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This work studies scattering-induced elastic wave
attenuation and phase velocity variation in three-
dimensional untextured cubic polycrystals with
statistically equiaxed grains using the theoretical
second-order approximation (SOA) and Born
approximation models and the grain-scale finite-
element (FE) model, pushing the boundary towards
strongly scattering materials. The results for materials
with Zener anisotropy indices A > 1 show a good
agreement between the theoretical and FE models
in the transition and stochastic regions. In the
Rayleigh regime, the agreement is reasonable for
common structural materials with 1 < A < 3.2 but
it deteriorates as A increases. The wavefields and
signals from FE modelling show the emergence
of very strong scattering at low frequencies
for strongly scattering materials that cannot be
fully accounted for by the theoretical models. To
account for such strong scattering at A > 1, a semi-
analytical model is proposed by iterating the far-field
Born approximation and optimizing the iterative
coefficient. The proposed model agrees remarkably
well with the FE model across all studied materials
with greatly differing microstructures; the model
validity also extends to the quasi-static velocity
limit. For polycrystals with A < 1, it is found that
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the agreement between the SOA and FE results is excellent for all studied materials and the
correction of the model is not needed.

1. Introduction
Elastic waves scatter as they travel through inhomogeneous media and thus exhibit scattering-
induced attenuation and phase velocity dispersion. The problem of wave propagation and
scattering in inhomogeneous media has received extensive study in the fields of e.g. seismology
[1,2] and non-destructive evaluation [3,4]. A subject of particular interest in both fields is to study
wave propagation in polycrystalline media to facilitate the detection and characterization of
inhomogeneities like faults, defects and grains within the media. The first complete theoretical
treatment of the scattering-induced attenuation and velocity dispersion in polycrystals was
conducted by Stanke & Kino [5] based on the multiple scattering theory developed by Karal and
Keller [6,7]. This model was formulated for untextured polycrystals with statistically equiaxed
grains of cubic symmetry. An equivalent model was later offered by Weaver [8] using the Dyson
equation and the first-order smoothing approximation [9–11]. A variety of extensions of this later
model have since been performed for various grain structures and crystal symmetries, see e.g.
[12–15] or our earlier work [16–19] for an overview.

The theoretical models of the Stanke & Kino [5] and Weaver [8] type take the statistical
information of the polycrystals as input and for a given wave modality they produce the
scattering-induced attenuation coefficient and phase velocity as outputs. The models (before
the Weaver model [8] invokes the Born approximation) are accurate when the second-order
degree of inhomogeneity is small and hence we collectively call both models the second-
order approximation (SOA) following Stanke & Kino [5]. The SOA results exhibit three
specific frequency regions that are known as the Rayleigh, stochastic and geometric regimes
with increased scattering intensities. All three regimes can also be predicted if the far-field
approximation (FFA) [20] is invoked in the SOA model but the strongly scattering geometric
regime vanishes if the single-scattering Born approximation is employed. The validity of these
model approximations has recently been evaluated by three-dimensional grain-scale finite-
element (FE) simulations which are capable of accurately describing the interaction of waves
with grains [16–19,21–23]. These comparative studies demonstrated that the SOA, FFA and Born
models agree very well with the FE results in the simulated Rayleigh and stochastic regimes.
The SOA and FFA models are mostly indistinguishable from each other and have a better
agreement with the FE results than the Born model. These studies showed that the theoretical
models are valid for polycrystals with the spatial two-point correlation (TPC) of either scalar
type for statistically equiaxed grains [16,17,21–23] or direction-dependent form for statistically
elongated grains [18,19]. It was also shown that the elastic scattering factors [20], as combinations
of elastic constants, are representative of the degree of inhomogeneity in the theoretical models
for polycrystals of the highest cubic [16,18,19] and lowest triclinic [17–19] crystal symmetries; for
cubic symmetry, the elastic scattering factors are related to the Zener anisotropy index A.

Despite the excellent performance of the SOA model, the comparative studies of the theoretical
and FE models also revealed that, for cubic polycrystals with A > 1, the theoretical models start
to deviate from the FE results at low frequencies as A increases [12–15,18], while the agreement
remains good in the transition and stochastic regimes. This is somewhat unexpected because it
is reasonable to assume that the theoretical models perform less satisfactorily at high frequencies
rather than at low frequencies since the degree of scattering increases with frequency. This finding
has led us to hypothesize that strong scattering arises at low frequencies in strongly scattering
polycrystals that is not fully considered by the theoretical models since they only account for a
subset of scattering events. This work aims to further investigate this finding by studying a variety
of equiaxed materials of cubic symmetry with greatly differing A; some studied materials have
significantly larger A than previously considered [5,16–19,21–23]. We shall see that the validity
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of the theoretical models is immediately challenged by the materials of very strong scattering,
particularly, in the low-frequency range.

Consequently, it is desirable to develop a theoretical model valid for highly scattering
materials. This subject of theoretical development has received extensive attention by first
analysing a scatterer embedded in a homogeneous host medium followed by considering
multiple scatterers, see e.g. [24,25] and the literature therein. However, this subject remains
mostly unvisited for strongly scattering polycrystals. A few relevant studies include a recent two-
dimensional theory showing applicability to materials of high anisotropy [26] and a theory for
strongly scattering materials [27] and the references therein. However, for longitudinal waves,
only a small difference is found in [27] from the Stanke and Kino model [5]. To fill in this
gap, this work proposes a semi-analytical model formulated iteratively from the far-field Born
approximation. The proposed model contains a second-order term on the elastic scattering
factor and the iterative coefficient of this term is parametrically optimized for the model to
best fit the FE results in the low-frequency range. We shall see that the proposed model works
remarkably well in the Rayleigh, transition and stochastic regimes for various cubic polycrystals
with largely differing anisotropies and greatly contrasting grain uniformities. The development of
this semi-analytical model is to some extent empirical, but we expect that these promising simple
closed-form solutions would stimulate future rigorous theoretical development.

Below, we first describe the three-dimensional FE method in §2 and the theoretical models in
§3, both for plane longitudinal wave propagation in equiaxed polycrystals of cubic symmetry.
Then, we present a comparative study of the FE and theoretical results in §4 to evaluate the
approximation of the theoretical models. Based on the evaluation of the results, we develop
the semi-analytical model for strongly scattering materials and evaluate its applicability in §5.
Conclusions are given in §6.

2. Finite-element model
We use the three-dimensional FE method to simulate the propagation of plane longitudinal waves
in polycrystals with statistically equiaxed grains. We have reported the details of this method in
our prior work [16,17,21,22,28] (see [18,19] for polycrystals with elongated grains) so only the
essential steps are summarized below.

In the three-dimensional FE method, we use a cuboid, composed of densely packed and fully
bonded convex grains, to represent a polycrystal, as can be seen from figure 1a. The geometric
models created for this work are detailed in table 1. The selection of model dimensions ensures
that there are more than 10 grains and 10 wavelengths in the z-direction of wave propagation.
Each model is deployed in three separate forms, involving three microstructures with the same
number of grains per unit volume but different grain uniformities, as illustrated in figure 1b.
The three microstructures are generated using the Neper program [29] by the Laguerre, Poisson
Voronoi and centroidal Voronoi tessellations [29–31], as abbreviately called Laguerre, PVT and
CVT hereafter. The PVT creates uniformly random seeds in the model space of a polycrystal, with
each seed being enclosed by a convex grain within which all points are closer to the enclosed
seed than to any other [16–19,21,22,28]. The equivalent spherical radii of the PVT grains are
normally distributed as demonstrated in [21–23] and shown in figure 1c. In comparison to the
PVT, the seeds of the Laguerre tessellation are weighted [30,31] to create the type of microstructure
as commonly found in applications [32,33], in which case the equivalent grain radii follow the
lognormal distribution as illustrated in figure 1c. The CVT iteratively changes the locations of the
seeds to achieve a uniform distribution of grains and the resulting equivalent grain radii follow
a much narrower normal distribution than that of the PVT [23], as can be seen from figure 1c.
As discussed below and shown in figure 1d, the three microstructures have greatly differing TPC
functions and thus induce distinctive scattering behaviours.

Each generated polycrystal model is then discretized in space and time. The spatial
discretization uses a structured mesh to divide the model space into identical eight-node linear
‘brick’ elements as illustrated in figure 1a. The element size h of each model is listed in table 1
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Figure 1. (a) FE model set-up for the simulation of plane longitudinal wave propagation in polycrystals with statistically
equiaxed grains. (b) Three polycrystal microstructures of different grain uniformities; each illustrated microstructure has total
dimensions of 12× 12× 10 mmand includes 11 520grains. (c) Grain size distributions for the threemicrostructures, represented
by the probability density of equivalent spherical grain radii; the fitted distribution for Laguerre is lognormal while those for
PVT and CVT are normal; the respective mean values are 0.24, 0.30 and 0.31 mm, and standard deviations are 0.13, 0.05 and
0.005 mm. (d) TPC statistics for the three polycrystal microstructures. (Online version in colour.)

Table 1. Polycrystal models. Dimensions dx × dy × dz (mm), number of grains N, average grain diameter D (mm, cubic root
of average grain volume), mesh size h (mm), degree of freedom d.o.f., frequency range f (MHz) for aluminium modelling and
the respective number of wavelengths nλ = dz/(V0L/f ) per model dimension in the z-direction of wave propagation (these
numbers vary slightly for the modelling of other materials).

model dx × dy × dz N D h d.o.f. f nλ
N115200 12× 12× 100 115 200 0.5 0.050 349× 106 1.0–6.5 16–103

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

N11520 12× 12× 10 11 520 0.5 0.025 278× 106 6.5–13.5 10–21
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

N16000 20× 20× 5 16 000 0.5 0.020 755× 106 13.5–25.0 11–20
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

and the size is chosen to be smaller than λ/10 and D/10 to satisfactorily suppress the numerical
error of the simulation and to well represent the microstructure of the model [21,22,28], where λ

is the wavelength and D is the cubic root of the average grain volume representing the average
grain size. The time-stepping solution is based on the central difference scheme [28,34] using a
time step of �t = 0.8h/V0L that satisfies the Courant–Friedrichs–Lewy condition, where V0L is
the longitudinal Voigt velocity.

Each polycrystal model is subsequently assigned material properties. We consider single-
phase polycrystals in this work, so the individual grains of each model have the same mass
density and elastic constants. The grains within each model are defined with uniformly randomly
oriented crystallographic axes, making the model macroscopically homogeneous and isotropic
(untextured) [21]. The polycrystalline materials used in this work are recorded in table 2. The
materials have the same cubic crystal symmetry but different anisotropy indices A = 2c44/(c11 −
c12), with eight materials having A > 1 (four naturally occurring and four fictitious [16]) and four
having A < 1 [35].

We simulate the propagation of plane longitudinal waves in the z-direction. To initiate this
wave modality, symmetry boundary conditions (SBCs) are defined for the four lateral outer
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Table 2. Polycrystalline materials with cubic crystal symmetry. Elastic constants cij (GPa), densityρ (kg m−3), Voigt velocities
V0L/T (m/s), Zener anisotropy index A and elastic scattering factors QL→T/L.

c11 c12 c44 ρ V0L V0T A QL→T QL→L

aluminium 103.4 57.10 28.60 2700 6318 3128 1.24 3.34× 10−4 7.80× 10−5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A= 1.5 262.1 136.5 95.30 8000 6001 3207 1.52 1.43× 10−3 3.88× 10−4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A= 1.8 251.7 141.7 100.5 8000 6001 3207 1.83 2.79× 10−3 7.60× 10−4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A= 2.4 237.1 149.0 107.8 8000 6001 3207 2.45 5.48× 10−3 1.49× 10−3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

copper 169.6 122.4 74.00 8935 4847 2455 3.14 7.19× 10−3 1.76× 10−3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Inconel 234.6 145.4 126.2 8260 6025 3366 2.83 7.59× 10−3 2.26× 10−3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A= 5.0 210.6 162.1 121.0 8000 6000 3207 5.00 1.27× 10−2 3.44× 10−3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

lithium 13.40 11.30 9.600 534.0 6157 3402 9.14 1.87× 10−2 5.44× 10−3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RbF 55.30 14.00 9.300 3557 3605 1973 0.45 6.44× 10−3 1.84× 10−3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RbCl 36.30 6.200 4.700 2760 3186 1790 0.31 1.38× 10−2 4.16× 10−3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RbBr 31.70 4.200 3.880 3349 2666 1529 0.28 1.67× 10−2 5.24× 10−3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RbI 25.80 3.700 2.800 3550 2326 1311 0.25 1.86× 10−2 5.63× 10−3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

surfaces of each model, i.e. x = 0, x = dx, y = 0 and y = dy surfaces in figure 1a. In applying the
SBCs, we have the displacement components of ux(x, y, z) = −ux( − x, y, z), uy(x, y, z) = uy( − x,
y, z) and uz(x, y, z) = uz( − x, y, z) for the x = 0 surface for example. This essentially means that
the x = 0 surface acts as a mirror that reflects the model to form a virtual symmetric model on
the other side of the surface and is physically equivalent to the condition of ux(x = 0, y, z) = 0
on the x = 0 surface. When combined with the SBCs on the x = dx surface, the model would
be repeatedly reflected on the x = 0 and x = dx surfaces and their subsequent mirrored surfaces,
leading to a virtually infinitely wide model in the x-direction. Together with the SBCs on the y = 0
and y = dy surfaces, an infinitely wide model would be formed across the x–y plane to sustain
plane longitudinal waves. We note that the SBC is not an exact representation for the behaviour at
an arbitrarily located slice through a polycrystal, but it is the best option we have available. The
alternative periodic boundary condition could be used in this case, but it substantially increases
the complexity of the FE solution, and in any case it too is approximate. Further discussion is
given in [22,28]. To excite the desired z-direction plane longitudinal wave, a z-direction force in
the form of a three-cycle Hann-windowed toneburst is uniformly applied to every node on the
z = 0 surface.

Each polycrystal model is solved in the time domain using the GPU-accelerated Pogo
program [34]. z-direction displacements are monitored during the time-stepping solution, and
example results are provided in figure 2 for a single realization of the model N115200 with the
PVT microstructure, simulated at a centre frequency of 1 MHz (2k0La ≈ 1). Figure 2a shows the
displacement wavefields on an arbitrary cross-section at an arbitrary time. Figure 2b displays
the signals at individual nodes as thin grey lines and shows the respective coherent signals as
thick lines that are averaged over all nodes on the monitoring boundaries. Figure 2c presents
the normalized wavefront fluctuations on the receiving boundary at a normalized frequency of
2k0La = 1. To find the value of such a fluctuation, the time domain displacement field at z = dz,
namely uz(x, y; t), is Fourier transformed to the frequency domain, uz(x, y; f ). The amplitude
of the resulting field is normalized by the coherent amplitude to get the fluctuation as uf(x, y;
f ) = |uz(x, y; f )|/〈|uz(x, y;f )|〉x,y − 1, where 〈 · 〉x,y represents the coherent average over all x and
y nodes. The fluctuations can be alternatively given in the time domain but they are not provided
here because they essentially offer the same information as the frequency domain ones, see [28]
for details. Since the fluctuation is normalized by the coherent amplitude, its root-mean-square
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Figure 2. (a) Cross-sectional wavefields, (b) transmitted and received signals and (c) normalized wavefront fluctuations for
plane longitudinalwaves in aluminium, Inconel and lithium, simulated at a centre frequency of 1 MHz (2k0La≈ 1) using a single
realization of themodel N115200with the PVTmicrostructure. Thewavefields in (a) are given for an arbitrary cross-section at an
arbitrary time. The thin grey lines in (b) represent the signals monitored at individual nodes on the transmitting and receiving
surfaces, while the thick lines are the coherent signals averaged over all nodes. The normalized wavefront fluctuations in (c)
are given for the receiving surface at 2k0La= 1 and the RMS of fluctuation is annotated; colourmap is illustrative only. (Online
version in colour.)

(RMS) is essentially the normalized standard deviation and thus quantifies the uncertainty of the
fluctuation; the RMS values are annotated in figure 2c.

All figure panels show stronger scattering as A increases from aluminium through Inconel
to lithium, leading to weaker coherent signals on the receiving boundary. However, the recorded
coherent signals are strong and clear even for lithium. The coherent waves are only affected by the
multiple scattering events arriving simultaneously with the main coherent beam. In addition, the
incoherent waves are diminished after averaging over a significant number (approx. 60 000 in
the least case) of monitoring nodes in each case; this was discussed in-depth in Sec. IV.3 of [19].
Therefore, the coherent signals have a high degree of signal-to-noise ratio (SNR) and the SNR
is further improved in this work by averaging over as many as 15 repeated realizations of the
model domain as will be discussed below. Such coherent signals are well suited to calculating
scattering-induced attenuation and velocity change. This is achieved by applying appropriate
time windowing to the emitted and received coherent signals and then comparing the resulting
main wave pulses in the frequency domain; see [21,22,28] for details. The SNR would decline as
frequency increases towards the transition to the geometric regime, but all FE results reported in
this work have achieved a good SNR by limiting them to a reasonable frequency range [19].
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We note that we use all three models in table 1 for the simulation of each material in table 2. The
individual models are simulated with different centre frequencies for the applied toneburst force,
allowing each material to be simulated in a wide frequency range as reported later in this work;
example frequency ranges covered by individual models are provided in table 1 for aluminium.
The combination of different polycrystal models with various centre frequencies delivers a very
high degree of numerical accuracy across the whole-frequency range [28]. Besides, the simulation
results presented in this work have achieved a very good statistical convergence by taking
the average of 15 realizations for each case (each model-frequency combination). The different
realizations of each case use the same polycrystal model but the crystallographic orientations
of the grains are randomly reshuffled for each realization [22]. Alternatively, these multiple
realizations can also be based on polycrystal models of different grain arrangements [22]. It was
shown [22] that this approach is equivalent to, but more computationally intensive than, that used
here. The applicability of our approach is also supported by the FE results presented in §4 and
§5 that show consistency across different models at their overlapping frequencies for all studied
materials of different microstructures.

The TPC statistics w(r), describing the probability of two points separated by a distance of r
falling into the same grain, are numerically measured from the generated polycrystal models and
the resulting data points are shown in figure 1d for the three polycrystal microstructures. Here we
treat the TPC as a scalar function because it is direction independent. Taking the model N11520
with the PVT microstructure as an example, the TPC curves measured in 30 randomly chosen
directions have a mean correlation length (i.e. integral of TPC curve) of 0.23 mm and a very small
standard deviation of 7.19 × 10−4 mm. This supports the direction independence of the TPC and
also substantiates the statistically equiaxed nature of the grains. Since all three polycrystal models
in table 1 have a large number of grains, they possess nearly the same statistical characteristics
for a given microstructure. Taking the PVT microstructure as an example, the TPCs of the three
models are indistinguishable [28] and their average correlation length is 0.23 mm, with a standard
deviation of 5.84 × 10−5 mm. For this reason, we have selected the model N11520 to determine
the TPC for each microstructure. We note that the SBCs effect, which doubles the sizes of the
symmetry boundary grains and makes these grains larger on average than the grains located
within the body of the models [28], is not considered when measuring the TPC; this will be
further discussed in §4a. To incorporate the measured statistics into the theoretical models, they
are fitted into generalized TPC functions, w(r) =∑

i Aie−r/ai , which are displayed in figure 1d as
solid lines; the Ai and ai coefficients are provided in the electronic supplementary material, table
S1 for the three microstructures. Detailed TPC measurement and fitting procedures are reported
in [16,17,28]. As can be found in figure 1d, the agreement of the generalized TPC curves with
the points is less satisfactory at the tail than at the origin. Improving the agreement at the tail
would increase the accuracy of the volumetric characteristic of the polycrystal, as described by
the effective grain volume Vg

eff = ∫
w(r) dr3 = 8π

∑
i (Aia3

i ) [5,8,17] in the electronic supplementary
material, table S2. However, the accuracy improvement is very limited and is thus not pursued
here because the TPC at the tail is very small in probability. In the electronic supplementary
material, table S2, we also provide the other two characteristic parameters of the TPC as will
be used below, including the mean line intercept a = −1/w′(r = 0) = 1/

∑
i (Ai/ai) [5,17,36] and

correlation length aCL = ∫∞
0 w(r) dr =∑

i Aiai [5,37,38]. Note that the three microstructures have
approximately the same mean line intercept (i.e. the same slope at the origin).

3. Theoretical models
As with the above FE method, the same wave propagation problem of elastic wave propagation
in polycrystals with statistically equiaxed grains is addressed here from a theoretical perspective.
The theoretical models considered here use the statistical information of the FE models as input,
enabling a direct comparison of both methods. These models are briefly introduced below; readers
are referred to [17] for details.
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(a) Second-order approximation
The equiaxed polycrystals considered in this work are macroscopically homogeneous and
isotropic; the spatially varying elastic tensor of a polycrystal can thus be expressed as cijkl(x) =
c0

ijkl + δcijkl(x), with the Voigt average c0
ijkl = 〈

cijkl(x)
〉

representing the homogeneous reference
medium and δcijkl(x) denoting the elastic fluctuation. An incident wave scatters on the elastic
fluctuation and the wavenumber is thus perturbed as the wave propagates. The perturbed
wavenumber k satisfies the dispersion equation [8,16,17,20]

ω2 − k2V2
0M − mM(k; ω) = 0 (3.1)

where k = kp is the wavevector; the unit vector p represents the wave propagation direction,
which is arbitrary due to the macroscopic isotropy of the polycrystal. ω = 2π f is the angular
frequency and f is the frequency. V0M represents the Voigt phase velocity of the wave M in
the homogeneous reference medium. mM =∑

N=L,T mM→N is the spatial Fourier transform of
the mass operator describing the random scattering events occurring in the polycrystal. The
component mM→N , denoting the scattering of the wave M into N, is given below [16,17,20] by
using the first-order smoothing approximation [8,9] (equivalent to the Bourret approximation
[9–11])

mM→N(k; ω) = 2πk2k3
0N

ηρ2V2
0N

{
P.V.

∫∞

0

[
ξ4

1 − ξ2

∫π

0
fM→N(k, ω, ξ , θ ) sin θdθ

]
dξ

− i
π

2

∫π

0
fM→N(k, ω, ξ = 1, θ ) sin θ dθ

}
, (3.2)

where the mass density ρ is constant for a single-phase polycrystal considered in this work. k0N

denotes the wavenumber of the wave N in the reference medium. P.V. represents the Cauchy
principal value and ξ is a dimensionless variable. The coefficient η is 1 and 2 for longitudinal
(M = L) and transverse (M = T) propagating waves, respectively. The factor fM→N in equation
(3.2) describes the TPC of the elastic fluctuation and is given by [16,17,20]

fM→N(k, ω, ξ , θ ) = (AMN + BMN cos2 θ + CMN cos4 θ )

×
∑

i

Aia3
i

π2[1 + a2
i (k2 + ξ2k2

0N − 2ξkk0N cos θ )]
2 , (3.3)

where the terms in the summation symbol correspond to the spectral representation of the
spatial TPC function, w(r) =∑

i Aie−r/ai , and the rest of the terms in the parentheses represent the
elastic part of the TPC. For longitudinal waves in cubic polycrystals, the AMN , . . . . coefficients in
equation (3.3) (M = L, N ∈ L, T) are given by ALL = 3c2/175, ALT = c2/35, BLL = BLT = 2c2/175 and
CLL = −CLT = c2/525, where c = c11 − c12 − 2c44 is the invariant anisotropy coefficient [16] (c = 0;
A = 1 for isotropy); those coefficients for arbitrary crystal symmetries can be found in our prior
work [17].

One obtains the perturbed wavenumber k for the propagating wave M by numerically solving
the dispersion equation, equation (3.1). Consequently, the attenuation coefficient and phase
velocity are calculated from the imaginary and real parts of the perturbed wavenumber by
αM = Imk and VM = ω/Rek.

(b) Far-field approximation
The FFA model does not involve the complex calculation of the Cauchy integral as in the SOA
model, and it has an explicit expression for the mass operator as given below for polycrystals
with statistically equiaxed grains [17,20]

mM→N =
∑

i

−4Aik2a2
i V2

0Mk2
0NQM→N

k2a2
i − (i + k0Nai)

2 . (3.4)
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Similarly to the SOA model, substituting equation (3.4) into the dispersion equation, equation
(3.1), and numerically solving the equation results in the solution to the perturbed wavenumber
k. We note that the resulting velocity, VM = ω/Rek, needs to be corrected by adding a constant
velocity of VR

M − V0M [17,20], with VR
M being the Rayleigh velocity limit given below. The solution

of the FFA model is mostly indistinguishable from that of the SOA model across the whole-
frequency range but the former is more computationally efficient [17]. An important advantage
of the FFA model for our purpose is that it explicitly relates the attenuation and velocity
dispersion to the elastic scattering factors QM→N [20]. Two factors, QM→M = (AMM + BMM +
CMM)/(4ηρ2V4

0M) and QM→N = (AMN + BMN/3 + CMN/5)/(4ηρ2V2
0MV2

0N) (N 	= M) [20], exist for
macroscopically isotropic polycrystals with grains of arbitrary symmetry, and they have simple
expressions of QL→L = 4c2/(525〈c11〉2) and QL→T = c2/(105〈c11〉〈c44〉) in a cubic polycrystal [20].

(c) Born approximation
Closed-form solutions can be found for the SOA and FFA models by invoking the Born
approximation. Since the resulting numerical solutions are nearly the same [17], here we only
provide the Born approximation of the FFA model. To obtain the solution, we substitute
(ω/V0M)2 − k2 by 2k0M(k0M − k) in equation (3.1) and replace k with pk0M in equation (3.4). This
leads to the following solution for a longitudinal propagating wave [17,20]

kL = k0L + 2k3
0LQL→L

∑
i

Aia2
i

k2
0La2

i − (i + k0Lai)
2 + 2k0Lk2

0TQL→T
∑

i

Aia2
i

k2
0La2

i − (i + k0Tai)
2

+ 2(Q∗
LL + QL→T)k0L, (3.5)

where 2(Q∗
LL + QL→T)k0L is added to consider the above-mentioned velocity correction. The

imaginary and real parts of the solution kL are further obtained as

αL = Im kL =
∑

i

Ai
4QL→Lk0L(k0Lai)

3

1 + 4(k0Lai)
2 +

∑
i

Ai
4QL→Tk0L(k0Tai)

3

[1 + (k0Tai)
2(η2

LT − 1)]
2 + 4(k0Tai)

2
(3.6)

and

RekL = k0L +
∑

i

Ai
2QL→Lk0L(k0Lai)

2

1 + 4(k0Lai)
2 + 2Q∗

LLk0L

+
∑

i

Ai
2QL→Tk0L(k0Tai)

2[1 + (k0Tai)
2(η2

LT − 1)]

[1 + (k0Tai)
2(η2

LT − 1)]
2 + 4(k0Tai)

2
+ 2QL→Tk0L, (3.7)

where ηLT = V0T/V0L.

(d) Rayleigh asymptotes
At the low-frequency Rayleigh limit, the attenuation and phase velocity asymptotes are given
by [17]

αR
M = 1

2π
k4

0MVg
eff

(
Q∗

MM + V3
0M

V3
0N

QM→N

)
, VR

M = V0M

1 + 2Q∗
MM + 2QM→N

, (3.8)

where N 	= M. Vg
eff is the effective grain volume defined by the volumetric integral of the

TPC function [5,8,17], electronic supplementary material, table S2. Q∗
MM = (AMM + BMM/3 +

CMM/5)/(4ηρ2V4
0M) is an elastic factor for simplifying the equation. For longitudinal waves, since

Q∗
LL is generally negligible and V3

0L/V3
0T just differs slightly among most structural materials,

we can obtain from equation (3.8) that αR
L ∝ QL→T. Appending the fact that Q∗

LL and QL→T
are far smaller than unity, it follows from equation (3.8) that the phase velocity variation is
VR

L /V0L − 1 ≈ −2Q∗
LL − 2QL→T ≈ −2QL→T. Therefore, QL→T indicates the level of scattering in

the Rayleigh regime.
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(e) Stochastic asymptotes
At the high-frequency stochastic limit, the attenuation and phase velocity asymptotes are given
by [17]

αS
M = k2

0MaCLQM→M, VS
M = V0M

1 + 5QM→M/2 + 2Q∗
MN/(1 − V2

0M/V2
0N)

, (3.9)

in which N 	= M. aCL is the correlation length defined by the integral of the TPC function [37],
electronic supplementary material, table S2. Q∗

MN = (AMN + BMN + CMN)/(4ηρ2V2
0MV2

0N) is an
elastic factor introduced for simplifying the equation. For longitudinal waves, it follows from
equation (3.9) that αS

L ∝ QL→L and VS
L/V0L − 1 ≈ −5QL→L/2 + 2Q∗

LT(V2
0L/V2

0T − 1) ∝ QL→L. Thus,
QL→L is the major elastic factor determining the level of scattering at the stochastic limit.

4. Comparison of finite-element and theoretical models
Now we present and discuss the numerical FE model (FEM) results and theoretical predictions.
The first three subsections focus on the eight cubic materials with anisotropy indices A > 1, while
the last subsection on the four materials with A < 1. Both cases consider the PVT microstructure
only.

(a) Dependence of attenuation and velocity on frequency
Figure 3 shows the normalized attenuation 2αLa and the phase velocity variation VL/V0L − 1
versus the normalized frequency 2k0La for the eight A > 1 materials (table 2) with the PVT
microstructure. The normalization factor a is the mean line intercept of the grains, electronic
supplementary material, table S2. Points are FEM results and curves are theoretical predictions.

The FEM points of each material are obtained using all three polycrystal models in table 1,
modelled with multiple centre frequencies, to cover the shown frequency range. A combination
of 15 realizations is used for each modelling case to achieve statistically meaningful results. The
average of the multiple realizations is shown as the points in the figure while the corresponding
standard deviation (i.e. error bar) is not provided because it is smaller than the size of the FEM
point markers. The relative differences between the theoretical curves and the FEM points are
provided in figure 4. A small discontinuity (sudden jump) can be observed as we look along
sequential FEM points for each material, which is more evident from the phase velocity points
for A = 5.0 and lithium at around 2k0La = 1 (those jumps are especially visible for the relative
differences in figure 4). Such a discontinuity occurs because two different FE material models are
used for calculating its left- and right-side FEM points; e.g. N115200 and N11520 for the left and
right sides of 2k0La ≈ 1. The models on the two sides have different mesh sizes and thus different
numbers of elements per wavelength at their overlapping frequency of calculation. This causes
different numerical errors [28] that exhibit a discontinuity of the FEM results. The discontinuity is
observable in the phase velocity results because the FE scheme used in this work is more prone to
numerical phase errors, namely numerical dispersion [28]. Also, this discontinuity is more evident
for highly scattering materials because numerical errors depend on material anisotropy [28]. The
discontinuities essentially define the bound of the numerical error, which is mostly one order of
magnitude smaller than the difference between the theoretical and numerical FE results, as can
be more evidently seen from figure 4. For the extreme case, i.e. the phase velocity of lithium, the
numerical error is about 0.4%, whereas the SOA-FEM difference is 2.4%. In essence, the FE results
have achieved a very high degree of numerical accuracy and statistical convergence (also see our
prior studies [21,22,33] and especially [28] for a more detailed assessment of these two aspects),
and therefore they are used as reliable references below to evaluate the approximations of the
theoretical models.

The theoretical SOA and Born curves are produced by incorporating the generalized TPC
function of the FE material models, electronic supplementary material, table S1. The FFA
model results are indistinguishable from the SOA curves [17] and are thus not provided. We
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Figure 3. (a) Normalized attenuation and (b) phase velocity variation versus normalized frequency for plane longitudinalwaves
in eight cubic polycrystalswithA> 1 (the PVTmicrostructure). The figure shows a comparison of numerical FEM results (points)
with theoretical SOA and Born, and semi-analytical (S-A) (dashed lines) predictions. All FEM points are obtained by averaging
the results of 15 FE simulations; the corresponding error bars are not shown since they are smaller than the size of the point
markers. The theoretical SOA and Born, and semi-analytical curves have incorporated the generalized TPC function (electronic
supplementary material, table S1) of the FE models. The elastic scattering factors QL→T and QL→L of the materials, table 2,
follow the sequence: aluminium< A= 1.5< A= 1.8< A= 2.4< copper< Inconel< A= 5.0< lithium. The leftmost
solid points in (b) are quasi-static FEM results. The y-axis range of the top four panels in (b) is one-fourth of that of the bottom
four. (Online version in colour.)

note that the SBCs effect is not considered in the measured and generalized TPC functions
and is accordingly not accounted for in the theoretical SOA and Born curves. Since the SBCs
enlarge the symmetry boundary grains and slightly increase the scattering intensity in the FE
simulations (such an increase occurs to both the L-L and L-T scattering components but the
L-T component may increase more at low frequencies where the L-T component is dominant)
[28], the theoretical predictions would underestimate the level of attenuation and phase velocity
variation in comparison to the FE results. Nonetheless, our prior work [28] has shown that this
underestimation is very small and the same estimation for all materials addressed in this work
reveals that this underestimation does not depend on material anisotropy. Also, it can be seen
from figure 2a that there is no visible distortion of the waves on the symmetry boundaries for all
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results, plotted against normalized frequency for longitudinal waves in equiaxed cubic polycrystals of the PVT microstructure.
All theoretical and FEM results are taken fromfigure 3. Their relative differences,with the FEM results as the reference, are shown
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materials, thus supporting the smallness and anisotropy independence of the SBCs effect. For this
reason, we ignore the SBCs effect in this work.

For attenuation, the theoretical results approach the Rayleigh and stochastic asymptotes in the
low- and high-frequency regions for all materials, and therefore they have fourth- and second-
power dependences on frequency in the two regions, as follows from equations (3.8) and (3.9);
the FEM results display the same frequency dependencies. The ‘hump’ in the transition frequency
regime is a unique feature for longitudinal waves, which is attributed to the transition of the
dominant L → T scattering in the Rayleigh regime to the dominant L → L in the stochastic regime
[5,17,23]. Also, for a more strongly scattering material [5,17,19], the attenuation results show a
less pronounced stochastic region and an earlier transition to the geometric regime (seemingly
flat part appearing at the far right of the SOA curve for lithium). For phase velocity, the FEM and
theoretical results tend to be non-dispersive in the Rayleigh regime while having different static
limits for high anisotropies. Between the Rayleigh and stochastic asymptotes the phase velocity
is dispersive due to transition of the dominant scattering mechanisms. The velocity results also
show a shorter stochastic regime for a more anisotropic material, and this regime can hardly
be observed from the FEM points because (i) for weakly scattering materials (aluminium, A = 1.5,
A = 1.8 and A = 2.4), the velocity decreases slowly with frequency due to the numerical dispersion
in the FE simulation [28], while (ii) for strongly scattering materials, the velocity increases with
frequency potentially as a result of the numerical dispersion and the complete disappearance of
the stochastic regime due to the strongly scattering nature of the materials.

Considering both the low- and high-frequency regimes, the attenuation and velocity variation
ranges in figure 3 increase with the material anisotropy. This is due to the increase of scattering
with material anisotropy, as can be observed from the wavefields, signals and wavefront
fluctuations of different materials in figure 2. Quantitative evidence can also be found from the
fluctuation RMS values in figure 2c, which show a 10-fold increase from aluminium to lithium.
This increase of the fluctuation RMS can be further characterized by a quadratic relationship to
the scattering factor QL→T by RMS = 206.96Q2

L→T + 12.18QL→T + 0.04, with a goodness-of-fit of
R2 = 0.987. This quadratic fit is generated using the three RMS values in figure 2c as well as those
not shown, which are 0.05, 0.09, 0.11, 0.15 and 0.22 for the materials A = 1.5, A = 1.8, A = 2.4,
copper and A = 5.0.

Following the increase of scattering with material anisotropy, the theoretical SOA and Born
curves in figure 3 show a deteriorated agreement with the FEM points as material anisotropy
increases. As aforementioned, this is because the theoretical models only account for a subset
of scattering events whereas the FEM points accurately incorporate all possible scattering. A
further quantitative evaluation is provided in figure 4, showing the relative differences between
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the theoretical curves and the FEM points. In the figure, the relative difference in attenuation
between the SOA and FEM results, for instance, is calculated by δ = αSOA

L /αFEM
L − 1, with the

SOA and FEM results αSOA
L and αFEM

L taken from figure 3.
A distinctive observation from figure 4 is that the relative differences in attenuation and phase

velocity between the theoretical and FE models are relatively larger at low frequencies. Taking the
frequency at 2k0La = 1 as an example, the relative difference in attenuation between the SOA and
FEM results increases from −10% for aluminium to −66% for lithium, while the relative difference
in phase velocity increases from 4 × 10−4% for aluminium to 2.4% for lithium. Such a large SOA-
FEM difference is somewhat unexpected since it was previously believed that scattering is small
in the low-frequency range and can thus be appropriately accounted for by the SOA model.
However, it can be observed from figure 2 that very strong scattering arises at low frequencies,
especially for strongly scattering lithium. Also, a strong scattering signal is visible in figure 2b
long after the main pulse. Our interpretation here is that we are seeing multiple scattering after
the arrival of the main coherent pulse; however, its effect on the main signal’s amplitude and
phase is unproven; it is possible that at low frequencies both could be solely affected by strong
single scattering in the strongly anisotropic materials. One of the limitations of the SOA model
is that it considers multiple scattering only partially, and the Born approximation accounts for
only single-scattering events and thus deviates even more greatly from the FEM. However, we
note that the Born-SOA difference is much less than the SOA-FEM difference; for attenuation at
2k0La = 1, the former is −0.3% for aluminium and −14.9% for lithium.

In contrast with the low-frequency range, the middle-frequency range exhibits mostly smaller
differences, and interestingly, the attenuation differences nearly overlap across the materials in the
range of 2k0La = 5 − 12 in figure 4a. At very high frequencies, the differences in both attenuation
and phase velocity tend to grow with frequency and material anisotropy. It might be valuable to
see how the differences progress with frequency in the future when computation power allows.
Overall, the SOA model has a reasonable agreement with FEM in the middle- and high-frequency
regions, and the single-scattering Born model agrees just as well with FEM even for strongly
scattering polycrystals. This may suggest that multiple scattering is not strong even in these
regions.

(b) Dependence of attenuation and velocity on elastic scattering factors
It has been demonstrated by figure 3 that attenuation and velocity variation increase with
material anisotropy. A similar increase has also been found in figure 4 for the relative difference
between the theoretical and FE models, revealing a more prominent anisotropy dependence at
relatively low and high frequencies. For this reason, two normalized frequencies, 2k0La = 1 and
2k0La = 12, are chosen in these two ranges to quantitatively evaluate this dependence. At these
two frequencies, the normalized attenuation and phase velocity points are extracted from figure 3
and plotted versus the elastic scattering factors in figure 5. Since the two frequencies roughly
fall into the Rayleigh and stochastic regimes, the elastic scattering factors QL→T and QL→L are
employed to characterize the degrees of scattering respectively, see §3 for the selection of these
factors. We note that the factor ε2 = 〈(kL − k0L)2〉/k2

0L defined in [5,39] is identical to the factor
QL→L (thus refer to the QL→L column of table 2 for the values of ε2) that describes the degree of
inhomogeneity for the longitudinal-to-longitudinal scattering in the stochastic regime. We use the
factor QL→T to describe the degree of inhomogeneity for the longitudinal-to-transverse scattering
dominating in the Rayleigh regime [17,19].

At the low frequency 2k0La = 1, the numerical FE points show a distinct quadratic relationship
with the elastic scattering factor QL→T for both attenuation and phase velocity. Quadratic fits are
generated for the data points and are plotted in the figure, and the fits are given by

2αLa = 44.52Q2
L→T + 0.28QL→T, or ImkL = 0.09/(2a) × 4QL→T(0.78 + 4π3QL→T) (4.1)



14

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210850

..........................................................

0

0.005

0.010

0.015

0.020

FEM

SOA

Born

A
l A
 =

 1
.5

A
 =

 1
.8

A
 =

 2
.4

co
pp

er

A
 =

 5
.0

inconel

lit
hi

um

0

0.1

0.2

0.3

0.4
FEM

SOA
Born

A
l A

 =
 1

.5

A
 =

 1
.8 A
 =

 2
.4

co
pp

er

in
co

ne
l A

 =
 5

.0

lit
hi

um

–0.08
0 0.005 0.01

QLÆT QLÆT

0.015 0.02

–0.06

–0.04

–0.02

0

FEM

SOA

Born

A
l

A
 =

 1
 .5

A
 =

 1
.8

A
 =

 2
.4

co
pp

er

A
 =

 5
.0

in
co

ne
l

lit
hi

um
0 0.002 0.004 0.006

–0.002
0

0.005

0.010

0.015

FEM

SOA

Born

A
l A
 =

 1
.5

A
 =

 1
.8

A
 =

 2
.4

co
pp

er

In
co

ne
l A
 =

 5
.0

lit
hi

um

 Attenuation at 2k0La = 1

 phase velocity at 2k0La = 1

 Attenuation at 2k0La = 12

 phase velocity at 2k0La = 12

2a
L
a

V
L
/V

0L
–1

(a) (b)

(d)(c)

Figure 5. (a,b) Normalized attenuation and (c,d) phase velocity variation versus elastic scattering factors for longitudinal
waves in cubic polycrystals with the PVT microstructure, comparing theoretical SOA and Born predictions with numerical FEM
results. The FEM (circles), SOA (triangles) and Born (squares) points are taken from figure 3 at the normalized frequencies of
(a,c) 2k0La= 1 and (b,d) 2k0La= 12. Note that the y-axes of all four panels represent the attenuation and velocity variation
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scattering factors depending on the normalized frequency. The dashed lines in (a) and (c) are quadratic fits of the FEM points,
while the rest of the lines are linear fits. (Online version in colour.)

and

VL/V0L − 1 = −61.69Q2
L→T − 2.77QL→T, or RekL = k0L + 2QL→T(1.39 + π3QL→T)k0L, (4.2)

with the goodness-of-fit of R2 = 0.997 and R2 = 0.999, respectively. By comparison, the theoretical
SOA and Born predictions have a rather different dependence of linear order on the scattering
factor QL→T, which is represented by the linear fits in the figure. Also, these predictions are
smaller in magnitude than the FEM points due to the aforementioned reason that the theoretical
models only consider a subset of scattering events whereas the FEM considers all.

At the high frequency 2k0La = 12, all results suggest a linear dependence on the scattering
factor QL→L, as is more evident from the attenuation results shown in figure 5b. Nonetheless, we
emphasize that this assertion of linear dependence may not be appropriate. This is due to the
possibility that not all evaluated materials are consistently in the stochastic regime at 2k0La = 12
because weakly scattering materials are yet to enter the stochastic regime while the strongly
scattering ones are already transiting into the geometric regime.

(c) Quasi-static velocity limit
The quasi-static limit of longitudinal phase velocity is related to the effective elastic constant C11
of the polycrystal medium by VL = √

C11/ρ. Since this limit can be determined to a high degree of
accuracy using three-dimensional FEM [17], its FEM results can be used to evaluate the suitability
of effective medium theories. For this reason, we calculate the quasi-static FEM velocities for the
eight cubic materials with A > 1 and provide the results in figure 6a as a function of the scattering
factor QL→T. Each point is statistically converged by taking the average of 30 realizations using
the model N115200 (table 1), and the respective error bar is not shown because it is smaller than
the size of the markers.
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The effective medium theories considered here include the Hashin–Shtrikman (HS) bounds
[40–42] and the self-consistent (SC) theory [43,44]. The lower and upper HS bounds, denoted,
respectively, as LHS and UHS, prescribe the limiting range for the quasi-static velocity, while the
SC theory provides a unique estimation of quasi-static velocity satisfying the continuity of stress
and strain throughout the polycrystal. The bounds in figure 6a are calculated with the scripts
by Brown [42] and the SC results with the scripts by Kube and De Jong [43]. Additionally, the
Rayleigh asymptote of the SOA model, equation (3.8), is evaluated here and shown in the figure.
The looser first-order bounds, namely the Reuss-Voigt bounds, are not shown, but note that all
results in figure 6a are normalized to the Voigt velocity, V0L. The deviations of the theoretical
predictions to the reference FE results are plotted in figure 6b. Quadratic fits are generated for all
datasets shown in the figure.

Consistently for all materials, the FEM, SC and SOA points lie well between the LHS and
UHS bounds, whose range becomes wider as the scattering factor increases. The SOA estimates
perform well for weakly scattering materials, but the agreement deteriorates with the increase
of grain anisotropy. The SC theory shows an excellent agreement with the FEM results even for
lithium, while the SOA model is less satisfactory in this regard. All results show a quadratic
relationship between the normalized quasi-static velocity VL/V0L − 1 and the elastic scattering
factor QL→T. This sole dependence on the elastic scattering factor is a new finding and is simpler
than the previously observed dependence on both the Poisson’s ratio and anisotropy index [16].
The differences between the theoretical and FEM results also exhibit a quadratic dependence
on QL→T.

(d) Cubic materials with anisotropy indices A< 1
Here, we present the results for the four cubic materials with anisotropy indices smaller than 1
(A < 1, table 2). The results are provided in figure 7, with (a) and (b) showing the normalized
attenuation and phase velocity variation against the normalized frequency, (c) and (d) the
respective results at 2k0La = 1 versus the elastic scattering factor QL→T, and (e) the quasi-static
velocity against QL→T. All shown FEM results are obtained by averaging the results of 15
realizations, while the calculations of the theoretical SOA curves are based on the generalized
TPC function of the FE models, electronic supplementary material, table S1. The FEM results are
given only for the low-frequency Rayleigh range where our interest lies.
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In contrast with the A > 1 case, a prominent finding is that the theoretical SOA predictions
agree excellently with the FEM points. The normalized root-mean-square deviations (RMSD) of
the SOA results from the FEM results are 0.94%, 4.57%, 5.48% and 6.88% for RbF, RbCl, RbBr
and RbI for attenuation, while the respective numbers for phase velocity are 0.15%, 0.36%, 0.45%
and 0.51%. We note that RbI has approximately the same QL→T as lithium and its universal
anisotropy index [45] is of the same order of magnitude as that for lithium (2.64 for RbI and 8.70
for lithium). The two materials also show very similar levels of scattering, as can be observed from
their FE wavefields, signals and wavefront fluctuations in the electronic supplementary material,
figure S1. Despite these similarities, the SOA-FEM difference for RbI is an order of magnitude
smaller than that for lithium. An in-depth study shows that the FEM results can be fitted to
second-order polynomials of QL→T for both the A < 1 and A > 1 cases, but the second-order term
for the A < 1 case is negligible while that for the A > 1 case is comparable to its linear-order term.
By contrast, the SOA model predicts a linear dependence on QL→T for both cases. This contrasting
result seems to be the reason why the SOA model performs well only for the A < 1 case while not
for the A > 1 case.

Both A > 1 and A < 1 cases in figures 6 and 7e exhibit an exceptional agreement between
the SC and the quasi-static FEM results. This fact further supports the generality of the above
conclusions on the dependences of QL→T in the low-frequency range. We further confirmed this
finding by analysing an extra set of 441 cubic materials (153 with A < 1 and 288 with A > 1, using
elastic constants from [46]) by comparing our quasi-static results with those obtained from the
SC estimate [43] and the Reuss bound; the details of this study will be reported elsewhere. In
particular, we found from the simple analytical expression of the Reuss bound [47] that the quasi-
static velocity bound has both linear and quadratic QL→T terms for either case; however, the
quadratic term is very much smaller than the linear term for the A < 1 case, whereas the two
terms are comparable for the A > 1 case. Therefore, there seem to be some general grounds for the
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difference between the A < 1 and A > 1 cases; however, it is not clear to us why, physically, the
coefficient for the second-order QL→T term is so small for A < 1.

5. Semi-analytical model for strongly scattering polycrystals with A> 1
The above attenuation and velocity results show a reasonably good agreement between the
theoretical SOA and numerical FE models at high frequencies beyond the Rayleigh regime. In the
low-frequency Rayleigh regime, however, the results exhibit a contrasting feature for the A < 1
and A > 1 cases. This is because the FEM results have different dependences on QL→T, being
nearly linear, at A < 1, and quadratic, at A > 1, whereas the SOA model exhibits a linear order for
both cases. This leads to an excellent agreement between the SOA and FE models for the A < 1
case but a less satisfactory agreement for the A > 1 case that deteriorates rapidly with the increase
of A. For this reason and the fact that most structural materials have anisotropy indices greater
than unity, our focus of this section will be on the A > 1 case only.

The SOA model is inherently approximate; among those approximations the most important
are:

(1) The SOA model involves a major approximation by replacing a discrete polycrystal with a
continuous random medium with fluctuating elastic tensor and statistical representation
of the polycrystal by the TPC function [5,8–10]. This replacement is intuitively applicable
to materials of weak anisotropy but may introduce non-negligible errors for strongly
anisotropic materials.

(2) The SOA model uses the first-order smoothing approximation, as described by Weaver
for polycrystals [8]. In the equivalent diagram perturbation series method, this relates
to accounting for a subset of the scattering diagrams in the solution of the exact Dyson
equation [9,10]. This approximation is also equivalent to the Keller approximation [7] as
applied by Stanke & Kino [5] and in [6] to solids. The neglected scattering events may be
negligible for weakly scattering materials but become increasingly important as material
anisotropy gets stronger.

(3) The model assumes the validity of factorizing the TPC function into the elastic
and geometric terms [5,8]. There is some numerical support for the validity of this
factorization [48].

(4) The high orders of the scattering diagrams depend on the multi-point correlation
functions [9,10]. The effect of the additional statistics on scattering was not addressed
in the literature.

The effect of those approximations on the obtained solution is not yet known even for the scalar
case due to the lack of exact solutions. Therefore, numerical methods are the only alternative at
this time to evaluate the quality of obtained solutions for polycrystals.

The fact that the FEM results depend quadratically on the elastic scattering factor QL→T
indicates that an iterative approach may be applied to the theoretical SOA model (with a
linear dependence on QL→T) to add a higher order term on the scattering factor. Following
Rytov et al. [10] (pages 139–141), we may produce the iteration series for the SOA model by
obtaining an initial effective wavenumber from the dispersion equation, then using it as the
wavenumber for the reference medium to get from the dispersion equation the next iteration for
the effective wavenumber. Further repeating this one obtains higher iteration solutions. Evidently,
one iteration is sufficient to introduce a quadratic term of the elastic scattering factors into the
solution. However, we note that even an infinite iteration will only consider a summation of a
subset of the infinite types of scattering diagrams [10], and the contribution of the unaccounted
diagrams seems significant as revealed from comparison with the FEM results. Thus, it is not
feasible for this approach to fully take into account all scattering events. Also, note that the
continuous random medium approximation (i) is done even before the Dyson equation can be
derived by this approach.
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Alternatively, we propose a semi-analytical model by using the first iteration of the far-field
Born approximation that results in a corrective second-order term on the scattering factor and
then significantly increasing the coefficient of the corrective term for the model prediction to
match the FEM results. Surprisingly, this empirical coefficient is nearly π3, and as will be seen
below this semi-analytical model works very well for various cubic materials with different
microstructures and also for cubic materials with elongated grains [49]. We start the iteration by
assuming that the effective wavenumber kL of the Born approximation, equation (3.5), becomes
the wavenumber of the reference medium [10] and thus substituting this wavenumber into
equation (3.5) to form a new effective wavenumber. Since we are dealing with the low-frequency
range where the L → T scattering is dominant, we use only the L → T term in equation (3.5) for the
iteration. We do the iteration separately for the attenuation and phase velocity based on equations
(3.6) and (3.7); this results in the expressions:

αL =
∑

i

Ai
4QL→Lk0L(k0Lai)

3

1 + 4(k0Lai)
2 +

∑
i

Ai
4QL→T(1 + 4π3pIm

i QL→T)k0L(k0Tai)
3

[1 + (k0Tai)
2(η2

LT − 1)]
2 + 4(k0Tai)

2
(5.1)

and

RekL = k0L +
∑

i

Ai
2QL→Lk0L(k0Lai)

2

1 + 4(k0Lai)
2 + 2Q∗

LLk0L

+
∑

i

Ai
2QL→T(1 + π3pRe

i QL→T)k0L(k0Tai)
2[1 + (k0Tai)

2(η2
LT − 1)]

[1 + (k0Tai)
2(η2

LT − 1)]
2 + 4(k0Tai)

2

+
∑

i

2AiQL→T(1 + π3pRe
i QL→T)k0L. (5.2)

The terms 4pIm
i QL→T and 2pRe

i QL→T directly come from the iteration. The coefficients π3

and π3/2 are obtained by best matching equations (5.1) and (5.2) with the FEM results at
2k0La = 1, equations (4.1) and (4.2). The iterative factors are given originally by pIm

i = pRe
i =

1/([1 + (k0Tai)2(η2
LT − 1)]2 + 4(k0Tai)2), but our parametric study indicates that they need to be

modified as follows to improve the transition of the semi-analytical model into the stochastic
regime

pIm
i = 1

1 + (η2
LT + 1)(k0Tai)

2 and pRe
i = 1

1 + (1/2)(η2
LT + 1)(k0Tai)

2 . (5.3)

We note that the empirical coefficient π3/2 for RekL (phase velocity) is half of that for attenuation,
π3, and there is also an extra 1/2 constant in pRe

i as compared to pIm
i . This systematic difference

between the correction coefficients for attenuation and phase velocity is not yet understood. It
is worth pointing out that removing the summations over i in equations (5.1) and (5.2) would
deliver a semi-analytical model for polycrystals with the TPC given by a single exponential,
w(r) = e−r/a. Also, we emphasize that the empirical coefficients are nearly unchanged when the
SBCs are accounted for because they only affect the TPC function and the effect is small, see §4a
and [28].

At the Rayleigh limit, the attenuation and phase velocity asymptotes obtained from equations
(5.1) and (5.2) are given in the especially simple form

αR
L = 1

2π
k4

0LVg
eff

[
QL→L + V3

0L

V3
0T

(1 + 4π3QL→T)QL→T

]

and VR
L = V0L

1 + 2Q∗
LL + 2QL→T(1 + π3QL→T)

,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.4)

The stochastic attenuation and phase velocity asymptotes for the semi-analytical model are
the same as those given by equation (3.9) because the model has retained the same stochastic
behaviours as the Born approximation.
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Below, by comparing with the FEM results, we evaluate the applicability of the semi-analytical
model, equations (5.1) and (5.2), to different materials and microstructures and also assess its
accuracy for the quasi-static velocity limit, equation (5.4).

(a) Applicability of the semi-analyticalmodel to cubic polycrystalswith various anisotropy
indices

First, we evaluate the applicability of the semi-analytical model to the eight cubic materials
with the same PVT microstructure but greatly differing anisotropy indices. The semi-analytical
model predictions are compared with the FEM and SOA results in figure 3. The figure shows
that the semi-analytical model mostly overlaps with the FEM at low frequencies for both
attenuation and phase velocity across all materials, demonstrating its greatly improved accuracy
in comparison to the SOA model for high-grain anisotropies. Table 3 summarizes the normalized
RMSD of the models from the FEM (the FEM values as the reference). It reveals that the semi-
analytical model mostly performs an order of magnitude better than the SOA model in the
low-frequency range; the difference between the semi-analytical and FE models barely shows
dependence on material anisotropy, especially for attenuation. Although not shown, we note that
the Rayleigh asymptotes of the semi-analytical model also excellently represent the attenuation
and velocity behaviours at the low-frequency limit. In the transition region, the semi-analytical
model exhibits a slightly better agreement with the FEM results than the SOA model, and
table 3 suggests that the bettering of the agreement is more evident for materials of a stronger
scattering. The semi-analytical model approaches the SOA model in the stochastic range for all
shown cases.

(b) Applicability of the semi-analytical model to different polycrystal microstructures
The excellent agreement between the semi-analytical model and the FEM discussed above
are for the datasets for which the matching coefficients π3 and π3/2 were determined in the
model, equations (5.1) and (5.2). Nonetheless, it is also important to compare the model for
unrelated microstructures. Here we evaluate the applicability of the semi-analytical model to
different polycrystal microstructures with greatly contrasting TPC. Among the eight materials
with A > 1, the above analysis illustrates that lithium most critically challenges the existing
SOA and Born models. For this reason, the lithium polycrystal is used here for the evaluation,
and it is additionally simulated with the Laguerre and CVT microstructures, §2. The resulting
FEM points and those for the PVT microstructure (already shown in figure 3) are plotted in
figure 8, compared with the predictions of the SOA and semi-analytical models. In contrast
with the SOA model, the semi-analytical model has a remarkably better agreement with the
FEM in both the low-frequency and transition regions for all three microstructures. In the low-
frequency region, in particular, the RMSD for the attenuation, given in table 3, decreases from
60% for the SOA model to 5% for the semi-analytical model, while that of phase velocity reduces
from 2% to 0.3%. The figure also shows that the semi-analytical model practically overlaps
with the SOA model in the stochastic range but starts to deviate from the latter because the
model is developed based on the Born approximation. Essentially there is no difference in the
model performance for those three microstructures, indicating the independence of the semi-
analytical model on the TPC of polycrystals; however, obviously, the TPC should be accurately
measured.

(c) Applicability of the semi-analytical model to quasi-static velocity limit
Finally, we appraise the applicability of the semi-analytical model to the quasi-static velocity
limit, which may be of particular interest in developing effective medium theories. As shown
in figure 9a, the semi-analytical model predictions can hardly be distinguished from the FEM
points, and their relative difference shown in the inset is below 0.1% for all evaluated materials,
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Table 3. Normalized RMSD of the SOA and semi-analytical (S-A) models with the FEM in the Rayleigh and transition regions.

RMSD in the Rayleigh region
(FEM as reference)

RMSD in the transition region
(FEM as reference)

2k0La SOA (%) S-A (%) 2k0La SOA (%) S-A (%)

attenuation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

aluminium ≤1 8.02 4.24 1–10 7.14 5.01
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A= 1.5 ≤1 14.26 1.27 1–10 9.43 3.96
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A= 1.8 ≤1 19.81 3.02 1–10 12.66 4.15
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A= 2.4 ≤1 28.98 9.35 1–10 17.83 5.48
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

copper ≤2 34.55 5.90 2-10 13.60 7.01
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Inconel ≤2 32.50 10.79 2-10 13.93 6.87
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A= 5.0 ≤1 50.56 9.18 1–10 30.17 7.25
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

lithium ≤1 63.74 3.75 1–10 36.94 10.79
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

lithium-Laguerre ≤1 62.77 5.16 1-6 32.82 12.67
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

lithium-CVT ≤1 62.95 3.37 1–10 40.08 9.15
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

phase velocity
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

aluminium ≤1 2× 10−4 6× 10−4 1–10 9× 10−3 8× 10−3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A= 1.5 ≤1 0.01 3× 10−3 1–10 0.05 0.04
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A= 1.8 ≤1 0.04 2× 10−3 1–10 0.07 0.04
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A= 2.4 ≤1 0.14 0.01 1–10 0.14 0.07
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

copper ≤2 0.23 0.03 2-10 0.21 0.14
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Inconel ≤2 0.24 0.03 2-10 0.22 0.16
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A= 5.0 ≤1 0.77 0.09 1–10 0.59 0.33
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

lithium ≤1 1.79 0.16 1–10 1.24 0.76
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

lithium-Laguerre ≤1 1.98 0.33 1-6 0.82 0.60
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

lithium-CVT ≤1 1.78 0.15 1–10 1.49 0.90
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

achieving an order of magnitude improvement in accuracy in comparison to the SOA model.
The normalized RMSD between the semi-analytical and FEM results over the eight materials
is 0.04% whereas that between the SOA and FEM points is 0.81%. As shown in figure 9a, the
SC estimate has the same excellent agreement with the FEM. Considering the additional results
shown in figures 6 and 7e, it is reasonable to assume that the SC estimate would perform well for
any cubic polycrystal. There are other reasons to believe that the SC method provides accurate
estimates of homogenized elastic moduli of polycrystals: (i) iterative convergence of high-order
bounds to the SC values [43] and (ii) FEM confirmation of the SC results [50]. For this reason,
we use the SC estimate to calculate the quasi-static velocities for the same 288 materials with
A > 1 (A = 9.81 is the largest) [46] as in §4d, and then we use the SC results as the reference to
further evaluate the applicability of the semi-analytical model. It is found that the semi-analytical
results nearly overlap with the SC estimations, figure 9b, with the normalized RMSD over the 288
materials being 0.04% (this is the same as that between the semi-analytical and FEM results in
figure 9a). This further substantiates the validity of the semi-analytical model and also indicates
the generality of the model constants, π3 and π3/2, for cubic materials with A > 1. We note that
the SC theory in general needs to be iteratively solved [43], whereas the semi-analytical model
has a simple explicit expression given by equation (5.4).
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Figure 8. Normalized (a) attenuation and (b) phase velocity versus normalized frequency for plane longitudinal waves
in polycrystals with statistically equiaxed grains of different uniformities, comparing theoretical SOA and semi-analytical
predictions with numerical FEM results. (Online version in colour.)
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(a) compares the FEM, SOA and SC results (taken from figure 6) with the semi-analytical results (S-A, calculated using equation
(5.4)) for the eight cubic materials with A> 1 from table 2. The inset in (a) shows the respective relative differences of the
model predictions to the FEM results, and those for S-A and SC are within ±0.1%; (b) compares the S-A and SC results of
288 cubic materials with A> 1 from [46]. The inset in (b) displays the respective relative difference, which is within±0.2%;
the normalized RMSD over all materials is 0.04%. Lines are linear/quadratic fits. (Online version in colour.)

6. Summary and conclusion
This work uses three-dimensional FE and theoretical models to study the scattering-induced
attenuation and phase velocity variation of plane longitudinal waves in untextured cubic
polycrystals with statistically equiaxed grains. The study is predominantly performed for
materials with anisotropy indices greater than unity (A > 1). The results of such materials exhibit
a good agreement between the SOA and FE models in the transition and stochastic regimes, even
for very strongly scattering lithium (A = 9.14). This agreement also holds for the single-scattering
Born approximation, thus indicating the possibility that the effect of multiple scattering on the
coherent wave is weak in these regions. In the low-frequency Rayleigh regime, the theoretical
models agree reasonably well with the FEM for common structural materials with A < 3.2: the
largest difference in attenuation between the SOA and FEM is −10%, −35% and −37% for
aluminium, Inconel and copper (the figures are slightly larger for the Born-FEM difference).
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However, the relative difference can reach the level of −70% for more strongly scattering materials
like lithium. The emergence of such unsatisfactory agreement in the Rayleigh regime for cubic
materials with A > 1 is somewhat unexpected.

A study on materials with A < 1 is also conducted in the Rayleigh regime. It shows an excellent
agreement between the SOA and FE models, with an attenuation difference of smaller than 7%
for RbI that has nearly the same elastic scattering factor QL→T as lithium. Further analysis reveals
that this excellent agreement is due to the nearly linear dependence of the FEM results on QL→T
(proportional to the elastic covariance), which is the same as for the SOA results. By contrast,
the FEM results for the A > 1 case are described by a quadratic polynomial on QL→T with a
significant dependence on the Q2

L→T term, while the SOA model results are still linear to QL→T
(irrespective of A being larger or smaller than one). This contrasting dependence leads to the
unsatisfactory SOA-FEM agreement for the A > 1 case. In addition to the FEM evidence, the linear
and quadratic dependences of the A < 1 and A > 1 cases on QL→T are supported by the quasi-static
velocity limit, particularly by the SC estimate and Reuss bound. The SOA model is inherently
approximate, and its disagreement with the FEM may be attributed to the replacement of the
polycrystal by a continuous random medium and by approximations in the solution of the Dyson
equation, mainly by limiting the order of perturbations, thus not accounting for all scattering
events.

To consider strongly scattering materials with A > 1, we have proposed a semi-analytical
model by iterating the far-field Born approximation and optimizing the coefficient of the second-
order term on the scattering factor QL→T to achieve the best fit of the model to the FE results.
We have demonstrated that the semi-analytical model works remarkably well for all materials
considered in this work and for different polycrystal microstructures with largely differing TPCs.
The largest difference in attenuation between the semi-analytical and FE models is within a
reasonable ±15% range for all evaluated materials and microstructures. The semi-analytical
model also delivers a very accurate prediction for the quasi-static velocity limit obtained by
the FEM. In addition to the FE evidence supporting the semi-analytical model to predict the
quasi-static velocity limit, an excellent agreement is observed between the semi-analytical model
and the SC estimate for 288 materials with A > 1 (with a normalized RMSD of 0.04%, which is
within the accuracy of the FE method). This finding substantiates the generality of the empirical
semi-analytical model coefficients π3 and π3/2 for cubic materials with A > 1.

The applicability of the proposed model is demonstrated for materials of cubic crystal
symmetry, but we expect that the model may be applicable to polycrystals of lower symmetries
and general inhomogeneous materials after the adjustment of the iterative coefficients. We hope
that the simple form of the proposed semi-analytical model and its exceptional performance
against the FE simulations will stimulate more rigorous theoretical developments.

Data accessibility. The FE simulations in this work were performed using the open-source program Neper
(available at https://github.com/rquey/neper) for polycrystal model generation and meshing, and the
proprietary software Pogo (demo version available at http://www.pogo.software/) for high-speed wave
propagation solution. The simulation results presented in this work are provided in the electronic
supplementary material [51].
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