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Abstract: The electrocardiogram (ECG) waveform conveys information regarding the electrical
property of the heart. The patterns vary depending on the individual heart characteristics.
ECG features can be potentially used for biometric recognition. This study presents a new method
using the entire ECG waveform pattern for matching and demonstrates that the approach can
potentially be employed for individual biometric identification. Multi-cycle ECG signals were
assessed using an ECG measuring circuit, and three electrodes can be patched on the wrists or
fingers for considering various measurements. For biometric identification, our-fold cross validation
was used in the experiments for assessing how the results of a statistical analysis will generalize
to an independent data set. Four different pattern matching algorithms, i.e., cosine similarity,
cross correlation, city block distance, and Euclidean distances, were tested to compare the individual
identification performances with a single channel of ECG signal (3-wire ECG). To evaluate the pattern
matching for biometric identification, the ECG recordings for each subject were partitioned into
training and test set. The suggested method obtained a maximum performance of 89.9% accuracy
with two heartbeats of ECG signals measured on the wrist and 93.3% accuracy with three heartbeats
for 55 subjects. The performance rate with ECG signals measured on the fingers improved up to
99.3% with two heartbeats and 100% with three heartbeats of signals for 20 subjects.

Keywords: electrocardiography; individual biometric identification; multi-cycle ECG waveform;
pattern matching

1. Introduction

Individual identification is an important issue for security. However, the traditional methods
using identification cards or certificates have concerns regarding their loss or unauthorized copy.
As an alternative, biometric approaches have recently received much attention for individual
identification. The typical biometric technologies currently available are fingerprint identification [1–3],
face identification [4,5], and iris identification [6]. Among various biometric information generated by
the human body, ECG signals, which monitor the electrical heart activity, are another possible solution
for individual identification. ECG signals can potentially identify each individual uniquely depending
on the position, shape, size, and structure of the heart. The features observed in ECG signals remain
unchanged by human will. In addition, they can be measured easily without reluctance, and signal
identification is robust from contamination, wear, and forgery. Because of these characteristics, the use
of ECG signals for biometric recognition studies has recently received much attention, and extracting
ECG features has been challenging for biometric recognition [7].

ECG signals can be measured by recording the electrical activity of the heart over a period using
electrodes placed on a subject’s skin. They convey a large amount of information on the structure of
the heart and the function of its electrical conduction system [8]. ECG signals can also be used to assess
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the rate and rhythm of heartbeats, size and position of the heart chambers, presence of any damage
to the heart’s muscle cells or conduction system, effects of cardiac drugs, and function of implanted
pacemakers [9]. For this tendency, ECG signals are recorded for the assessment of cardiac function and
have been used to detect abnormal patterns of heart activity.

Typically, electrodes are directly attached to the skin. However, recently, non-contact electrode
methods for ECG data acquisition have been considered. For clinical use, the use of dry and noncontact
electrodes received investment [10] and the method of noncontact monitoring of cardiorespiratory
activity by electromagnetic coupling with human tissue was considered [11]. Currently, a contactless
capacitive sensory system for the detection of ECG-like signals [12] is considered. The acquisition
approach is based on a capacitive coupling with the patient body performed by electrodes integrated
in a front-end circuit and the proposed system is able to detect changes in the electric charge related
to the heart activity. These electrodes may be a more comfortable tool for biometric identification.
Furthermore, they show satisfactory results in particular applications, such as in the automotive
environment [13] or in wearable health devices [14]. ECG signals sensed from mobile devices can be
potentially applied for biometric identification with remote access control [15,16].

As a biometric tool, ECG signals were analyzed as an automatic ECG classification system based on
the principal component analysis (PCA) to interpret 12 uncorrelated clinical diagnosis features related
to the P, QRS, and T amplitudes and durations [17]. For identification, there have been approaches of
detecting fiducial points and using the inter-relations or characteristics of feature points, for example,
intervals between the feature points, such as R-R interval and ST-T duration. Israel et al. [18] used
15 temporal features related to the P-QRS-T segments for individual identification. Wang et al. [19]
merged temporal signals and amplitudes related to the fiducial points for analysis. Nor et al. [20]
used the amplitude values of the Q, R, and S waves as features and demonstrated that the use of three
fiducial points is sufficient to identify a subject, in contrast to the common practice of using more
feature points. Extracting the features is crucial for classification, and the performance depends on the
accurate localization of wave boundaries with the P-QRS-T segment. For that reason, there have been
many attempts to eliminate noise using frequency-selective filters or wavelet de-noising. However,
owing to the characteristics of the ECG signals in the presence of noise, detecting the P wave is
still challenging; nevertheless, the QRS and T wave detection techniques have started to provide
acceptable results in most cases [21,22]. In addition, heartbeats change, and the signals may fluctuate
or be influenced by physical activities, drug consumption, and strong emotions; in this case, the
identification process would become more difficult than that under static body conditions.

To overcome this limitation, fiducial-independent approaches that analyze the overall morphology
have been proposed. Agrafioti and Hatzinakos [23] proposed a method for individual identification
by applying autocorrelation of 5-s ECG segments. Wübbeler et al. [24] showed a method based on
the distance between the first and second temporal derivatives of signals. Poree et al. [25] used the
maximal correlation coefficient applied over a 12-lead ECG, and a cross correlation of a 12-lead ECG
was used for human verification [26] and identification [27]. Many researchers have suggested various
sophisticated algorithms to classify the ECG signals, e.g., neural networks [20,28,29], independent
component analysis [30], k-nearest neighborhood [31–34], and support vector machine [35–39].
Recently, multi-modal identifications based on data fusion and dimensionality reduction have been
investigated. Bugdol and Mitas [40] proposed a combination of sounds and ECG signals as behavioral
biometric features. Dimensionality reduction methods using the PCA method have been used to
optimize the feature set, and the nearest neighbor classifier yields the highest identification accuracy.
Wang et al. [41] presented a feature reduction method combining PCA with linear discriminant analysis
and a probabilistic neural network classifier to discriminate eight different types of arrhythmia from
ECG beats. He and Tan [42] developed a new entropy-based PCA approach for dimensionality
reduction. Zapata et al. [43] summarized the state-of-the-art data fusion oriented to biometric
authentication and identification, exploring its techniques, benefits, advantages, disadvantages,
and challenges. An interesting work is to observe the amplitude values of the Q, R, and S waves to
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identify an individual, not the intervals between fiducial points [20]. It is consistent with our idea
that one signal cycle is re-sampled and mapped into a regular interval of segments by ignoring the
temporal period information.

Many conventional methods have focused on feature extraction using the QRS complex, P wave,
and T wave in a cycle of the ECG signal. Detecting all the feature points precisely and identifying
each segment are deeply related to individual identification. In this study, we propose a holistic
approach to apply ECG signal pattern matching without using all the feature points. We introduce
a new method using matching of a standard frame of multi-cycle ECG waveforms for individual
biometric identification. We also develop an easy measurement of ECG signals with electrodes patched
on the fingers as well as on the wrist. The details are described in the following sections.

2. Method

For the individual identification using the ECG signals, a multi-stage process was required to
change the raw ECG signal to a standard frame of multi-cycle ECG signal. The overall diagram for
obtaining the multi-cycle ECG signal is shown in Figure 1. Herein, we introduce how the raw ECG
signals were transformed into a regular form for pattern matching as well as how several matching
algorithms work for individual identification.

Filtering peak points

Extract Multi−CycleResampling 

the ECG signal ECG signal

 raw ECG

signal

Figure 1. Multi-stage process for acquiring a standard frame of multi-cycle ECG signal.

2.1. ECG Signal Acquisition

The ECG signals were acquired using an ECG measuring circuit, a data acquisition (DAQ) board,
and a personal computer. The ECG measuring circuit is a one-channel ECG analog amplifier module
applying DC 5 V to the power input. For ECG signal acquisition, three electrodes were patched on
either the wrists or fingers. First, we recorded the ECG signals using three disposable electrodes
attached to the skin of the wrists (3-wire ECG). The developed circuit and electrodes (two on the left
and one on the right) are shown in Figure 2. The voltage between the (positive) left arm electrode and
right arm electrode was measured. For considering an easier measurement of the ECG signal and its
authentication, we designed another ECG interface for the fingers. Figure 2d shows the snapshots
of the measurement of the ECG signals from three fingers, using the electrode shown in Figure 2b.
The ECG signals from three separate fingers were less noisy than the ECG signals with two electrodes
on the same finger.

The noise removal process was needed to extract the refined ECG signals. Power supply noise
and high-frequency noise were observed in an original ECG signal. Those noises were removed
via a band-pass filter with a frequency range of 0.3 Hz to 35 Hz, and they were implemented in
analog. The circuit’s internal amplification was designed with a 750-fold amplifier (±2%) to have an
output range of 0∼3.3 V and the amplified signal was sampled with a rate of 500 Hz. The measured
signals from the circuit can still show overall patterns that are not intrinsic to the data. For example,
a slow transition of baseline signal was observed as in Figure 3 (top). To eliminate that, a low-order
polynomial (order 6) was fitted to and subtracted from the signal. Figure 3 (bottom) shows the ECG
signal after filtering, and Figure 4 shows the signals for three different individuals. We observed that
each individual had his/her own ECG waveform pattern.
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(a) (b)

(c) (d)

Figure 2. ECG signal measuring circuit and two type of electrodes on the wrist and on the fingers:
(a) ECG measuring circuit; (b) electrode as a button style (which can be patched on the fingers);
(c) measuring ECG signals on the wrist; (d) measuring ECG signals on the fingers.
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Figure 3. Example of ECG signals after a band-pass filter was applied: (top) raw ECG signal;
(bottom) signal after filtering is applied (note that the increasing transition of baseline is removed).
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Figure 4. Examples of ECG signals after band-pass filtering. Each subfigure shows the results of three
different individuals.
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2.1.1. Extracting Peak Points

To classify the standard frame of the ECG signals, positive high peak points were selected as
delimiters, which are the most remarkable points detected without errors even in noisy signals. A cycle
of the ECG signal can be obtained from peak to peak. In our experiments, a cycle of the ECG signal
was sampled between two positive R-R peak points. To find the positive peak points, differentiating
the noise-removed signal and then squaring the differentiated signal are needed. Then, after applying
the moving average filter of order 5, we could find the peak points of the ECG signal.

Between a pair of peak points (R’s), the second positive highest peak can be found without
difficulty by calculating the differentiation over a given cycle of signal, which is mapped to the
midst of 100 samples. In the experiments, the second highest peak as another dominant feature was
searched within one cycle, which corresponds to the T wave in the ECG signal. Thus, the R-T and T-R
intervals can be monitored in the re-sampled signals. Here, the P wave is not our main concern in
the experiments because it may not be a salient feature for some individuals. The overall process of
detecting the peak points is shown in Figure 5.
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Figure 5. Extracting the peak points for two different ECG signals: (a,b) results of the sequential
process for extracting the peak points; signal after band-pass filtering, differentiated signal, squared
signal, and signal passing through the moving average filter; (c) detected peak points (R and T points)
for the ECG signal in Figure 4 (top); (d) detected peak points (R and T points) for the ECG signal in
Figure 4 (bottom); another pass of scanning is needed to determine the T points after a pair of R points
are found.
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2.1.2. Re-Sampling Process

For the ECG signal pattern matching, we used a re-sampling process for the ECG signals to frame
an arbitrary length of signal into a regular interval of the same length. One cycle of the ECG waveform
cut out the QRS complex at the position of the R wave, since the peak point at R was selected as
a delimiter in a cycle. It may lose information around the QRS complex interval. To include the shape
of the QRS complex interval for identification, more than one cycle of signals is required. We can select
at least two cycles (two heartbeats) of the peak-to-peak ECG signals and then we build a ECG vector
whose length is 100 for a cycle and 200 for two cycles.

Between two R points (starting and ending points) in a cycle, a peak (T wave) can be observed.
In the re-sampling process, the following segments can be ideally built based on the points:
two segments R∼T, T∼R for a cycle, and four segments R∼T, T∼R, R∼T, T∼R for two cycles.
For a two-cycle signal, each of four segments is mapped into the same size of interval: 1∼50, 51∼100,
101∼150, and 151∼200. That is, each segment is re-sampled uniformly into the interval of 50 samples.
Even the same individual’s signal may change within consecutive heartbeats. The temporal positions
of the local peak points, such as the T wave observed in the middle of a cycle, are not exactly equal
in all the signals. The above re-sampling process will produce a standard frame of the ECG vector.
Figure 6 shows an example of an ECG pattern, including two heartbeats, shown by an overlapping
of four different consecutive heartbeats. We noted that the period of the same individual’s original
ECG signals varied, and the above re-sampling process by interpolation yielded a uniform ECG
waveform pattern.

0 1 2 3 4

Time(s)

-0.2

0

0.2

0.4

0.6

V
o
lta

g
e
(V

)

(a)

0 50 100 150 200

Samples

-0.2

0

0.2

0.4

0.6

V
o
lta

g
e
(V

)

(b)

Figure 6. Example of an ECG pattern, including two heartbeats, shown by an overlapping of four
different consecutive heartbeats: (a) original signal between the R-R-R fiducial points; (b) signal after
re-sampling to a 200-point pattern.

2.2. Pattern Matching Algorithms

For identification, the ECG signals were classified using four-fold cross validation. A collection
of ECG patterns were randomly partitioned into four bins of subsamples. Of the four equal-sized
subsamples, a bin of subsamples was retained as the validation data for testing, and the other three bins
were used as the training data. The cross validation process was then repeated for four folds. The above
test procedure was repeated four times with a random order of ECG patterns. The performance results
were averaged to estimate the identification rate.

Every ECG signal is mapped into the same length of samples, which forms an ECG vector,
and a pair of ECG vectors can be compared using a similarity measure. We tested four different
pattern matching algorithms, i.e., cosine similarity, cross correlation, city block distance, and Euclidean
distance. They are explained in the following subsections in order.
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2.2.1. Cosine Similarity

Cosine similarity measures the similarity between two vectors as an inner product space that
calculates the cosine of the angle between them. It can be represented using a dot product and
magnitude of the two vectors as follows:

dcosine(A, B) =
A · B

‖ A ‖ ‖ B ‖ =
∑N

i=1 Ai × Bi√
∑N

i=1(Ai)2
√

∑N
i=1(Bi)2

(1)

where N is the number of samples, A is the training data, and B is the test data. The signal with the
highest score value is selected as the most similar with an input signal.

The similarity range is bounded in [0 1], which indicates that it is exactly the opposite of the
reference vector, to 1, which indicates that it is exactly the same as the vector, with 0 indicating
orthogonality (de-correlation) and in-between values indicating intermediate similarity or dissimilarity.
The metric is a judgment of orientation and not magnitude.

2.2.2. Cross Correlation

Cross correlation is a measure of similarity of two series signals as a function of the lag of one
relative to the other. It is also known as a sliding dot product or sliding inner-product and commonly
used for searching a long signal using shorter and known features. Cross correlations are useful
for determining the time delay between two signals, while sample cross correlations are used to
determine the degree of similarity between the input signal and the database signal. For data pairs,
(A′, B′) = {(A1, B1), (A2, B2), ..., (AN , BN)}, an estimate of the cross covariance with the delay k was
defined as follows:

dcross(A, B)(k) =
fAB(k)√

fAA(0)
√

fBB(0)
, k = 0,±1,±2, ...,±T (2)

where
√

fAA(0) and
√

fBB(0) are variations of A and B, respectively, and

fAB(k) =


1
N

N−k

∑
i=1

(Ai − Ā)(Bi+k − B̄), k = 0, 1, 2, ..., N

1
N

N+k

∑
i=1

(Bi − B̄)(Ai−k − Ā), k = 0,−1,−2, ...,−N

(3)

with Ā and B̄ as the sample means of the series.

2.2.3. City Block Distance

The city block distance can be calculated as follows:

dcity_block(A, B) =
N

∑
i=1
|Ai − Bi| (4)

The calculated value would be zero if two signals are identical and greater than zero if there is
a minimal similarity. It shows a similar result with the Euclidean distance in most cases. However,
the degree of difference is not squared, and the effect of a large difference is reduced.

2.2.4. Euclidean Distance

The Euclidean distance is the length of the line segment connecting two points [44]. In the
Euclidean space, it can be employed to find the most similar signal with the input using the
following equation:
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dEuclidean(A, B) =
√

∑N
i=1(Ai − Bi)2 (5)

2.3. ECG Database

For the experiments, the ECG signals of 55 healthy individuals aged 19–26 years were measured.
Each of the 55 individuals were assessed four times under the same physical conditions on the same
date. The recording duration was 10 s per individual recording, and the time interval between
recordings was 10 min. However, invalid cycles within the recorded signals were observed for some
subjects and more than three consecutive cycles were rarely available for those subjects. Each extracted
ECG signal was re-sampled as shown in Figure 6b for individual comparison. In the matching
experiment, the database comprised 220 re-sampled ECG waveform patterns (each individual had
four ECG signals). One signal among the four signals from the same individual was selected as a test
set, and the other ECG waveforms were averaged for comparison. The selected signal was considered
as the input, and the averaged template of the remaining signals was considered as the training set.
The summarized statistics of the data used to test the proposed algorithm are shown in Table 1a.

Table 1. Different recording data: (a) from the wrists; (b) from the fingers.

Information Data

(a)

Number of individuals 55 (19∼27 years old)
ECG acquisition method one channel 3-wire ECG
Number of ECG records 220 records

Number of ECG records for each individual 4 records
Training set 165 records (4-fold cross validation)

Test set 55 records (4-fold cross validation)

(b)

Number of individuals 20 (19∼23 years old)
ECG acquisition method one channel 3-wire ECG
Number of ECG records 80 records

Number of ECG records for each individual 4 records
Training set 80 records (4-fold cross validation)

Test set 20 records (4-fold cross validation)

To determine whether the finger ECG data could be used as the input signals to the algorithm,
a new ECG database was obtained from 20 healthy individuals, which was collected on the same date,
but was different from the wrist ECG database tested above as shown in Table 1b.

3. Results

3.1. Identification with Multi-Cycle ECG Data

We used four different measures for pattern matching as described above. The aim of the pattern
matching in this study was human identification, i.e., identification of a subject in the test dataset
by searching the minimal distance with a pattern in the training dataset. To determine the effect of
the pattern matching measures using the multi-cycle signals, the performance using one signal cycle
was also tested. Figure 7 shows overlapping ECG signals for three different individuals. The same
individual’s ECG waveform patterns were consistent as expected. The waveform patterns varied
among the subjects. This tendency implies that the ECG pattern matching method could be used for
individual identification.
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The performances with the four matching algorithms using the wrist ECG data were evaluated;
the results are shown in Table 2. The identification rate I as the evaluation measure is calculated
as follows:

I = ∑
i

xi/N (6)

where xi is 1 or 0 depending on whether the i-th ECG test sample is correctly identified for its subject,
and N is the total number of test samples.
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Figure 7. Example of ECG pattern from three different individuals (signals from the same individual
are collected from the same recording session and they are closely overlapped): (a) one heartbeat;
(b) two heartbeats. Different color lines show about different individuals.

Table 2. Identification rates with the four different pattern matching methods using wrist ECG data:
(a) for 55 subjects; (b) for the reduced number of 20 subjects.

Length of Signal Cosine Cross City Block Euclidean

(a)

One cycle 78.18% 83.00% 85.91% 88.75 %
Two cycles 84.89% 85.00% 88.75% 89.89%

Three cycles 85.85% 85.73% 92.69% 93.28%

(b)

One cycle 87.50% 91.56% 93.75% 95.63%
Two cycles 91.56% 93.44% 96.88% 95.62%

Three cycles 94.69% 96.38% 97.19% 97.50%

Based on the results, we confirmed that our proposed method can possibly be applied
for individual identification. With the Euclidean distance measure, the identification rate was
93.28%. This method showed the highest identification rate. With the cosine similarity measure,
the identification rate was 85.85%; it had the worst performance among the tested methods.
The accuracy increased to 92.69% with the city block measure. The method using the three-cycle
signals showed a better performance than that using the one- or two-cycle signals regardless of the
matching algorithms. The multi-cycle signals conveyed better information for the ECG classification.

Table 3 shows the identification rates with the different pattern matching methods using the finger
ECG data. The identification rate increased to 99.34% with two cycles (heartbeats) and 100% with
three cycles (heartbeats). The performance cannot be directly compared with that of the individual
identification experiment on the 55 individuals as shown in Table 2a. The number of subjects was
different, and both results could not be directly compared. Table 2b shows the results for the reduced



Sensors 2018, 18, 1005 10 of 15

number of 20 subjects, which can be compared to the evaluation of the finger-based ECG identification
with the same number of subjects. The identification accuracy in the 20 subjects was better than that
in the 55 subjects because of the different population size. It seems that the smaller the population is,
the greater the identification accuracy is. Furthermore, the finger ECG data with the suggested method
showed a higher performance.

Table 3. Identification rates with the four different pattern matching methods using finger ECG data
for 20 subjects.

Length of Signal Cosine Cross City Block Euclidean

One cycle 93.42% 93.09% 98.68% 98.36%
Two cycles 96.38% 97.36% 98.68% 99.34%

Three cycles 96.38% 96.38% 98.68% 100.00%

3.2. Identification with Various Types of Signal Segments

In the proposed algorithm, we detected the R peak over the ECG signal, extracted one cycle of the
signals, and mapped this segment into 100 samples. Similarly, two or three consecutive cycles of ECG
signals can be mapped into exactly 200 or 300 samples as a regular frame interval. However, the T, R,
or P waves can be candidate boundary points for a cycle of a signal. For one cycle, the R-R interval
or the T-T interval can be used; the P peak point may not be easily detectable for some ECG signals.
As such, we did not assess the P-P interval. In addition, the R-T segment or the T-R segment within
one cycle can be selected for identification. Table 4 shows the classification performances depending
on the different types of segments. With the T wave or R wave selected as the starting and ending
points to form a cycle, the T-T interval and the R-R interval had a similar performance because a set of
segments was commonly included. It seems that using only a partial segment information of the ECG
signal has a limitation. The performance rate decreased to 66.71% with the R-T segment and 82.28%
with the T-R segment. We can infer that the T-P-Q-R segment in Figure 1 provided more information
for identification than the R-S-T segment.

Table 4. Identification rates with different segments using wrist ECG data for 55 subjects.

Feature R-R Interval T-T Interval R-R Interval T-T Interval R-T Segment T-R Segment

Num. of cycles 2 cycles 2 cycles 1 cycle 1 cycle 1 cycle 1 cycle
Euclidean 89.89% 89.78% 88.75% 87.97% 66.71% 82.28%

4. Discussion

4.1. Comparison with Other Methods

In this paper, we suggest a method using the entire pattern of the ECG waveforms.
The peak-to-peak signals were re-sampled into a regular interval for a cycle. Thus, this process
removed the signal distortion due to fast or slow heartbeats. With the selection of peak points, even
multi-cycle ECG signals can be mapped into a uniform frame. We considered an easy measurement
of ECG signals by patching electrodes on the fingers. According to the results, a high biometric
identification rate can be achieved without a feature analysis.

In this study, we showed that more cycles of ECG signals can better train a variation of signals for
biometric identification. Even if one signal cycle is deviated from the standard form, another signal
may fit into the standard form. The multi-cycle signals had higher probability to be recognized as
the same subject. In that case, the identification performance with multi-cycles can be improved.
The results of the authentication or individual identification using the ECG signals are summarized
in Table 5. The proposed approach and other state-of-the-art methods (different databases) were
compared, and our approach showed a reasonably good performance compared to other methods.
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From that argument, identifying the proper number of cycles would be an interesting topic. Owing to
the limited length of the obtained valid ECG signals, much longer cycles (more than three cycles) were
not tested in this study.

Table 5. Comparison between the proposed method and other approaches.

Method Database Accuracy

Israel et al. (2005) [18] self-db: 29 subjects 100%
Wübbeler et al. (2007) [24] self-db: 74 subjects 98.1%

Wang et al. (2008) [19] MIT-BIH normal sinus 100%
Agrafioti and Hatzinakos (2009) MIT-BIH normal sinus 96.2%

Lourenco et al. (2011) [45] self-db: 16 subjects 94.3%
Poree et al. (2011) [25] self-db: 11 subjects 91.4%

Zokaee and Faez (2012) [33] MIT-BIH db 96.2%
Lee et al. (2012) [46] self-db: 10 subjects 99.5%

Zhao et al. (2013) [34] PTB db: 12 subjects 96.0%
Jekova and Bortolan (2015) [47] Test PTB db: 14 subjects 77.6%

Jekova et al. (2018) [27] self-db: 20 subjects 97.2%
Jekova et al. (2018) [27] self-db: 50 subjects 94.5%

Our method (two cycles of signals from the wrist) self-db: 55 subjects 89.9%
Our method (three cycles of signals from the wrist) self-db: 55 subjects 93.3%
Our method (two cycles of signals from the wrist) self-db: 20 subjects 95.6%

Our method (three cycles of signals from the wrist) self-db: 20 subjects 97.5%
Our method (two cycles of signals from the fingers) self-db: 20 subjects 99.3%

Our method (three cycles of signals from the fingers) self-db: 20 subjects 100%

4.2. Effect of Different Body Conditions

Figure 8 shows how the identification is affected using ECG waveforms for the same individual
under different physical conditions on different dates. As shown in Figure 8a, the ECG cycle became
shorter after 10 min of physical exercises, running, and holding of breath for a certain period on
different dates. However, owing to the re-sampling process in our model, the impact of the heartbeat
changes was minimized because different durations of the two-cycle signals were normalized as shown
in Figure 8b, which was classified into the same individual.
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Figure 8. Example of an ECG pattern shown by an overlapping to compare the changes under different
physical conditions on different dates for the same individual; (a) before re-sampling and (b) after
re-sampling (red-colored line: after, blue-colored line: before).

In addition, as shown in Figure 9a, it was confirmed that there was a minimal change in the ECG
waveform patterns in a given frame interval even after many days (after 7 days and 20 days). For our
re-sampled model, the ECG waveform patterns remain unchanged; this indicates that it is possible
to use the method for individual identification. When we investigated the ECG patterns of smokers,
there was also a minimal change in the ECG signals before and after smoking as shown in Figure 9b.
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Figure 9. Examples of ECG pattern shown by an overlapping to compare the changes after some period
or after smoking; (a) after some period (red-colored line: reference, blue-colored line: after 7 days,
black-colored line: after 20 days) and (b) before and after smoking (red-colored line: after, blue-colored
line: before).

4.3. Effect of Possible Heart Disorders

Figure 10 shows examples of the ECG signals that failed to be recognized (red-colored line).
Most of the signals showed only minimal variations, which can be interpreted to indicate the same
individual. However, some signals showed comparable differences that can be distinguished from the
majority of the signals for the same individual data, which was failed for identification. This may be
because of the body movement of the subjects, abnormal condition of the heart, or similar disturbances.
These abnormal signals might provide information regarding the symptoms by correlation to the body
condition (possible heart disorders), although this is not within the scope of this study.
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Figure 10. Examples of ECG pattern shown by an overlapping of the unrecognized signals (red-colored
line: recognized as a different identity from the same subject). Each subfigure shows the different ECG
signals that failed to be recognized.

4.4. Alternative Approach

The ECG signal, in addition to the fingerprint and iris, can be an alternative measure for
individual identification. Biometric recognition may be exposed to forgery and falsification. The ECG
authentication as well as iris or fingerprint identification may have such problems. If there are multiple
biometric identification tools, the system can not only enhance the security, but also increase the
identification rate. Alternatively, active sensing can be considered, emitting current flow to the skin
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and sensing the electrical signal reflected from the skin. Estimating or modeling the signals expected
from the emitted current flow and comparing them with the sensed signals may prevent the forgery
of the ECG signals using an electrical device. Further studies on active sensing for ECG signals
are needed.

5. Conclusions

We have shown the effect of a longer length of cycles; this indicates that a holistic view of the
signal pattern without extracting features can be potentially used for individual identification. In this
study, the individual identification reached an identification rate of 93.28% with three cycles of the wrist
ECG signals and 99.34% and 100% with two and three cycles of the finger ECG signals, respectively.
The suggested method has a reasonable performance compared with the current popular methods,
despite its simple matching algorithms. The current equipment used to measure the ECG signal
is obviously rudimentary to obtain signals stably and repetitively; however, the proposed method
that matches a standard frame of the ECG signals helps in the observation of the characteristics
of the individual heart signals being used as an alternative measure for individual identification.
A more refined design will be useful for portable individual biometric identification systems, and other
techniques, such as wavelets of neural networks and data fusion, could improve the results. Combining
the distance metrics of different methods could improve the identification rate. In the future, we will
continue to perform experiments using more sophisticated algorithms and consider combining various
approaches to enhance the identification rate.

In the ubiquitous network environment, the monitoring system, such as U-health, would be able
to check the health of an individual at any moment and at any place. Using the characteristics of
biometric signals of an individual, the system can continuously monitor the health and also identify
the individual among databases in real time. The above ECG experiments might provide a possible
suggestion to the health monitoring system.
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