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Abstract

The eponymous member of the interferon regulatory factor (IRF) family, IRF1, was originally

identified as a nuclear factor that binds and activates the promoters of type I interferon

genes. However, subsequent studies using genetic knockouts or RNAi-mediated depletion

of IRF1 provide a much broader view, linking IRF1 to a wide range of functions in protection

against invading pathogens. Conserved throughout vertebrate evolution, IRF1 has been

shown in recent years to mediate constitutive as well as inducible host defenses against a

variety of viruses. Fine-tuning of these ancient IRF1-mediated host defenses, and counter-

ing strategies by pathogens to disarm IRF1, play crucial roles in pathogenesis and determin-

ing the outcome of infection.

Introduction

Innate immunity provides a critical biological barrier protecting the host from invading patho-

gens. Given its crucial role as a first line of defense, multiple innate immune mechanisms are

broadly conserved among the vertebrates. Cells engaging in such responses undergo multi-lay-

ered signal transduction originating at pattern recognition receptors (PRRs) that sense patho-

gen-associated molecular patterns (PAMPs), leading to the rapid induction of gene expression

programs that broadly target invading viruses and other pathogens. A hallmark feature of this

response is the production of interferons (IFNs). Although the anti-viral function of IFNs was

recognized as early as 1957 [1], the genetic elements (positive regulatory domains, PRDs) in

host DNA responsible for the induction of transcription of the gene encoding IFNβ (IFNB1), a

prototypical type I IFN, were not unveiled until the 1980s (Fig 1A) [2]. These seminal findings

from the Maniatis laboratory and others laid the foundation for understanding the molecular

basis of the transcriptional regulation of IFNs.

In 1988, IFN-regulatory factor 1 (IRF1), the first member of the IRF family to be recog-

nized, was identified by the Taniguchi laboratory in crude nuclear extracts of Newcastle
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disease virus (NDV)-infected mouse L929 cells using DNA affinity column chromatography

[3]. Despite elegant proof of its ability to regulate IFNB1 transcription, the biological impor-

tance of IRF1 in inducing IFN responses was questioned not long after its discovery [4].

Indeed, NDV was shown to induce normal expression of type I IFNs in embryonic fibroblasts,

embryonic stem cells, and even in mice depleted of IRF1 expression [5,6], giving IRF1 rela-

tively short-lived prominence among blossoming studies of the IFN response. Other members

of the IRF family, particularly IRF3 and IRF7, emerged as critical regulators of IFN transcrip-

tion by the first decade of the 21st century. In parallel, multiple studies found IRF1 to be associ-

ated with tumor suppression, natural killer (NK) and T cell development, and B cell biology,

changing the focus of the field [7–9]. However, over the past decade, previously unappreciated

aspects of the role of IRF1 in innate immunity have come to light. Here, we review recent prog-

ress in understanding how IRF1 contributes to innate immunity against pathogens, particu-

larly RNA viruses, focusing on its evolution, mechanisms of signal transduction, and multi-

scale role in immune defense.

Transcriptional activity of IRF1

Ubiquitously expressed in human cells at low basal levels [10], the IRF1 gene is highly respon-

sive to a variety of stimuli, including IFNs and the pro-inflammatory nuclear factor kappa-B

(NF-κB) [11–13]. Thus, IRF1 fits the typical profile of an “IFN-stimulated gene” (ISG). Both

IRF1 mRNA transcripts and the IRF1 protein itself are short-lived [14], allowing for rapid,

dynamic regulation in response to infection. However, low basal levels of IRF1 are present in

the nucleus where it maintains constitutive expression of a variety of host defense genes [15],

as described in detail below. Whether induced in response to infection or basally expressed,

the impact of IRF1 on innate immunity stems from its capacity to drive gene expression.

Fig 1. The discovery and recognition mechanism of IRF1. (A) The four positive regulatory domains (PRDs) within IFNβ promoter

(nucleotides -105 to +19 relative to the transcriptional start site). (B) Key features of the IRF family members. DBD, DNA binding

domain; IAD, IRF-association domain; AR, auto-inhibitory region; α1–3, α helices 1–3; β1–4, β sheets 1–4; L1-3, loops 1–3. (C) The

detailed structural study of DNA-binding by IRF proteins involved the DBD of IRF1. Trp11, Trp38 and Trp58 of IRF1 strategically

straddle the major groove of the ‘GAAA’ segment of the DNA, forming hydrogen bonds and van der Waals contacts with the sugar-

phosphate backbone (blue dashed lines). Arg82, Cys83, Asn86 and Ser87, all within the α3 recognition helix, mediate direct contacts

between the DBD and GAAA (red dashed lines). With high structural similarities of the DBD, IRF family members recognize

consensus ‘AANNGAAA’ sequence, yet they display slightly different binding specificities [120].

https://doi.org/10.1371/journal.ppat.1009220.g001
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The transcriptional activity of IRF1 depends on its 115 amino-acid N-terminal DNA bind-

ing domain (DBD) which contains five tryptophan residues, spaced in a characteristic fashion

shared by all 9 mammalian members of the IRF family (Fig 1B) [16]. Immediately downstream

of the DBD is a nuclear localization signal (NLS, amino acid residues 117–141) that facilitates

IRF1 nuclear residency [17]. This is followed by a C-terminal IRF-association domain (IAD2,

amino acid residues 200–262), unique to the IRF1 subfamily, that mediates interactions with

other transcriptional cofactors, such as IRF8 (a.k.a. ICSBP) [18]. The concerted activities of

these three functional domains determines the pathophysiologic impact of IRF1 during

infection.

In early studies, IRF1 was found to bind several hexanucleotide units within the IFNβ pro-

moter [3,19]. An ‘AAGTGA’ motif located within PRDI was particularly prominent, with the

binding affinity of IRF1 correlating with the number of ‘AAGTGA’ repeat units. Detailed foot-

print and mutational analyses suggested that the actual recognition sequence of the DBD was

‘GTGAAA’, leading to the positive regulatory sequences that contain such hexanucleotide

units being referred to as IRF-binding elements (IRF-E) [20]. Subsequent crystallographic

studies of an IRF1 and PRDI complex provided a more complete understanding of IRF1 recog-

nition (Fig 1C) [21]. It came as no surprise when the conserved tryptophan cluster within the

DBD was found to be critical in recognition of the core ‘GAAA’ sequence. Among the five

tryptophan residues, three (W11, W38 and W58) fix a helix-turn-helix motif within the DBD

onto the major groove of the DNA, forming contacts with the sugar-phosphate backbone and

allowing direct contacts to the ‘GAAA’ bases by four amino acids (R82, C83, N86 and S87) in a

third, obliquely-angled recognition helix.

Evolutionary conservation of IRF1

Unlike IFNs, IRFs (or at least IRF-like genes with homology to mammalian IRFs) exist in a

wide swath of invertebrates (Fig 2A) [22,23]. Although incompletely characterized in inverte-

brates, phylogenetic analysis suggests that primordial IRFs diverged into IRF1 and IRF4 sub-

families as early as in cnidarians and bilaterians [24], implying that IRF1 represents one of the

most ancient components of innate immunity. Although the evolutionary origins of IRF1

remain unclear, IRF1 orthologues have been identified in widely-divergent vertebrate species,

including fish, the phylogenetically most distant vertebrates possessing an IFN system [25].

Notably, early studies of zebrafish IRF1 recapitulated struggles in the identification of its mam-

malian counterparts, as IRF11, a novel IRF unique to teleost fish with close homology to verte-

brate IRF1, was discovered prior to the authentic zebrafish IRF1 gene, leading to confusion

over its proper annotation [26]. Recently, IRF1-like genes have also been identified in the

amphioxus Branchiostoma belcheri and Pacific oyster Crassostrea gigas (Fig 2B) [27,28].

Although invertebrate IRF1-like genes with homology to mammalian IRF1 share far less

identity with human IRF1 than vertebrate orthologues, the elements mediating recognition of

the GAAA sequence are well preserved (Fig 2B). It is therefore not surprising that the over-

arching function of IRF1/IRF1-like genes in activating specific regulatory elements is evolu-

tionarily conserved [26]. This notion is strengthened by the evolutionally conserved nature of

the vaccinia host range gene C7L, homologues of which from a variety of poxviruses counter-

act IRF1-induced antiviral activities [29]. Equally remarkable, a recent study of ‘interferomes’

identified IRF1 as one of the key transcriptional factors included in a core group of 62 ISGs

shared by 9 different mammalian species [30], including bats, an ancient mammalian order

that is notorious for including reservoir hosts for many re-emerging zoonotic viruses, poten-

tially including SARS-CoV-2 [31]. This evolutionarily conserved role of IRF1 in innate immu-

nity is found also in avian species [32]. This is not unexpected because birds lack several
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fundamental components of PRR-initiated signaling in mammals, including IRF3, and thus

possess a smaller repertoire of innate immune genes [33].

However, there is evidence that IRF1 has continued to evolve functionally since the diver-

gence of vertebrates and invertebrates. For instance, although Irf1/Irf1-like transcripts are

readily induced by poly(I:C) stimulation in the Pacific oyster, it occurs much more slowly (~48

h after stimulation) [28] than in zebrafish (~12 h) [26] or mammals (as early as 3 h) [14].

Fig 2. Evolutionary conservation of IRF1. (A) Phylogenetic occurrence of IRF- and IFN-dependent innate immune

response. The selection of individual species is based on literature indicating certain effects and is not intended to be

comprehensive. In cnidarians and bilaterians, which diverged from the common eumetazoan ancestor ~600–630 million

years ago, IRFs are proposed to be separated into IRF1 and IRF4 subfamilies. (B) Evolutionary comparison of vertebrate

IRF1 and invertebrate IRF1-like genes within the DBD. �, C. gigas ‘IRF1’ gene that has been reported. Three other predicted

transcript variants of Pacific oyster IRF1 exist (LOC105343806; NCBI Accession numbers: XM_011451290.2 for X1,

XM_011451291.2 for X2 and XM_011451292.2 for X3). The predicted amino acid sequence shares 53% identity with H.

sapiens IRF1 at the DBD, and contains all five tryptophans as well as the conserved GAAA-contacting residues.

LOC105343805 thus might not represent bona fide C. gigas IRF1. ��, B. belcheri ‘IRF1’ does not present a rigid one-to-one

ortholog relationship with vertebrate IRF1. Rather, it is linked to the vertebrate IRF1 subfamily based on phylogenetic

analysis.

https://doi.org/10.1371/journal.ppat.1009220.g002
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Moreover, the IRF1-like protein of the Pacific oyster is expressed within both the nucleus and

the cytoplasm, whereas the majority, if not all, of zebrafish and mammalian IRF1 proteins pre-

dominantly reside in the nucleus [26,28]. Thus, it seems plausible that IRF1 has continued to

evolve to allow more rapid responses to infection by pathogens.

IRF1 in induced pathogen defense

PRRs activate a diversity of signaling pathways upon sensing PAMPs, leading to the transcrip-

tional activation of IFNs and inflammatory cytokines as well as ISGs with a wide range of func-

tions. Similar cascades of signal transduction and transcription are activated by cytokines such

as tumor necrosis factor (TNF). Although efforts to elucidate the function of IRF1 extend back

almost three decades, the role of IRF1 in innate immune responses remains a developing field.

Signaling pathways leading to IFN and/or ISG expression through IRF1 are interrelated and to

some extent redundant with signaling via other IRF family members, raising questions as to

whether IRF1 is essential for the innate immune defense. In the following subsections, we

review IRF1-mediated signaling pathways and how they relate to other signaling pathways that

are essential for a balanced IFN response (Fig 3).

The role of IRF1 in transcriptional responses to RLR engagement. With few exceptions,

RNA viruses are sensed by cytoplasmic RIG-I-like receptors (RLRs), including retinoic acid-

inducible gene I (RIG-I; also known as DDX58) and melanoma differentiation-associated gene

5 (MDA5; also known as IFIH1). Upon binding viral RNA ligands that serve as PAMPs, RIG-I

and MDA5 recruit the mitochondrial antiviral signaling protein (MAVS, also known as CAR-

DIF/VISA/IPS1). This initiates downstream signaling cascades involving multiple kinases that

lead to activation of NF-κB and IRFs (in most cases, IRF3). MAVS is expressed on both mito-

chondrial associated membranes, as well as on peroxisomes, which act similarly as a signaling

platform to activate preferentially a type III IFN response [34,35].

As mentioned above, IRF1 is not essential for the induction of type I IFNs [5,6]. Nonethe-

less, its expression is typically induced rapidly following virus infection or poly(I:C) stimula-

tion [36]. There is clear evidence IRF1 suppresses replication of a variety of RNA viruses [37],

and that it plays a key role in host antiviral defense, at least in some cell-type and virus-specific

circumstances. For example, IRF1 is important for activating the transcription of type I and/or

III IFNs in human hepatocytes that are infected with Sendai virus (a paramyxovirus sensed

predominantly by RIG-I) [38] or dengue virus (DENV, a flavivirus sensed by both RIG-I and

MDA5) [35]. Similar to human IRF1, murine IRF1 also plays a key antiviral role by activating

type I and II IFN responses to DENV infection [37]. Notably, the NF-κB subunits (at least

RELA and p50) bind the promoter of IRF1 and thus drive its transcription [14]. This is remi-

niscent of the positive IRF7 feedback loop driven by IRF3-induced IFNβ that reinforces IRF3

transcriptional responses to virus infections. A variant of RELA lacking a transactivation

domain, designated RELAp43, has been shown to stimulate IRF1 transcription [39]. However,

it is unclear whether RELAp43 activates IRF1 independently of the canonical NF-κB subunits,

because it interacts with all NF-κB family members and thus reinforces RELA- and p50-depen-

dent gene expression. Intriguingly, the NF-κB family that mediates IRF1 transcription has

been suggested to share evolutionary features and to have co-evolved with the IRF family [24].

The zebrafish IRF1 protein also induces expression of type I IFNs downstream of RLRs [26].

However, ectopic overexpression of a dominant-negative IRF1 mutant (DBD deletion mutant)

has no impact on MAVS-initiated activation of the IFN promoter [26]. This is surprising and,

given the crucial role of MAVS in inducing antiviral responses, suggests that IRF1 may not be

essential for optimal RLR/MAVS antiviral signaling in fish, as it is in mammalian cells. Alterna-

tively, IRF1 might act independently of MAVS to facilitate RIG-I signaling in early vertebrates.
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The role of IRF1 in transcriptional responses to TLR engagement. Like RLRs, both

plasma membrane-associated and endosomal Toll-like receptors (TLRs) sense PAMPs derived

from viruses, and then recruit myeloid differentiation primary-response protein 88 (MYD88)

or Toll/Il-1 receptor domain-containing adaptor protein inducing IFNβ (TRIF) to activate

IRF3 and NF-κB-dependent expression of type I IFNs. IRF3 and IRF7 have been assumed to

be the predominant transcriptional regulators in canonical TLR signaling [40]. However, IRF1

controls TLR9-dependent IFNβ production in mouse myeloid dendritic cells (DC) by interact-

ing with MYD88 [41] (Fig 3B). This interaction with MYD88 enhances the nuclear transloca-

tion of newly synthesized IRF1 [42,43].

These findings restored interest in IRF1 as a regulator of type I IFN production. Indeed,

IRF1 activation has been found to be associated with TLR7 engagement in conventional DCs

Fig 3. IRF1 in IFN-dependent host defenses. (A) RIG-I-like receptors (RLRs) including retinoic acid-inducible gene I (RIG-I) and

melanoma differentiation-associated protein 5 (MDA5) associate with mitochondrial antiviral signaling protein (MAVS) to activate the

nuclear factor-kB (NF-κB), which induces immediate transcription of IRF1 mRNA. Newly synthesized IRF1 protein acts downstream to

induce interferons and pro-inflammatory cytokines. (B) Toll-like receptors (TLRs), except TLR3, interact with the adaptor MYD88 protein,

which also interacts with IRF1 so as to license rapid IRF1 migration into the nucleus. (C) Interferon receptors (IFNRs) activate Janus kinases

(JAKs)- and STAT-dependent signaling cascades, leading to the formation of IFN-stimulated gene factor 3 (ISGF3, a heterotrimeric complex

composed of phosphorylated STAT1 and STAT2 with IRF9) and GAF (the STAT1 homodimer complex), which induce IRF1 expression in a

positive feedback loop, ultimately augmenting induction of IFN-stimulated genes (ISGs). (D) TNF receptors initiate signaling cascades that

activate NF-κB, leading to IRF1 transcription and in turn the expression of type I interferons, but at much lower levels than RLR or TLR

signaling pathways. (E) Type I IFN-dependent IRF1 expression leads to AIM2- and NLRP3-dependent inflammasome responses to

Francisella novicida and influenza A virus, respectively. Epigenetic modification including histone methylation and acetylation in the

promoter-proximal regions also contributes to dynamic regulation of chromatin states, affecting binding of IRF1 and other transcription

factors.

https://doi.org/10.1371/journal.ppat.1009220.g003
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[44]. Ectopic expression of MyD88 and IRF1, downstream components in TLR7 signaling,

also activates the promoters of both type I and type III IFN genes [45]. In addition, TLR2 acti-

vation results in MYD88- and IRF1-dependent IFNβ production [46]. However, an unan-

swered question in these latter cases is whether IRF1 functions through a specific interaction

with MYD88. Analogously, IRF1 is also important for TLR3- and TLR4-induced expression of

interleukin 27 p28 (IL27p28) subunit [47], which favors an early type I IFN responsiveness to

lymphocytic choriomeningitis virus infection [48]. Zebrafish IRF1 also acts in concert with

MYD88 to synergistically activate the promoter of IFNϕ3 (it is expressed in an IFNα fashion)

[26]. All of these findings establish IRF1 as an essential component of the TLR-mediated

innate immune responses.

The role IRF1 in IFN-mediated signaling. Following the recognition of PAMPs by host

PRRs and the activation of IRFs, a burst of secretion of multiple types of IFNs triggers Janus

kinase (JAK)- and signal transducer and activator of transcription (STAT)-dependent signal-

ing via specific cellular IFN receptors. This paracrine signaling leads to a second wave of tran-

scriptional activation involving the induction of hundreds of ISGs. JAK/STAT signaling

induced by the binding of IFNα/β (type I IFN) and IFNλ (type III IFN) to their respective

receptors is largely dependent on IFN-stimulated gene factor 3 (ISGF3). ISGF3 is a heterotri-

meric complex composed of IRF9 and phosphorylated STAT1 and STAT2 that drives expres-

sion of ISGs under transcriptional control of the IFN-stimulated response element (ISRE), an

enhancer element with two or more GAAA repeats [49]. By contrast, the binding of IFNγ
(type II IFN) to its receptor induces the phosphorylation of STAT1 but not STAT2, leading to

the formation of STAT1 homodimers (known as IFN gamma activating factor; i.e. GAF) that

bind to a gamma-activated sequence (GAS, TTCN[2–4]GAA) [50]. The IRF1 promoter contains

a single GAS element rather than an ISGF3-responsive ISRE sequence [51]. Type II IFN thus

induces more potent transcription of IRF1 than either type I or type III IFNs in most cell types

[11].

Not surprisingly, the contribution of IRF1 to positive feedback regulation of ISG

responses induced by distinct IFNs is complementary, rather than redundant to the role of

IRF9 and other IFN-inducible IRFs such as IRF7. This was shown many years ago by north-

ern blot analysis of ISG transcripts in IFNα- or IFNγ-stimulated IRF1 and IRF9 knockout

mouse embryonic fibroblasts [52]. More recent, emerging evidence from microarray analysis

and chromatin immunoprecipitation sequencing has added significant details to the under-

standing of IRF1 function by identifying a subset of distinct ISG transcripts driven by IRF1

[12,53]. Through induction of these ISGs, IRF1 contributes to the broad-spectrum innate

immune responses to several clinically important viruses, such as gammaherpesvirus, hepati-

tis C virus (HCV), yellow fever virus, West Nile virus and human immunodeficiency virus

type 1 [54,55].

The role of IRF1 in TNF-mediated type I IFN signaling. TNF is a pleiotropic cytokine

that is closely associated with inflammation, as well as both innate and adaptive immune

responses to pathogens. Engagement of its receptors (TNFR1 and TNFR2) triggers distinct sig-

nal transduction cascades leading to transcriptional upregulation of selected genes. TNFR1

and TNFR2 differ in their intracellular domains, with TNFR1 having a cytoplasmic ‘death

domain’ that is not present in TNFR2. They thus recruit distinct adaptor molecules (TNFR-

associated death domain (TRADD) versus TNFR-associated factor (TRAF) 1/2, respectively),

although both receptors commonly signal to activate NF-κB [56,57].

TNF may contribute to the induction of IFNβ responses. TNFR1 engagement mediates

increased expression of IRF1 and IFNβ, leading to prolonged expression of proinflammatory

chemokines via STAT1 [19,58]. Several genes responsive to RIG-I-mediated signaling, includ-

ing IRF1, are similarly induced in human lung epithelial cells stimulated with TNF [59]. These
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findings suggest that inflammatory responses may favor the activation of an IFN-mediated

autocrine loop. This notion is further supported by two independent studies carried out with

primary macrophages and murine microvascular endothelial cells [13,60]. TNF signaling con-

tributed to the IFN response to adenoviral vectors, and promoted monocyte recruitment,

respectively. Mechanistically, both TNFR1 and TNFR2 (TNFR2 only in human endothelial

cells) are required for IRF1-driven, TNF-mediated IFNβ production and autocrine regulation

of gene expression. IRF1 responses at early time points were found to depend consistently on

NF-κB-mediated Irf1 transcription in both macrophages and endothelial cells. Whereas mac-

rophages did not require de novo synthesis of IRF1 protein for this, endothelial cells required

de novo protein synthesis. Notably, this latter observation is reminiscent of IRF1-mediated

IFN responses triggered by RLRs [14]. However, it should be noted that TNF only induces

picomolar concentrations of IFNβ, several orders of magnitude lower than the level of produc-

tion triggered by RLR or TLR engagement [60]. This weak response may be dispensable for

host defenses against pathogens inducing robust IFN responses through other pathways, but

may be essential for priming cells for creation of an antiviral state against certain pathogens,

including influenza viruses [59].

The role of IRF1 in IFN-dependent inflammation. In addition to canonical IFN

responses, inflammasome assemblies involving nucleotide-binding domain and leucine rich

repeat containing family, pyrin domain containing 3 (NLRP3) and absent in melanoma 2

(AIM2) proteins provide another layer of innate host defense against pathogens. Moreover,

type I IFN signaling contributes to both NLRP3 and AIM2 inflammatory responses despite the

distinct signals that activate the assembly of these inflammasomes [61–63]. IRF1 has recently

been shown to play a pivotal role in the activation of these inflammasomes [64,65]. Mechanis-

tically, infection with the bacterium, Francisella novicida, is sensed by the DNA sensor cyclic

GMP-AMP synthase (cGAS)—stimulator of IFN genes (STING) pathway that activates type I

IFN-dependent expression of IRF1. IRF1 then drives the expression of guanylate-binding pro-

teins (GBPs), leading to intracellular killing of the bacteria and the release of DNA that induces

AIM2 activation. Similarly, IRF1 plays an essential role in formation of the NLRP3 inflamma-

some during influenza A virus infection by inducing transcription of Z-DNA binding protein

1 (Zbp1) [65]. By contrast, AIM2-dependent inflammatory responses to the infection with the

gamma herpesvirus murine cytomegalovirus (MCMV), or transfection of double-stranded

DNA does not require IRF1 [64].

The contribution of IRF1 to constitutive pathogen defense

Most studies examining the role of IRF1 in pathogen defense suggest it is an inducible factor,

triggered by infection and contributing to the activation of innate immune responses induced

by pathogen sensors such as RLRs, TLRs, or cGAS, as described above. However, a consider-

able number of studies provide evidence that IRF1 also functions at a basal level, providing

constitutive defense against a variety of viruses. Obtaining a quantitative measure of basal anti-

viral activity is generally challenging, as virus infections are typically associated with unavoid-

able activation of cell-intrinsic responses via PRRs. However, hepatitis A virus (HAV), an

hepatotropic picornavirus, is capable of limited replication in immortalized human hepato-

cytes without detectable activation of IRF1, or other RLR, TLR, or STING-dependent host

antiviral responses [15]. This is consistent with the stealthy nature of (HAV) infection in chim-

panzees [66]. Despite the absence of any detectable ‘induced’ antiviral responses, RNA inter-

ference (RNAi)-mediated depletion of IRF1 resulted in a 40-fold boost in HAV replication in

the immortalized hepatocytes [15]. Notably, the IRF1-mediated restriction of HAV replication

was independent of MAVS, IRF3, or STAT1, and persisted in the absence of de novo
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transcription in actinomycin D-treated cells [15]. These results are indicative of a constitutive

antiviral state against HAV mediated by IRF1 (Fig 4A). A similar phenomenon was noted in

human hepatoma cells lacking functional RLR and TLR signaling [15].

Fig 4. Basal antiviral activity of IRF1 and the downstream effectors. (A) Nuclear IRF1 mediates constitutive

expression of diverse classes of antiviral effectors acting on lipid metabolism, protein degradation pathways, in addition

to driving basal expression of conventional antiviral ISGs such as OAS2. IRF1 target genes are underlined. (B) Antiviral

spectrum of IRF1 effector genes based on siRNA knockdown assays in immortalized hepatocytes (PH5CH8) infected

with hepatitis A virus (HAV), hepatitis C virus (HCV), or flaviviruses (dengue or Zika viruses), or BEAS-2B cells infected

with vesicular stomatitis virus.

https://doi.org/10.1371/journal.ppat.1009220.g004
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High-throughput sequencing of the RNA transcriptome in IRF1 knockout hepatocytes

has provided insight into the role played by basal levels of IRF1 in maintaining constitutive

expression of functionally diverse classes of antiviral genes (Fig 4A) [15]. The chromatin

immunoprecipitation (ChIP)-seq database (publicly available at UCSC Genome Browser

https://genome.ucsc.edu) confirms the presence of IRF1-binding motifs in the promoter

regions of these genes, validating these genes as bona fide targets of IRF1 [67]. Importantly,

many of these genes, such as those involved in lipid metabolism (RARRES3, APOL3, APOL1,

OSBPL6, APOL6), have not previously been recognized to possess antiviral activity. A spe-

cific combination of these IRF1-regulated genes acts to restrict replication of HAV, whereas

other combinations restrict HCV, DENV and Zika virus, all Flaviviridae [15]. An exception

was myxovirus resistant 1 protein (MX1), which was expressed basally under transcriptional

control of IRF1 and broadly restricts replication of these viruses (Fig 4B). Another recent

study identified 260 genes expressed constitutively in human respiratory epithelial cells

under IRF1 control [68]. These included conventional ISGs that contribute to inducible

antiviral responses, and have activity against vesicular stomatitis virus (VSV) and influenza

virus [68]. While IRF1 effector genes seem vary among different cell types, these studies

show that IRF1 can regulate basal antiviral states in various cell types that restrict both posi-

tive- and negative-stranded RNA viruses. This is consistent with the lack of an auto-inhibi-

tory domain in IRF1 such as that found in IRF3, -4, -5, and -7 proteins [16], and with

observations that IRF1 is predominantly localized within the nucleus in the absence of any

exogenous stimuli.

The specific features that render a promoter responsive to basal levels of IRF1 are uncertain,

but the environment surrounding the promoter is likely to be important. Basal IRF1 transcrip-

tional activity does not require STAT1, which is often involved in IRF1 transcription triggered

by IFNγ or TLR signaling. Recent studies have revealed the existence of IRF1-targeted pro-

moter sites that lack concomitant STAT1 recruitment and are subject to histone acetylation

favoring transcription at the basal level [69]. Thus, IRF1-mediated basal transcription may

require a distinct set of co-activating factors that differ from those involved in a typical ago-

nist-activated response involving STAT1. Such studies add to our understanding of IRF1 as a

constitutively active factor serving a protective role at the basal level [15,68,70].

It is uncertain whether IRF1 orthologs (or IRF11) expressed in fish provide a similar basal

level of protection against pathogens. Nevertheless, the existence of IFN homologs exclusively

in vertebrates suggests that their evolution has lagged behind that of the IRFs, and that the

manner in which the IRFs function in host immunity is likely to be qualitatively different in

invertebrates. This does not necessarily imply that the basal protection against virus infections

afforded by IRF1 in vertebrates is a vestige of its primordial role in invertebrates. However, it

is tempting to speculate that constitutive IRF1 expression may also protect against pathogen

invasion in invertebrates, which lack inducible IFN-mediated innate immunity, by regulating

genes under control of the IRF-E promoter element.

IRF1 contributions to transcriptional dynamics and epigenetic gene

regulation

Cooperative activity with other transcription factors. IRF1 mediates the transcription

of a multitude of host defense genes by binding to ‘GAAA’ sites within cis-regulatory promoter

and enhancer elements. At least two copies of this minimal IRF1 binding site exist within

interferon-responsive ISRE elements (Fig 5). IRF1 thus has the potential to bind to either one

or both of these GAAA sites as a homodimer, and thus can drive transcription of ISGs. This is

particularly important in certain situations, such as when IRF1 is acting at a basal level and
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exerting its role in constitutive host defenses, or when a functional ISGF3 complex has not

been induced by PRR-mediated signaling.

IRF1 can also act cooperatively with other transcription factors to induce gene expression.

Distinct sets of genes have been shown to be transcriptionally controlled by IRF1 acting alone

versus when it is complexed with IRF8 [71]. It is likely that the transcriptional spectrum is simi-

larly influenced, with different results, when bound to DNA as a heterodimer complexed with

other transcription factors, such as IRF2, NF-κB, or STAT1. Hence, the binding of IRF1 to indi-

vidual IRF-E and ISRE sites in concert with other available transcription factors may dynami-

cally shape the transcriptional status of the genome. These dynamic changes are likely to be

particularly prominent as additional transcription factors become activated during the transi-

tion from basal, constitutive IRF1-mediated transcription of host defense genes to higher-level

responses induced by PRR-initiated signaling. Dimer-specific binding sites exist for IRF3, IRF5,

or IRF7 homodimers, and it seems likely that they exist for IRF1 homodimers as well [72].

The presence of multiple cis-regulatory elements within promoters and enhancers adds fur-

ther complexity to the transcriptional activation networks in which IRF1 can engage as part of

a protein complex called an ‘enhanceosome’ (Fig 5). For example, the IFNβ promoter contains

a PRDII sequence adjacent to its dual PRDIII-PRDI elements, allowing for cooperative bind-

ing of IRF1 and NF-κB to a single enhancer region [21]. IRF1 can also act cooperatively with

STAT1 to induce ISG expression in IFNγ-treated cells [73]. Cooperative transcriptional activi-

ties may be regulated through direct protein-protein interactions involving formation of het-

erodimers or more complicated multimers [74,75], or cis-regulatory element-directed co-

localization of transcription factors [76]. Thus, dual binding of IRF1 and other transcriptional

factors is not exclusively limited to proximal enhancers [77,78]. Collectively, the existence of a

Fig 5. IRF1 contribution to dynamic transcriptional activation networks. IRF1 binds to GAAA sequences within IRF-E and

ISRE enhancers, driving transcriptional activation of target genes. In the case of ISRE binding, IRF1 can form homo- or hetero

dimers with other members of the IRF family. In genes with multiple cis-regulatory elements, coordinate binding of IRF1 and

other transcription factors such as NF-κB, ISGF3 or GAF to the enhancer region often has a synergistic impact on gene

expression. This can be driven by protein-protein interaction-directed formation of enhanceosomes, or co-localization of

transcription factors binding to individual cis-elements. IRF1 both modulates and is regulated by activating and repressive

epigenetic marks on chromatin, including histone methylation (such as H3K4me3 and H3K27me3) or acetylation at promoter

proximal sites.

https://doi.org/10.1371/journal.ppat.1009220.g005
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wide variety of IRF1-interacting proteins may account for its functional diversity as well as its

role in the cross-talk existing between inflammatory and immune pathways. Theoretically, the

expression patterns mediated by engagement of a complex of multiple transcription factors

containing IRF1 can be distinguished from that driven by binding of single or homodimeric

IRF1. Recent studies have demonstrated the functional importance of cooperative binding of

IRF1 and STAT1, but not of either alone, in driving ISG expression following IFNγ stimulation

in multiple cell types [77].

Modification of the epigenetic landscape. Epigenetic modifications dynamically regulate

the state of chromatin, thereby influencing the binding of IRF1 and its cofactors to promoter

elements. They thus contribute to the complexity of gene expression during the host response

to infection, as well as in the pathogenesis of autoimmune diseases (Fig 5). For instance,

changes in histone methylation status to active (H3K4me3) or repressive (H3K27me3) marks

at IRF1-binding sites modulate transcription of IRF1-target genes [79,80]. Histone acetylation

also promotes transcriptional activation by providing a more permissive state for the binding

of transcription factors [81]. Importantly, chromatin enrichment in histone active marks is

implicated in the pathogenesis of systemic lupus erythematosus (SLE), an autoimmune disease

associated with increased type I IFN responses. IRF1 binding sites are robustly enriched in his-

tone H4 acetylation or H3K4me3 methylation in monocytes from SLE patients [82,83]. IFNα
stimulation promotes the direct association of IRF1 with p300, a protein lysine acetyltransfer-

ase that mediates the addition of acetyl groups to histone lysine residues, to favor pathologic

H4 acetylation [82]. Thus, in addition to its transcriptional activity being influenced by histone

marks on the chromatin, IRF1 shapes how the chromatin is marked epigenetically through

direct interactions with histone-modifying enzymes [84].

Chromatin immunoprecipitation (ChIP) analyses suggest that the switching of IRF1 activity

from a basal to an agonist-induced state may be regulated in part epigenetically at the level of his-

tone acetylation [69]. In the basal state, histone acetylation is biased toward H3 and tends to be

isolated at IRF1 binding sites, whereas IFNγ stimulation causes acetylation toward H4 and prefer-

entially generates dual H3-H4 acetylation sites, thereby causing a shift from basal IRF1 binding

toward an induced dual binding of IRF1 and STAT1 [69]. Of note, only a quarter of IRF1 sites

undergo such a shift. The majority of IRF1 binding sites fail to recruit STAT1 and show either

constitutive (31%) or no histone acetylation (44%), with a minority being marked with repressive

methylation (e.g. H3K27me3). Thus, the basal activity of IRF1 is regulated by constitutive histone

acetylation, whereas agonist-induced IRF1 transcription depends on the recruitment of additional

transcription factors (STAT1, for example) and histone acetyltransferases [69]. What controls

these differences in the epigenetic modification of these sites is uncertain. IRF1 binding at ‘non-

productive’ sites marked by H3K27me3 that fail to undergo IFNγ-induced acetylation remains

dependent upon the chromatin-modifying enzyme SMARCA4 (SWI/SNF-related, matrix-associ-

ated, actin-dependent regulator of chromatin, subfamily A, member 4) [69]. These ‘nonproduc-

tive’ IRF1 binding sites are often distant from promoters, but nonetheless likely contribute to

basal, IRF1-dependent gene expression. Adding further to the complexity of IRF1 associated epi-

genetic regulation is evidence that interleukin 4 (IL-4) can directly inhibit epigenetic and tran-

scriptional changes induced by IFNγ near binding sites for the auxiliary transcription factor AP-1

[85]. Such IRF1-dependent epigenomic and transcriptional cross-talk likely ensures a robust yet

carefully balanced execution of host immune responses to a variety of stimuli.

Conflicts at the IRF1 line of defense

Phylogenetic analyses of the IRF proteins suggest that IRF1 represents a crucial component of

host defense against pathogen invasion. Indeed, the ability to govern events at the IRF1 line of
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defense contributes substantially to the outcome of pathogenic infections. Thus, both host and

pathogen have evolved strategies to control IRF1 signaling in an effort to gain the upper hand

in this conflict. In this section we focus on the diverse mechanisms that regulate IRF1 activity

at the mRNA transcript and protein levels (Fig 6).

Regulation of IRF1 at the transcript level. As discussed above, increases in IRF1 expres-

sion induced by infection primarily result from NF-κB and STAT1-mediated transcriptional

activation. It is not surprising, therefore, that numerous viruses have evolved countering strat-

egies that target upstream components of NF-κB- and STAT1 signaling that can disrupt IRF1
transcription and mitigate downstream antiviral responses [86]. HCV, a positive-strand RNA

virus in the Flaviviridae family, provides a prime example of this. HCV expresses a protease,

NS3/4A, that degrades the adaptor protein MAVS to blunt RLR signaling, as does the phyloge-

netically distinct picornavirus, HAV [87,88]. In addition, the HCV core protein interacts with

the IRF1 promoter to repress IRF1 synthesis at the level of transcription [89]. If that were

not enough to disable IRF1, the NS5A protein of HCV suppresses IRF1 expression by modulat-

ing STAT1 phosphorylation to ablate formation of STAT1 homodimers known as the IFNγ-

activated factor, GAF [90]. Likewise, the 2A and 3D proteins of enterovirus D71 dampen

nuclear translocation of STAT1, sequestering it from the IRF1 promoter in IFNγ-stimulated

cells [91].

Fig 6. Regulation of IRF1 responses by virus and host. Various pathways cross-regulate IRF1 responses, altering the expression level and activation state of

IRF1. (A) Transcription of IRF1 is mediated largely by NF-κB and GAF, which are antagonized by HCV core protein. IRF1 transcription is also is regulated

epigenetically by histone H3 methylation and acetylation. While both HAV and HCV encode proteases that disable MAVS signaling, HCV and EV71 disrupt the

nuclear translocation of GAF. HCMV usurps the host Roquin protein to reduce IRF1 mRNA levels by binding to the 50 UTR of IRF1 transcripts, while other

viruses activate EGFR signaling to downregulate IRF1 mRNA. miRNAs also mediate downregulation of IRF1 mRNA levels. (B) IFNγ receptor signaling activates

Mnk1/eIF4E to ensure translation of IRF1 mRNA, whereas NLRX1 promotes IRF1 protein synthesis by counteracting PKR-mediated global protein translation.

The host gene encoding miR-205 associates with the promoters of its target genes at Alu sequences in proximity of IRF-E motif, thereby suppressing IRF1

binding. Activity of IRF1 protein is also regulated post-translationally via ubiquitination, SUMOylation, phosphorylation and acetylation.

https://doi.org/10.1371/journal.ppat.1009220.g006
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Airway infections with rhinovirus or respiratory syncytial virus (RSV), RNA viruses with

distinctly different genome structures and replication strategies, can result in oxidative tissue

damage leading to an epithelial-mesenchymal transition (EMT), thereby silencing IRF1 tran-

scription [36]. Mechanistically, EMT is associated with induction of zinc finger E-box binding

homeobox 1 (ZEB1) expression, leading to the formation of ZEB1 C-terminal binding protein

(CtBP) polycomb repressive complex (PRC) 2 that forms repressive H3K27me3 histone marks

on the IRF1 promoter. Mesenchymal transitioned cells thus become epigentically defective in

inducible IRF1 expression due to occluded access of transcription factors, including RelA [36].

Respiratory virus infections can also suppress IRF1 responses by activating epidermal growth

factor receptor (EGFR) signaling, although mechanistic details are lacking [92]. Alternatively,

viruses can usurp cellular components to downregulate IRF1 expression and thus inhibit

IRF1-mediated innate immune responses. For instance, human cytomegalovirus (HCMV) has

recently been shown to induce the expression of roquin, an RNA-binding protein that inter-

acts with a stem-loop in the 5’ untranslated region (5’UTR) of IRF1 transcripts to inhibit their

translation [93].

Viruses also modulate the expression of microRNAs (miRNAs) that target the 3´UTRs of

IRF1 transcripts to downregulate IRF1 expression. miR-301a is transcriptionally induced by

Japanese encephalitis virus (a neurotropic virus of the Flaviviridae family) through NF-κB,

leading to reduced expression of IRF1 [94]. An integrative analysis of the miRNome and tran-

scriptome confirmed an inverse correlation between miR-301a-3p and its target gene IRF1
transcript at late time points following IFNγ stimulation [95]. Whereas some miRNAs facilitate

virus replication by suppressing IRF1 expression, other miRNAs can potentiate intrinsic innate

immune responses via IRF1. One such example is the liver-specific miR-122, which targets

receptor tyrosine kinases leading to reduced phosphorylation of STAT3 at Tyr705, thereby

counteracting the negative impact of STAT3 on IFN signaling by facilitating IRF1 expression

[96]. Long noncoding RNAs (lncRNAs) may also modulate the expression of IRF1, although

their subversion by viruses has yet to be documented. MIR205HG, a nuclear lncRNA from

which miR-205 is derived, associates with Alu sequences in proximity to IRF binding sites,

negatively influencing the transcriptional activity of IRF1 (and possibly other IRFs) [97].

Regulation of IRF1 at the protein level. Despite the predominant transcriptional regula-

tion of IRF1, IRF1 responses are also regulated at the level of protein synthesis. IFNγ stimula-

tion rapidly activates MAPK-interacting protein kinase 1 (Mnk1) and its downstream target,

eIF4E, in a Mek/Erk-dependent manner, thereby ensuring translation of IFN-induced IRF1
mRNA [98]. Surprisingly, the nucleotide-binding oligomerization domain-like receptor

(NLR) protein NLRX1, a well-documented negative regulator of innate immunity [99], is

essential for virus-stimulated de novo synthesis of IRF1 protein [14]. Mechanistically, NLRX1

competes with the innate immune sensor, protein kinase R (PKR), for binding viral double-

stranded RNA replication intermediates and poly(I:C). This protects the translation of IRF1
mRNA from PKR-mediated global shutdown of cellular protein synthesis, and is crucial for

RLR-initiated cytokine responses in immortalized primary adult human hepatocytes [14].

Post-translational modifications also add a variety of functionalities to IRF1. In particular,

the turnover and transcriptional activity of IRF1 is tightly regulated by K48-linked ubiquitina-

tion of the 39-residue C-terminal region of IRF1, which leads to its degradation via the protea-

some [100]. Viruses have evolved mechanisms that take advantage of this ubiquitin-

proteasome pathway to destroy IRF1 and evade the host immune response [101]. While degra-

dation of IRF1 is regulated in response to dynamic cellular conditions and specific stresses

[95], its ubiquitin-mediated turnover is coupled with optimal transcription activity [102]. Gly-

cogen synthase kinase 3β (GSK3β)-mediated phosphorylation of IRF1 at Thr181/Ser185 allows

for Skp1-Cullin1-F-box/F-box and WD repeat domain-containing 7α (SCF/Fbxw7α)-
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mediated K48-linked polyubiquitination and subsequent proteasomal degradation, thereby

facilitating the removal of unused IRF1 molecules accumulating at target promoters. In con-

trast to K48-linked ubiquitination that targets IRF1 for degradation, K63-linked ubiquitination

contributes to its activation. Notably, K63-linked polyubiquitination of IRF1 is mediated by

recruitment of TRAF6 and cellular inhibitor of apoptosis 2 (cIAP2), and is essential for activa-

tion of newly synthesized IRF1 protein in response to interleukin 1 (IL-1) stimulation [103]

and TLR7/8 engagement [104].

SUMOylation also modifies IRF1 activity to suppress its transcriptional activity. This occurs

at sites that are identical to the major ubiquitination sites within the C terminus of IRF1,

enhancing its resistance to degradation via the ubiquitin-proteasome pathway [105].

K48-linked ubiquitin-mediated degradation and K63-linked ubiquitin optimization of IRF1

activity are inherently tied to each other, and stabilization by SUMOylation does not necessar-

ily result in upregulation of overall IRF1 activity. Phosphorylation and acetylation of IRF1

have also been reported. However, the functional significance of IRF1 phosphorylation

remains debated [106]. Studies with zebrafish IRF1 did not show a need for phosphorylation

for its DNA binding activity [26]. By contrast, IRF1 acetylation has been proposed to be

important for activation of the long terminal repeat promoter of HIV-1 in the absence of the

viral transactivator, Tat [107].

IRF1 functions outside the realm of host-pathogen interactions

In addition to protection from infection by pathogens, IRF1 is recognized to be a key regulator

of tumor progression and to have tumor suppressor properties. Genetic deletions of either or

both alleles of IRF1 located on chromosome 5q are frequently detected in human leukemia

and myelodysplasia [108]. Likewise, heterozygous loss of IRF1 is common in breast cancer and

esophageal and gastric carcinomas. In parallel with these clinical observations, experimental

data suggest IRF1 is able to counteract the pro-oncogenic activity of IRF2 or activated onco-

genes [109,110]. Although later studies with mice suggested that IRF1 deficiency by itself does

not lead to spontaneous tumor development, loss of IRF1 clearly promotes tumorigenesis in

mice with a p53 null genetic background or Ha-ras expression [111]. IRF1 has both anti-prolif-

erative and transformation-suppressive properties, and is also pro-apoptotic [110,112].

Intriguingly, IFNs themselves negatively regulate proliferation in many cell types, and are

capable of eliciting anti-tumor immunity [113].

Similar to the antagonism of host innate immunity by pathogens, tumors evolve to escape

from anti-tumor immune surveillance. A notable example is programmed cell death 1 ligand 1

(PD-L1), a ligand of the programmed cell-death protein 1 (PD-1) immune inhibitory check-

point that is induced in tumors upon IFN exposure and leads to immune evasion [114]. The

expression of PD-L1 is regulated by the IFNγ/STAT1/IRF1 axis in melanoma cells; IRF1 binds

directly to the PD-L1 promoter [115]. Changes in IRF1 expression thus affect the dynamic bal-

ance between host anti-tumor immunity and tumor escape by regulating PD-L1 expression

[116,117]. IRF1 regulates both basal and IFNγ-induced expression of PD-L1 [118]. IRF1-in-

duced PD-L1 expression may favor the progression of certain types of tumors, such as malig-

nant melanoma, but basal PD-L1 levels may be sufficient to blunt host anti-tumor immunity.

IRF1 may thus have opposing effects on different tumors, promoting progression of

PD-L1-dependent tumors, and restricting others in which PD-L1-independent mechanisms

account for tumor proliferation.

Although an ortholog of protein kinase R (PKR), an IRF1-regulated, IFN-inducible protein

with tumor-suppressor activity, exists in zebrafish [119], the tumor-suppressor potential of

IRF1 remains uncertain among lower vertebrates.
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Closing remarks

Research over the past 30 years has revealed in fine molecular detail how IRF1 is regulated and

the roles it plays in maintaining host homeostasis. Among other housekeeping activities exem-

plified by its role in tumor suppression, IRF1 protects the host from invading pathogens at

multiple levels, ranging from an intrinsic ‘basal’ level to a robust ‘inducible’ function. IRF1

thus acts as a master-regulator of innate immunity by regulating antiviral status at a basal,

steady state, and also by orchestrating multiple cellular signaling cascades that effect a wide

spectrum of antiviral responses that range from alterations in lipid metabolism to protein deg-

radation machineries. The fundamental role of IRF1 has been conserved throughout evolution.

Only recently, however, have we begun to appreciate how competition between host and path-

ogen, coupled with the emergence of the interferon system in vertebrates, has shaped the role

of IRF1.

Several important gaps exist in our mechanistic understanding of IRF1 function. For

instance, it is entirely unclear how the basal activity and nuclear localization of IRF1 are main-

tained. Are there upstream components that post-translationally modify the IRF1 molecule via

ubiquitination or phosphorylation in a fashion analogous to an agonist-activated state? Do the

profiles of IRF1 target genes similar in different cell types? Is there therapeutic potential in

manipulating IRF1-responsive pathways, a possibility that has yet to be explored? Therapies

that augment IRF1 activity could be beneficial in defeating a broad range of pathogens, but

they could also pose serious threats to the host if uncontrolled immune activation led to auto-

immune-like disease. Drugs that specifically boost individual IRF1 effector functions (such as

the phospolipase RARRES3) might provide narrower, yet equally effective and safer host-

directed therapeutic approaches. Given the diverse array of effectors that exist in the IRF1 reg-

ulome, understanding the mechanisms underlying the protective role of IRF1 can be expected

to provide key insights into microbial infections and host defense, as well as cancer biology

where IRF1 also plays a pivotal role in disease outcome.
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