have also been identified
that play a crucial function in developing caveolae, for exam-
ple, Cavin 1 to 4, pacsin2, and Eps 15 homology domain-
containing protein 2 (EHD2) [191, 192].

eNOS [193], G-proteins [194], protein kinase A (PKA)
[195], protein kinase C (PKC) [196], and many other recep-
tors are identified in associated caveolae-enriched signaling
molecules. Cav-1 has been proposed to bind and inhibit them
via its caveolin scaffolding domain (CSD), a preserved
amphipathic area for the development of caveolae and signal-
ing cascade [194, 197, 198]. eNOS has received significant
interest among these caveolae-located signaling molecules,
thanks to its crucial vascular homeostasis effects [86, 199].
An investigation has shown that most eNOS dwell in endo-
thelial cell caveolae [200, 201]. The findings underline the
essential role of endothelial caveolae in managing eNOS acti-
vation, as depicted in Figure 4. eNOS has been linked with
Cav-1 in nonactive endothelial cells, which hinders the cal-
cium calmodulin complex (CaM) from binding to eNOS
[202]. The interaction between eNOS and Cav-1 prevents
the electron transfer from NADPH to eNOS.

The M3-muscarinic acetylcholine receptor (M3) is a G
protein-coupled receptor (GPCR) coupled to the Gq hetero-
trimeric protein through phospholipase C signaling cascades
to produce cytosol calcium. For instance, ATP, bradykinin,
endothelin-1, histamine, thrombin, ang II, and acetylcholine
bind to M3 receptors to activate phospholipase C enzymes.
The activation of these enzymes leads to the cleavage of
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FIGURE 4: eNOS/Cav-1 interaction; it may be seen that eNOS is a homodimer limited to the Golgi apparatus and plasma membrane caveolae.
In an inactive state, the caveolae protein is coupled to Cav-1, which reduces its action. Furthermore, when eNOS is phosphorylated by protein
kinase C on Thr**, it inhibits contact with CaM. Inhibition of the enzyme can be achieved in a situation of oxidative stress caused in the
aftermath of proline-rich tyrosine kinase 2- (PYK-2-) induced tyrosine phosphorylation of eNOS. Owing to cellular activation of eNOS,
which is split from Cav-1, CaM can bind to the eNOS at Ser''”’, thanks to Thr**> dephosphorylation, and produce EDRF.

phospholipid (phosphatidylinositol-4,5-bisphosphate)  to
produce inositol-1,4,5-trisphosphate (IP3) and diacylglycer-
ide. The IP3 produced leads to the activation of inositol-
1,4,5-trisphosphate receptors (IP3Rs) localized on the ER.
The increase in IP3 produces a calcium signal within the
endothelial cells, which takes a calcium wave, resulting in
the release of calcium. The calcium-binding site, also known
as the EF-hand domain, contains the N lobe and the C lobe
calmodulin. The EF-hand domain is a polypeptide structure
capable of detecting calcium. Calcium binds to the calmodu-
lin to form a complex compound called the calcium-
calmodulin complex (Ca**-CaM). eNOS dissociates itself
from Cav-1 and then merges with Ca**-CaM. This allows
the flow of electrons from NADPH and subsequently releases
NO from eNOS [203, 204]. eNOS moves from the cell mem-
brane to the Golgi complex, thanks to a higher cytosolic Ca**
concentration, and is entirely activated. The production of
NO leads to a reunion between eNOS and Cav-1, thereby
halting the signaling cascade [205]. In vivo and in vitro stud-
ies have shown that eNOS can bind to Cav-1 and hinder NO
synthesis [206, 207]. It is understood that overexpression of
Cav-1 is linked to reduced acetylcholine-induced NO gener-
ation and vasodilation in patients with insulin resistance and
type 2 diabetes [208]. Type 2 diabetic patients have shown
downregulation of eNOS and Cav-1 expression in vascular
endothelial cells [209]. However, it is unknown if there is
either an increase or decrease in Cav-1 expression in diabe-
sity, as seen in type II diabetes. A study by Rodrigues et al.

[210] has shown that caveolae dismantled with methyl-f-
cyclodextrin (mpfcd) treatment cause diminished relaxation
by acetylcholine isolated aorta of the rat. Also, Al-brakati
et al. [211] have demonstrated that caveolar disturbance
results in decreased NO in femoral arteries. A study by Sham-
saldeen et al. [212] has shown a decreased expression of
eNOS and Cav-1 in the streptozotocin type I diabetic rat
model. These disturbances in caveolae can decrease the levels
of Cav-1 associated with eNOS, thereby undermining vascu-
lar function. The decrease in eNOS and Cav-1 expression in
aortic endothelial cells from STZ-diabetic rats can inhibit
PI3K/Akt cascades since wortmannin prevents eNOS and
Cav-1 from moving to the cell membrane [213]. Insulin is
known to stimulate a PI3K/Akt cascade, such that it allows
eNOS and Cav-1 to move toward the cell membrane. Also,
insulin triggers eNOS palmitoylation via Golgi palmitoyl-
transferase, enabling the acetylation of eNOS and Cav-1,
which both of them translocate to the cell membrane [214].
The palmitoylation of eNOS and Cav-1 has been found to
enhance the binding to the cell membrane nearly 10-fold, a
process needed to maximize eNOS activity [215].

It is interesting to note that any metabolic disorders such
as obesity, insulin resistance, diabetes, and diabesity may
cause a change in the structural integrity of caveolae or
Cav-1 concentration, leading to vascular dysfunction. There-
fore, there is a need to determine the structural and molecu-
lar elements of how eNOS and Cav-1 influence each other’s
role in endothelial cells and how endothelial dysfunction
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leads to diabesity because of their deficiency. Ultimately, fur-
ther examination and clarification are likely to yield more
insights into ways of reversing the process of restoring vascu-
lar homeostasis due to diabesity.

11. The Prospect of ER Stress and Associated
Cellular Events

ER stress may lead to cellular death; it has been associated
with the instigation and advancement of many diseases.
The mitigation of ER stress and its residents has opened up
new therapeutic frontiers for interventions in associated dis-
eases [216]. Toth et al. [217] reported that ER stress and
other cellular components play a vital role in survival and
apoptosis, making them the best target for therapeutic inter-
vention. The circumstances involving proapoptotic events in
ER stress are associated with many pathways, including
TRAF-2, ASK-1, CHOP, and JNK, thus developing a thera-
peutic approach that aims for a particular apoptotic path
may not be sufficient to preserve cells [28]. Therefore, drug
innovations require a holistic approach to comprehend the
interrelationship between pathways involved in apoptosis
due to ER stress.

The proapoptotic pathways and the arms of the UPR sig-
naling pathways are extensively expressed during ER stress;
therefore, averting their action could cause unprecedented
adverse effects on the subject in question. Much research is
desirable to elucidate the character of ER stress completely
and the best therapeutic approaches to use within the con-
necting system. ER stress-associated molecular mechanisms
and gene regulation that induce and advance cellular apopto-
sis are crucial for discovering novel molecular markers for
future drug innovations in diabesity. Similarly, it is impera-
tive to look at the contributions of noncanonical pathways
in relation to diabesity during ER stress.

12. Conclusion

Endoplasmic reticulum homeostasis is critical in maintaining
cellular functions. Sustained ER stress is associated with sev-
eral metabolic disorders, including diabesity, mainly owing
to the interplay of chronic hyperglycemia and hyperlipid-
emia. The ER stress response is now recognized as a converg-
ing molecular mechanism connecting insulin resistance, lipid
metabolism distress, and oxidative stress to endothelial dys-
function, and cell death. ER stress also results in the accumu-
lation of misfolded proteins countered by UPR associated
with the activation of proinflammatory and proapoptotic
pathways. Thus, understanding ER stress and its mecha-
nisms, including homeostatic regulators such as the UPR,
could help identify molecular targets for diabesity treatment.
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