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The goal of annual influenza vaccination is to reduce mortality and morbidity associated 
with this disease through the generation of protective immune responses. The objec-
tive of the current study was to examine markers of immunosenescence and identify 
immunosenescence-related differences in gene expression, gene regulation, cytokine 
secretion, and immunologic changes in an older study population receiving seasonal 
influenza A/H1N1 vaccination. Surprisingly, prior studies in this cohort revealed weak 
correlations between immunosenescence markers and humoral immune response to 
vaccination. In this report, we further examined the relationship of each immunosenes-
cence marker (age, T cell receptor excision circle frequency, telomerase expression, 
percentage of CD28− CD4+ T cells, percentage of CD28− CD8+ T cells, and the CD4/
CD8 T cell ratio) with additional markers of immune response (serum cytokine and 
chemokine expression) and measures of gene expression and/or regulation. Many of 
the immunosenescence markers indeed correlated with distinct sets of individual DNA 
methylation sites, miRNA expression levels, mRNA expression levels, serum cytokines, 
and leukocyte subsets. However, when the individual immunosenescence markers 
were grouped by pathways or functional terms, several shared biological functions 
were identified: antigen processing and presentation pathways, MAPK, mTOR, TCR, 
BCR, and calcium signaling pathways, as well as key cellular metabolic, proliferation 
and survival activities. Furthermore, the percent of CD4+ and/or CD8+ T cells lacking 
CD28 expression also correlated with miRNAs regulating clusters of genes known to 
be involved in viral infection. Integrated (DNA methylation, mRNA, miRNA, and protein 
levels) network biology analysis of immunosenescence-related pathways and genesets 
identified both known pathways (e.g., chemokine signaling, CTL, and NK cell activity), 
as well as a gene expression module not previously annotated with a known function. 
These results may improve our ability to predict immune responses to influenza and 
aid in new vaccine development, and highlight the need for additional studies to better 
define and characterize immunosenescence.

Keywords: aging, Dna methylation, gene expression profiling, immunity, influenza a/h1n1 virus, influenza 
vaccines, mirna

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2016.00450&domain=pdf&date_stamp=2016-11-02
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://dx.doi.org/10.3389/fimmu.2016.00450
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:poland.gregory@mayo.edu
http://dx.doi.org/10.3389/fimmu.2016.00450
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00450/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00450/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00450/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00450/abstract
http://loop.frontiersin.org/people/329807/overview
http://loop.frontiersin.org/people/342716/overview
http://loop.frontiersin.org/people/378620/overview
http://loop.frontiersin.org/people/296643/overview


2

Kennedy et al. Immunosenescence and Influenza Vaccination

Frontiers in Immunology | www.frontiersin.org November 2016 | Volume 7 | Article 450

inTrODUcTiOn

Aging is associated with a variety of physiological changes, 
including a decline in immune function termed “immunosenes-
cence.” Although immunosenescence is associated with aging, it 
is a multifactorial phenomenon characterized by dysregulated 
immune function at multiple levels and among diverse cell 
subsets. Adaptive immunity is affected as naïve T cell production 
declines, functionally inert memory cells accumulate, lympho-
cyte signaling is altered, and B cells and plasma cells decline in 
number and lose functional capacity (1–5). As a result of these 
and other changes, older individuals are more susceptible to 
influenza, have higher mortality rates, have more severe clinical 
outcomes, and have a decreased ability to respond to vaccination.

The 2009 H1N1 pandemic led to approximately 12,000 deaths 
in the U.S. and >90% of those who died were >65 years old (2, 6), 
a trend also seen with other influenza strains (7). A primary factor 
in the increased susceptibility to influenza is immunosenescence. 
In this age group, influenza vaccines are estimated to be <50% 
effective against influenza (8).

Modern vaccine development must recognize the needs of the 
elderly (in the U.S., this age group is expected to double in size 
by 2050) (9) and develop vaccine formulations that specifically 
overcome immunosenescence-related defects in order to elicit 
robust, reliable, protective immunity. Results of these efforts 
include high-dose vaccines to improve antigen presentation; 
the use of adjuvants (MF59, AS03) to enhance immunogenicity; 
mucosal delivery systems to induce localized immune responses 
at the site of entry; and intradermal delivery to deposit antigen in 
areas rich with antigen-presenting cells (APCs) (10–13).

A necessary precursor to improving vaccines for older indi-
viduals is to better understand the fundamental mechanisms 
underlying immunosenescence. We have previously published 
on the impact of specific immunosenescence markers on 
influenza vaccine-specific humoral response (14). In this report, 
we seek to extend our understanding of common markers of 
immunosenescence by examining their impact on the transcrip-
tome, DNA methylation, miRNA, and the proteome prior to and 
following receipt of the seasonal trivalent-inactivated influenza 
vaccine (TIV).

We have previously reported on the associations between 
markers of immunosenescence and humoral immune responses 
to influenza vaccination in this cohort (14). The availability of 
high-dimensional datasets (DNA methylation, mRNA expres-
sion, miRNA expression, and shotgun proteomics) provided a 
unique opportunity to evaluate the effect of immunosenescence 
on the biological processes that lead to immune response. Our 
data indicate that, while each marker was associated with differ-
ent genes, miRNAs, proteins, or CpG sites, the variables were all 
associated with a similar set of biological pathways and functional 
genesets. Our results also indicate that dysregulated immune 
function due to immunosenescence may be symptomatic of 
larger effects on underlying biological processes, such as cell 
proliferation, regulation of the actin cytoskeleton, cell signaling, 
and a variety of metabolic activities. Our data also suggest that 
these effects come about through alterations in gene regulation 
(DNA methylation and miRNA production) and expression. For 

example, we identified multiple CpG sites in KLF14 whose meth-
ylation pattern was associated with age; which may contribute to 
differential TGFβ signaling in older adults.

MaTerials anD MeThODs

subject recruitment
As previously reported, 159 subjects in good general health, 
between the ages of 50 and 74 (inclusive), were recruited at the 
Mayo Clinic in Rochester, MN, USA (15). Each recipient was 
vaccinated with the 2010–2011 inactivated influenza vaccine 
containing A/California/7/2009 H1N1-like, A/Perth/16/2009 
H3N2-like, and B/Brisbane/60/2008-like viruses. Blood was 
drawn from each subject before (day 0) and after (days 3 and 28) 
immunization. Informed consent was obtained from each subject 
upon enrollment and prior to any study interventions. This study 
was approved by Mayo Clinic’s Institutional Review Board (IRB). 
All experiments involving influenza virus were carried out in 
BSL-2 certified biosafety hoods by laboratory personnel who 
receive yearly influenza vaccination and have completed manda-
tory institutional biosafety training.

assessment of Telomerase and  
T cell receptor excision circles
TERT mRNA expression was measured using quantitative real-
time PCR, with minor modifications to the previously described 
method (16). The relative abundance of each transcript was 
calculated using their respective standard curves. The normalized 
results are expressed as the ratio of TERT to GAPDH expres-
sion. Quantitative real-time PCR for sjTREC was performed as 
previously described (14, 17). Standard curves were utilized to 
calculate the ratio of T cell receptor excision circle (TREC) copies 
versus CCR5 copies.

influenza humoral immunity 
Measurements
Humoral immunity to influenza A/H1N1was measured by 
multiple methods using the influenza A/California/07/2009 
(H1N1)-like virus strain. The hemagglutination inhibition assay 
(HAI) was performed as this is the gold-standard correlate of 
protection for influenza. The virus neutralization assay (VNA) 
was performed in order to characterize a distinct functional 
outcome also associated with protection. We also performed a 
memory B cell ELISPOT, as previously described (14, 18, 19), 
in order to quantitate influenza-specific B cell numbers in each 
subject. The memory B cell ELISPOT assay provides a means of 
evaluating immunologic memory and provides complementary 
information to the titers of influenza-specific Abs present in each 
subject’s serum. Collectively, these immune outcomes provide a 
more comprehensive characterization of each subject’s humoral 
immune status before and after vaccination.

next-generation sequencing mrna and 
mirna expression
The next-generation sequencing (NGS) methods are identical 
to those previously published (20–24). Briefly, total RNA was 
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extracted (RNeasy Plus mini Kit, Qiagen) from cryopreserved 
PBMCs, RNA quantity and quality was assessed, poly-A RNA 
was isolated using olido-dT coated beads, fragmented, reverse 
transcribed into cDNA, and combined with Illumina adaptor 
sequences. After validation, cDNA libraries were sequenced on 
an Illumina HiSeq 2000 (Illumina; San Diego, CA, USA) with 
Illumina’s Single Read Cluster Generation kit (v2) and 50 Cycle 
Illumina Sequencing Kit (v3). The sequencing reads were aligned 
to build 37.1 of the human genome using TopHat (1.3.3), and 
Bowtie (0.12.7). Gene counts were performed using HTSeq 
(0.5.3p3), while BEDTools (2.7.1) was used to map normalized 
read count to individual exons (25–28).

Dna Methylation
DNA methylation methods are identical to those previously 
described (29). Briefly, subject DNA was isolated, bisulfite 
modified, and genome-wide DNA methylation patterns were 
assessed using the Illumina’s HumanMethylation450 BeadChip 
and specimens were allocated to bead chips such that gender 
and timepoints were balanced over bead chips. In addition 
to standard laboratory checks, data quality was assessed via 
Minus versus Average (MVA) plots. The data were normalized 
via the following steps: (1) color-bias adjustment; (2) quantile 
normalization of intensity values between different flow cells, 
within probe design; and (3) beta-mixture quantile normaliza-
tion (BMIQ) (30–32).

Proteomic analysis
PBS-washed PBMC samples were subjected to tryptic diges-
tion and lysis. The protein concentration in each sample was 
quantitated by BCA assay against a bovine serum albumin (BSA) 
standard. A total amount of 80 µg protein was used for the pep-
tide fractionation and LC-MS/MS analysis. SAX (strong anion 
exchange) fractionation was performed with stepped elutions of 
decreasing pH volatile buffers using volatile buffer kit (Column 
Technology, Inc., Fremont, CA, USA) on disposable pipette 
tips packed with Poros strong anion exchange phase (TT2PSA, 
Glygen). Ten micrograms of digest from each sample were 
distributed among the six SAX fractions. Protein level data were 
normalized on the log2 scale via a two-stage iterative ANOVA 
that iterates between estimating the sample effects and the protein 
effects (33). This iterative method is necessary in order to account 
for the data-dependent missingness.

cellular immunophenotyping  
by Flow cytometry
Cryopreserved PBMCs were thawed, stained with fluorochrome-
conjugated antibodies and analyzed, as previously described (14). 
Two separate flow cytometry panels were used to phenotype 
immune cells. For the innate/APC panel, we used CD-11c-V450, 
CD3-V500, CD86-FITC, CD-56-PE, CD123-APC, CD20-
PerCP-Cy5.5, HLA-DR-Alexa 700, CD16-PE-Cy7, and CD14-
APC-Cy7. The Treg panel utilized: CD28-BV 421, HLA-DR-V500, 
CD25-BV 605, CD45RO-FITC, CD38-PE, CD194-PE-Cy7, 
CD127-AF647, CD4-AF700, and CD3-APC-Cy7. All antibod-
ies were purchased from BD Biosciences, San Jose, CA, USA 

or eBioscience, San Diego, CA, USA. FlowJo (Treestar Inc.) v10 
was utilized for gating specific cell subsets, surface expression of 
CD28, and calculating the CD4/CD8 ratio.

statistical analyses
Differences in male and female expression of the immunose-
nescence markers were assessed by the Wilcoxon rank-sum 
test. Associations between all data types and measures of 
chronological or biological measures of age were assessed via 
Spearman’s non-parametric correlation. False discovery rate 
q-values were computed using the Storey and Tibshirani method 
(34) when comparing with high-dimensional data. For all corre-
lation analyses, we set significance and false discovery thresholds 
of p ≤ 0.001 and q ≤ 0.15. False discovery rates for the biologic 
function analysis were calculated using the method of Benjamini 
and Hochberg (35).

Penalized elastic net regression was used to build regression 
models with the goal of understanding the biological processes 
that explain variation in vaccine response. The response (depend-
ent) variable was day 28 HAI titer on the log2 scale. Covariates 
considered in each of the models were the genes from the 
modules defined by Chaussabel et al. (36).1 Immunosenescence 
markers were allowed to compete with gene expression variables. 
Gender was included in all models in order to increase precision. 
Since the genes considered as covariates were chosen agnostic 
to the endpoint, this particular step was not cross validated. In 
determining genes to add to the model, 10-fold cross validation 
was used to determine the optimal number to add based on 
the minimum cross-validated mean squared error (MSE). The 
“glmnet” function in R was used for model building (37). The 
tuning parameter alpha was set to 0.9, reflective of the elastic net 
penalty (a combination of the L1 LASSO and L2 ridge penalties). 
Results are presented with cross-validated MSE and standardized 
coefficients.

network Biology
Multiple resources were combined [PID (38), HPRD (39), CCSB 
(40), the 7.8% of STRING (41) with confidence score ≥70%, and 
HumanNet (42)] to create a network biology framework with 
which to analyze the datasets in this study. Visualization was per-
formed in Cytoscape (43) version 3.2.1. Pathway enrichment was 
performed using 138 pathway definitions (out of 186: see Table S7 
in Supplementary Material) downloaded from MSigDB’s index 
of KEGG canonical pathways (44, 45), having removed disease 
associations pathways that are derived from combinations of 
other pathways.

resUlTs

Our cohort consisted of 159 older (61.6% female; 50–74  years 
of age) recipients of the 2010–2011 TIV. We assessed the fol-
lowing markers of immunosenescence prior to vaccination: 
chronological age, TREC frequency, telomerase expression 
(TERT), the percentage CD4+ and CD8+ T cells that were CD28 

1 http://www.biir.net/public_wikis/module_annotation/G2_Trial_8_Modules. 
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TaBle 1 | Distribution of immunosenescence and immunologic markers.

immunosenescence markers

Marker Median (males) Median (females) p-Valuea

Age (years) 59.7 59.4 0.9
TREC (copy number of 
TREC/GAPDH)

288.7 608.0 0.0003

TERT (copy number of 
TERT/CCR5)

0.000021 0.000028 0.1

% CD4+CD28− cells 1.7 2.3 0.2
% CD8+CD28− cells 39.1 35.9 0.5
CD4+/CD8+ Ratio 3.95 4.96 0.04

immunologic markers

Marker Median titer or 
sFc

range

HAI 1:80 <1:10–1:1280
VNA 1:80 <1:10–1:2560
B cell ELISPOT 10.5 0.0–84.5

serum cytokines and chemokines

cytokine/chemokine Median (pg/ml) iQr

IFNγ 0.35 0.12–0.69
IFNα-2a 0.11 0.02–0.24
IL-1a 0.00 0.00–0.00
IL-1b 0.02 0.00–0.03
IL-2 0.09 0.04–0.13
IL-4 0.01 0.00–0.06
IL-5 0.24 0.15–0.40
IL-6 0.41 0.27–0.67
IL-7 3.90 2.73–5.36
IL-8 4.98 3.48–7.56
IL-10 0.86 0.64–1.25
IL-12p70 0.08 0.00–0.25
IL-13 0.12 0.02–0.27
GM-CSF 0.17 0.05–0.404
TNFα 5.02 4.02–6.48
Eotaxin 237.80 180.90–321.01
Eotaxin-3 22.65 12.89–42.41
MIP-1b 127.01 90.97–172.30
TARC 420.81 264.00–646.53
IP-10 144.94 101.43–216.89
MCP-1 427.13 340.48–548.81
MDC 253.95 190.40–375.07
MCP-4 727.37 523.97–1,049.84
RANTES 110,980.93 80,695.69–155,186.77
MIP-1a 1.02 0.41–2.05

ap-values determined as described in the Sections from “Materials and Methods” to 
“Statistical Analyses.”
IQR, interquartile range.

TaBle 2 | Penalized regression modeling of day 28 hai response.

Baseline gene expression (Day 0) and immunosenescence Markers

Module Functional 
activity

Mse Model-specific elements

M9.20 Undetermined 2.40 MRE11A, LYZ, ITGA1, chronological age, 
ERCC8, KCTD3, THUMPD3, SAMD4A, 
SPON2

M6.4 Undetermined 2.41 DDX41, chronological age, C6orf106, 
RABGAP1

M9.7 Undetermined 2.43 MRE11A, chronological age, FLJ37453, 
WWOX, CCDC18, TEP1, EHMT1, SLFN13, 
FBXO44

M5.15 Neutrophils 2.51 BPI, chronological age

M9.18 Undetermined 2.51 PHC3, chronological age, PSRC1, 
CCNY, CSNK2A1P, ZNF79, APOOL, 
GLB1L, NFYA, WDHD1, BOLA2, TTLL4, 
GAB3, PLCB2, %cD4+cD28− cells, TerT 
expression, %cD8+cD28− cells, AKAP1, 
CYHR1, NFRKB, RPS27, B4GALT6, EDA, 
GMEB1, UVRAG, ZSCAN29

M1.2 Interferon 2.52 OAS3, chronological age, LY6E, 
%cD8+cD28− cells, HERC5

M7.16 Undetermined 2.53 SOD2, HIST1H3D, chronological 
age, DISC1, SIGLEC5, Trec count, 
HIST2H2AC, HIST1H4H, TerT 
expression, H2AFJ, %cD8+cD28− cells, 
HIST1H2BD, MTHFD2

M7.15 Undetermined 2.55 SLC22A18, chronological age

M8.58 Undetermined 2.55 chronological age, MTUS1, LPHN1, 
SLC25A26

M5.12 Interferon 2.55 chronological age, RBCK1, TAP2

Gene Modules obtained from: http://www.biir.net/public_wikis/module_annotation/
G2_Trial_8_Modules. MSE, mean squared error.
Immunosenescence markers are in bold font.
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low (%CD4+CD28− and %CD8+CD28−), and the CD4+/CD8+ 
ratio. The distributions of both immunosenescence markers 
and immune response outcomes in our cohort are illustrated in 
Table 1 and Figure S1 in Supplementary Material. Female study 
subjects had significantly higher TREC levels (p = 0.0003) and 
an increased CD4+/CD8+ ratio (p = 0.04) (Table 1). Correlations 
among these immunosenescence markers were weak, with two 
exceptions: a negative correlation, r  =  −0.33, between TREC 
and the %CD8+CD28− cells; and a positive correlation, r = 0.49, 
between the %CD4+CD28− cells and the %CD8+CD28− cells.

Multivariate Modeling of 
immunosenescence and Vaccine 
response
We have previously published on the moderate correlations 
between markers of immunosenescence and influenza A/H1N1-
specific humoral immune responses (HAI, VNA, B cell ELISPOT) 
(14). We utilized transcriptional modules, defined by Chaussabel 
et al. (36), as a variable reduction strategy to avoid both overfit-
ting and overwhelming the model with too many parameters/
genes. We developed penalized regression models for predicting 
humoral immune response to TIV, as measured by HAI, that 
included gene expression and the immunosenescence markers. 
The use of these modules further facilitates data interpretation, 
since many of the modules have defined immunologic functions 
(46). The data in Table 2 and Figure 1 extend our previous work 
to include all of our measured immunosenescence markers in the 
framework of the transcriptional modules. These results indicate 
that while immunosenescence is associated with HAI response, it 
explains only a small portion of the variation in HAI. As our study 
cohort had high-dimensional data covering multiple biological 
spaces (epigenome, miRNome, transcriptome, proteome), we 

http://www.biir.net/public_wikis/module_annotation/G2_Trial_8_Modules
http://www.biir.net/public_wikis/module_annotation/G2_Trial_8_Modules
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FigUre 1 | Multivariate correlates of hai response. Results from the penalized elastic net regression models: baseline gene expression from the genes in the 
models and the immunosenescence markers were included as competing covariates. Results are presented as standardized coefficients for the variables that 
remained in each of the modules. Each model is described in the text.
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conducted further analyses (described below) in order to uncover 
additional biological functions associated with each immunose-
nescence markers.

Dna Methylation
In our study cohort, DNA methylation at baseline exhibited 
multiple, strong correlations with each immunosenescence 
marker (Table S1 in Supplementary Material). Seventy CpG sites 
were associated with age; 238 CpG sites with TERT; while over 
693 CpG sites were associated with TREC, Over 1,000 CpG sites 
were associated with each of the following markers: the percent 
of CD28− CD4+ T cells, the percent of CD28−CD8+ T cells, or the 
CD4+/CD8+ T cell ratio.

mirna expression
Fifty-three subjects had miRNA data available. Using this data-
set, we identified a number of immunosenescence-associated 
miRNAs (Table S2 in Supplementary Material). Baseline levels 
of several miRNAs exhibited correlations with multiple immu-
nosenescence markers: miR-7-5p, miR-9-5p, and miR-196a-5p 
(correlated with the %CD4+CD28−w and the %CD8+CD28−w); 
miR-125b-5p and miR-335-5p (correlated with TREC and the 
%CD8+CD28−). Pathway enrichment analysis on the predicted 
gene targets of the immunosenescence-correlated miRNAs (Table 
S3 in Supplementary Material) indicated that immunosenescence 
markers were associated with signaling pathways, T and B cell 
activation pathways, hormone and growth factor signaling, and 
metabolic functions.

mrna expression
We examined correlations between baseline gene expression pat-
terns and immunosenescence markers (Table S4 in Supplementary 
Material) using the same statistical cut-offs (p  ≤  0.001 and 
q ≤ 0.15). In our dataset, only one gene met the threshold for cor-
relation with age: ROBO1 (p = 5.15 × 10−6; q = 0.07). By contrast, 
a varying number of genes had expression levels correlated with 
the other markers of immunosenescence: 117 genes with TREC; 
2,036 with TERT; 386 genes with the %CD8+CD28− cells; 611 
genes with the %CD4+CD28−w cells; and 801 genes correlated 
with CD4+/CD8+ ratio. As expected, there was a high degree of 
overlap between the genes correlated with the two CD28− T cell 
subsets.

Protein expression
PBMC samples from a subset of our cohort (n = 50) underwent 
shotgun proteomics analysis. Correlations between immunose-
nescence markers and baseline protein expression levels are listed 
in Table S5 in Supplementary Material. TREC levels exhibited 
a negative correlation with the vitamin receptor genes RXRA 
and RXRG, while the percentage of CD28−CD4+ T cells was 
highly correlated with GZMH2, CD2, and genes encoding IFN-
inducible proteins: PYHIN1 and GBP1. There were no proteins 
correlated with TERT or the percentage of CD8+CD28− T cells at 
the established significance threshold.

immunophenotyping
We performed three separate immunophenotyping panels in 
order to quantitate: major leukocyte populations (NK cells, 
monocytes, DCs, B cell subsets, T cell subsets), as well as HLA 
and CD86 expression on the APCs. Baseline cell subsets and 
phenotypes correlated with each marker of immunosenescence 
are included in Table S6 in Supplementary Material. We identified 
negative correlations between TREC levels for the myeloid DC 
frequency. The CD4/CD8 ratio was also negatively correlated 
with the % of CD127+ memory T helper cells, and the percentage 
of NK T cells.

assessment of Biological Function
In order to develop a better understanding of these processes, 
we assessed the biological functions associated with the CpG 
sites, miRNAs, genes, and proteins correlated with each immu-
nosenescence marker. The DIANA tool2 was used to determine 
the KEGG pathways controlled by the predicted targets of 
the immunosenescence-correlated miRNAs. The CpG sites, 
miRNA, and protein data were each mapped to their respective 
gene symbols and immunosenescence-correlated variables were 
analyzed using the DAVID functional gene annotation tool3 (47, 
48). Chronological age, despite serving as the de facto “driver” of 
immunosenescence, was the marker with the fewest significant 
associations at the “per-variable” level and the DAVID and 
DIANA tools were unable to assign biological function to the 
limited number of associated variables. Telomerase activity is 
an indicator of cellular senescence and, in contrast to age, was 
correlated with a number of transcripts enriched in the lysosome 
pathway (Table  3) while TERT-correlated miRNAs were pre-
dicted to control a variety of signaling, metabolic, cytoskeletal, 
developmental, and cell proliferation processes. T cell receptor 
excision circles are remnants of the T cell receptor rearrange-
ments that occur during the development of naïve T cells. At the 
miRNA level, we identified a large number of TREC-correlated 
pathways involved in cellular signaling, proteolytic activity, 
metabolism, cellular developmental, cell adhesion, and cell 
communication (Table 4). The biological functions attributed to 
variables correlating with the percentage of CD28− T cells (both 
CD4 and CD8) are listed in Tables 5 and 6 and displayed a large 
amount of overlap, particularly in the miRNA-controlled path-
ways where 70 of the 74 processes correlated with the percentage 
of CD8+ CD28− T cells are also correlated with the percentage 
of CD28− CD4+ T cells. The CD4+/CD8+ T cell ratio has also 
been identified as a marker of aging, immunosenescence, and 
increased mortality (49, 50). Our data (Table 7) indicated that 
pathways primarily involved in immune function (NK cell 
mediated cytotoxicity, T cell receptor signaling, Fc gamma 
receptor-mediated phagocytosis, phosphatidylinositol signaling, 
leukocyte transmigration) and tumorigenesis were correlated 
with the CD4/CD8 T cell ratio.

2 http://diana.imis.athena-innovation.gr/DianaTools/. 
3 http://david.abcc.ncifcrf.gov/home.jsp. 
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TaBle 3 | Biological functions correlated with TerT.

Biological function or 
pathway

Fold 
enrichment

p-Value1 Benjamini  
q-value1

CpG None identified
mRNA Lysosome 3.3 2.3E–12 4.2E–10
Protein None identified

Pathway p-Value1 # genes # mirnas

miRNA Endometrial cancer 0.00064 4 1

Regulation of actin cytoskeleton 0.00070 8 1

p53 signaling pathway 0.0016 4 1

Glioma 0.0016 4 1

ErbB signaling pathway 0.0032 4 1

d-Glutamine and d-glutamate 
metabolism

0.0053 1 1

Acute myeloid leukemia 0.011 3 1

Neurotrophin signaling pathway 0.012 5 1

Small cell lung cancer 0.012 4 1

GnRH signaling pathway 0.017 4 1

Prostate cancer 0.017 4 1

Dorso-ventral axis formation 0.022 2 1

Thyroid cancer 0.022 2 1

PI3K–Akt signaling pathway 0.031 8 1

mTOR signaling pathway 0.037 3 1

MAPK signaling pathway 0.043 7 1

1p-values and q-values were determined by the DIANA (miRNA data) and DAVID  
(all other data types) tools as described in the Sections from “Materials and Methods” 
to “Assessment of Biological Function.”

TaBle 4 | Biological functions correlated with Trec.

Biological function or 
pathway

Fold  
enrichment

p-Value1 Benjamini  
q-value1

CpG None identified
mRNA None identified
Protein None identified

Pathway p-Value1 # genes # mirnas

miRNA MAPK signaling pathway 6.22E−10 40 5

Neurotrophin signaling pathway 2.02E−06 20 5

Ubiquitin-mediated proteolysis 6.49E−05 21 5

d-Glutamine and d-glutamate 
metabolism

0.00035 2 2

GnRH signaling pathway 0.00038 14 5

Insulin signaling pathway 0.0020 18 5

RNA transport 0.0020 18 6

Long-term potentiation 0.0025 11 5

PI3K–Akt signaling pathway 0.0047 35 5

Calcium signaling pathway 0.0054 21 5

Small cell lung cancer 0.0069 12 4

Dilated cardiomyopathy 0.011 12 5

T cell receptor signaling 
pathway

0.012 14 4

Hypertrophic cardiomyopathy 
(HCM)

0.016 11 5

p53 signaling pathway 0.024 9 4

Hepatitis B 0.038 16 4

Drug metabolism – cytochrome 
P450

0.039 3 2

Histidine metabolism 0.039 5 3

Amyotrophic lateral sclerosis 
(ALS)

0.039 8 3

B cell receptor signaling 
pathway

0.039 10 4

Acute myeloid leukemia 0.039 8 4

Valine, leucine, and isoleucine 
biosynthesis

0.042 1 1

Gap junction 0.042 12 4

Arrhythmogenic right 
ventricular cardiomyopathy 
(ARVC)

0.043 12 5

Chemokine signaling pathway 0.044 19 5

1p-values and q-values were determined by the DIANA (miRNA data) and DAVID  
(all other data types) tools as described in the Sections from “Materials and Methods” 
to “Assessment of Biological Function.”
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network Biology
We employed a network biology paradigm incorporating 
multiple network resources (see Materials and Methods) to 
integrate the results from the individual correlation analyses 
described above. A set of 138 canonical KEGG pathways 
describing distinct cellular functions remained after redundant 
and overlapping pathways were excluded. Genes were selected 
from our per-datatype analyses by q-value cut-offs such that no 
individual data type contributed more than 100 individual genes 
and did not dominate the integrated analysis. After extracting 
the subnetwork for genes associating with immunosenescence 
markers (see Figure 2), we identified multiple canonical cellular 
pathways as well as the previously described gene modules (see 
text footnote 1) (36). Genes within our subnetwork collectively 
overlapped six of these modules: M3.6 (Cytotoxic/NK cell 
function; q = 2.51 × 10−8) and the functionally undetermined 
modules: M9.18 (q  =  1.26  ×  10−10), M7.16 (q  =  2.00  ×  10−6), 
M9.7 (q  =  6.31  ×  10−4), M9.20 (q  =  2.00  ×  10−3), and M8.96 
(q  =  2.00  ×  10−3). Within the subnetwork, three intercon-
nected groups are evident. The first of these (Figure  2C) is 
highly concordant with M7.16 (q  =  1.26  ×  10−7). The second 
(Figure  2D) is highly associated with the M3.6 Cytotoxic 
module (q = 6.31 × 10−5) and also overlaps with the canonical 
chemokine signaling (q = 6.31 × 10−3), hematopoietic cell line-
age (q = 7.94 × 10−3) and immunodeficiency (q = 1.58 × 10−3) 
KEGG pathways. The third (Figure 2E) overlaps the canonical 
chemokine signaling (q  =  3.98  ×  10−5) and axon guidance 
(q = 7.94 × 10−4) pathways.

DiscUssiOn

immune response Modeling and 
immunosenescence
Participants in our cohort exhibited similar ranges of immunose-
nescence marker levels as observed in other recent studies (1–3, 
5, 14, 51, 52). In our cohort, females had higher TREC levels and 
higher CD4/CD8 ratios than the male participants, suggesting 
that the females in our cohort may be less “immunosenescent” 
than males, as has been previously observed (53, 54). Our predic-
tive modeling efforts indicated that immunosenescence explains 
only a small portion of inter-individual immune response 
variation in our cohort as only a few gene expression modules 

http://www.frontiersin.org/Immunology/
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TaBle 5 | Biological functions correlated with the percentage of 
cD4+cD28− cells.

Biological function or 
pathway

Fold  
enrichment

p-Value1 Benjamini  
q-value1

CpG Neuroactive ligand–receptor 
interaction

2.8 2.90E−05 3.50E–03

Axon guidance 3.5 1.40E−04 8.50E–03
mRNA None identified
Protein None identified

Pathway p-Value1 # genes # mirnas

miRNA ErbB signaling pathway 4.35E−34 44 9

Regulation of actin 
cytoskeleton

2.38E−19 75 8

Neurotrophin signaling 
pathway

8.49E−18 47 9

Prostate cancer 2.68E−12 33 9

MAPK signaling pathway 1.48E−11 78 9

Focal adhesion 5.31E−11 62 9

mTOR signaling pathway 4.31E−10 25 7

Pathways in cancer 4.56E−10 100 9

GnRH signaling pathway 1.27E−09 32 8

Adherens junction 2.09E−09 29 8

Chronic myeloid leukemia 1.03E−08 28 8

Long-term potentiation 4.75E−08 25 8

PI3K–Akt signaling pathway 6.37E−08 88 9

Axon guidance 6.43E−08 43 8

Acute myeloid leukemia 2.38E−07 21 8

Endometrial cancer 3.04E−07 20 7

Small cell lung cancer 7.34E−07 28 7

Wnt signaling pathway 7.34E−07 44 9

T cell receptor signaling 
pathway

2.81E−06 33 8

Glioma 2.97E−06 25 9

Renal cell carcinoma 3.25E−06 26 9

Protein processing in 
endoplasmic reticulum

5.75E−06 50 8

Pancreatic cancer 9.51E−06 24 8

Insulin signaling pathway 1.09E−05 39 9

Dilated cardiomyopathy 1.33E−05 28 7

1p-values and q-values were determined by the DIANA (miRNA data) and DAVID  
(all other data types) tools as described in the Sections from “Materials and Methods” 
to “Assessment of Biological Function.”

TaBle 6 | Biological functions correlated with percentage of 
cD8+cD28− cells.

Biological function or 
pathway

Fold  
enrichment

p-Value1 Benjamini  
q-value1

CpG Neuroactive ligand–receptor 
interaction

3.5 1.50E−08 1.80E−06

Axon guidance 3.2 6.40E−04 3.90E−02

mRNA Natural killer cell-mediated 
cytotoxicity

4.6 1.90E−05 0.0021

Regulation of actin 
cytoskeleton

3.5 3.60E−05 0.0020

Focal adhesion 3.5 6.80E−05 0.0026
Graft-versus-host disease 8.5 1.40E−04 0.0040
Antigen processing and 
presentation

4.5 0.0017 0.037

Protein None identified

Pathway p-Value1 # genes # mirnas

miRNA PI3K–Akt signaling pathway 1.20E−21 117 7
Prostate cancer 5.87E−20 40 6
Ubiquitin-mediated proteolysis 6.24E−18 57 7
Focal adhesion 9.26E−18 75 7
Neurotrophin signaling 
pathway

4.11E−17 50 7

ErbB signaling pathway 3.46E−15 38 6
Glioma 6.79E−12 32 7
Endometrial cancer 6.54E−11 24 6
mTOR signaling pathway 1.79E−10 27 6
Gap junction 1.96E−10 35 6
Arrhythmogenic right 
ventricular cardiomyopathy

3.81E−10 33 7

MAPK signaling pathway 4.44E−10 84 7
Melanoma 6.11E−10 30 6
Dilated cardiomyopathy 8.52E−10 35 7
Aldosterone-regulated sodium 
reabsorption

8.84E−10 18 7

Non-small cell lung cancer 1.02E−09 24 6
Regulation of actin 
cytoskeleton

1.50E−09 72 6

Chronic myeloid leukemia 3.97E−09 30 6
Acute myeloid leukemia 3.97E−09 24 6
Pancreatic cancer 8.48E−09 28 7
Small cell lung cancer 1.44E−08 32 5
Protein processing in 
endoplasmic reticulum

6.44E−08 57 7

HIF-1 signaling pathway 8.77E−08 39 7
Hypertrophic cardiomyopathy 
(HCM)

1.05E−07 31 7

mRNA surveillance pathway 1.63E−07 32 6

1p-values and q-values were determined by the DIANA (miRNA data) and DAVID (all 
other data types) tools as described in the Sections from “Materials and Methods” to 
“Assessment of Biological Function.”
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significantly associated with immune response also contained 
immunosenescence markers. One of these modules, Module 
M1.2 (36), is defined as an interferon module and contained 
primarily innate immune response-related genes/markers 
whose expression level was positively associated with HAI titer: 
HERC5, ubiquitin protein ligase 5, acts as a positive regulator 
of innate, interferon-induced, antiviral responses; the percent 
of CD8+CD28− cells; LY6E, the lymphocyte antigen 6 complex 
that is activated by IFNα; as well as genes and markers negatively 
associated with HAI: chronological age; and OAS3, encoding 
the large OAS isoform that mediates antiviral activity through 
RNaseL.

Our findings also highlighted a cluster of histone genes from 
module M7.16, which does not have a defined immunologic 
function but can impact gene regulation. Our data suggest that 

the histone components of M7.16, along with multiple mark-
ers of immunosenescence, are involved in humoral immune 
responses to influenza vaccination. Despite the relative lack of an 
immunosenescence effect on humoral immunity in our cohort, 
the availability of additional, high-dimensional datasets (gene 
expression, miRNA expression, DNA methylation, and protein 
expression) provided an opportunity to examine, in depth, the 
impact of each immunosenescence marker on other biological 
functions.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


TaBle 7 | Biological functions correlated with cD4+/cD8+ T cell ratio.

Biological function or 
pathway

Fold 
enrichment

p-Value1 Benjamini  
q-value1

CpG Axon guidance 3.4 5.40E−05 7.20E−03
mRNA None identified
Protein None identified

Pathway p-Value1 # genes # mirnas

miRNA Neurotrophin signaling pathway 2.21E−10 27 4

Long-term potentiation 1.55E−09 18 4

Adherens junction 6.81E−09 18 3

Regulation of actin 
cytoskeleton

1.68E−06 33 4

Phosphatidylinositol signaling 
system

2.73E−06 19 4

Colorectal cancer 1.62E−05 13 4

Valine, leucine, and isoleucine 
biosynthesis

1.67E−05 2 2

Endometrial cancer 1.70E−05 11 4

Cholinergic synapse 2.17E−05 22 4

Wnt signaling pathway 7.70E−05 25 4

Axon guidance 7.70E−05 23 4

Transcriptional misregulation 
in cancer

8.59E−05 25 4

TGF-beta signaling pathway 0.00016 13 4

Focal adhesion 0.00016 29 4

Pantothenate and CoA 
biosynthesis

0.00020 6 2

ErbB signaling pathway 0.00028 15 4

Fc gamma R-mediated 
phagocytosis

0.00045 16 4

Bacterial invasion of epithelial 
cells

0.00046 13 4

Inositol phosphate metabolism 0.00056 13 4

Dopaminergic synapse 0.00056 21 4

Glioma 0.00056 13 4

GnRH signaling pathway 0.0012 15 3

Dilated cardiomyopathy 0.0014 15 3

Endocytosis 0.0028 27 3

Melanogenesis 0.0028 16 3

1p-values and q-values were determined by the DIANA (miRNA data) and DAVID 
(all other data types) tools as described in the Sections “Materials and Methods” to 
“Assessment of Biological Function.”
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age and immunosenescence
Of the 70 CpG sites significantly correlated (q  ≤  0.15 and 
p  ≤  0.001) with age in our cohort, six of the top eight most 
significant (cg02228185, cg03032497, cg04875128, cg16983588, 
cg10501210, cg07955995) have been identified in previous 
aging studies (55–60). The CpG site with the most significant 
age-related correlation cg02228185 (in the ASPA gene) is one of 
three CpG sites identified as biomarkers of human aging (61). The 
other two CpG sites identified in that study are cg25809905 and 
cg17861230, which missed our FDR threshold (p = 1.6 × 10−4, 
q = 0.16 and p = 1.8 × 10−2, q > 0.2, respectively).

Many of the top age-associated CpGs are within genes con-
trolling immune function (Table S1 in Supplementary Material). 
For example, KLF14 has one of the strongest signals (ρ = 0.39, 
p = 4.77 × 10−7) and is a transcription factor that regulates TGFβ 
signaling by modulating TGFβ receptor expression, suggesting 

that expression of KLF4 may wane with age. A CpG in the pro-
moter of HLA-DPB1 is negatively correlated with age, potentially 
indicating greater expression in older adults. TSPAN33 wanes 
with age and is known to play a role in red blood cell differen-
tiation. These age-associated changes in methylation may help 
determine the landscape of potential immune response across 
our study cohort.

Age-correlated CpG sites were in general concordance with 
age-related methylation profiles in monocytes, as previously 
reported by Reynolds et  al. (51), which indicates that many 
of these previously identified epigenetic trends in monocytes 
can also be identified within a heterogeneous cell population 
(PBMCs), albeit at a diminished level as would be expected due 
to the presence of other cell types that dilute the signal. The novel 
age-methylation associations discovered in this report are likely 
driven by specific cell subsets not examined in previous studies.

Regarding individual genes with expression levels associated 
with aging, Nakamura et  al. identified 16 transcripts that were 
highly correlated with age (62). Vo et al. studied transcriptomic 
markers of aging in PBMCs and identified a separate set of 16 
genes whose expression levels correlated with age (63). While we 
noted similar trends with these genes, none of them met our false 
discovery threshold. The differences in experimental approaches 
(RNA isolation from whole blood instead of PBMCs), age ranges 
(23–77 versus 50–74) make it difficult to make direct compari-
sons between these studies and ours. Interestingly, despite these 
differences, six of the 16 age-related genes in the Nakamura study 
(CTSD, TNFRSF1B, CTSS, GAA, CTSH, and CD28) and two of 
the 16 age-related genes from the Vo study (MXRA8 and DDB2) 
were correlated with TERT levels. This degree of overlap suggests 
that age and TERT activity are related and that both should be 
considered when characterizing immunosenescence, as well as 
when exploring the underlying mechanisms.

We identified two proteins whose expression levels were 
positively correlated with age. One of the proteins is the EGF-
Response Factor 2 (encoded by ZFP36L2), a negative regulator of 
erythroid differentiation. Dysregulation of EGF activity has also 
been described during cellular senescence of long-term cultured 
T cell clones (64). Elevated levels during aging may affect the 
body’s ability to replenish lymphocyte populations, as well as the 
ability of aging cells to function properly. The second protein is 
the polypeptide E component of RNA polymerase I that mediates 
formation of the initiation complex at the promoter.

With respect to age and miRNA expression, Gombar et  al. 
identified miRNA-363* expression decreasing with age, but 
remained elevated in centenarians (65). In our cohort, miRNA 
363-3p exhibited a negative correlation with the percentage of 
CD4+CD28− cells (r = −0.39, p = 0.004, q = 0.06), which supports 
the assertion that miR-363 may be associated with longevity.

Another recent study examining genome-wide miRNA sig-
natures identified and validated eight miRNAs associated with 
aging (66). Despite differences in study design, biospecimen 
collection, miRNA sequencing, and analysis, three of the eight 
miRNAs were also associated with markers of immunosenes-
cence in our subjects: miR-320a (r = −0.44, p = 0.0010, q = 0.036) 
was associated with percentage of CD4+CD28− cells; and both 
miR-320b (r = 0.40, p = 0.0037, q = 0.12) and miR-320d (r = 0.43, 

http://www.frontiersin.org/Immunology/
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FigUre 2 | network biology integration of immunosenescence-related datasets. (a) Each of our omics data types were mapped to genes and projected 
onto a common network. (B) This network diagram revealed functional links between the genes indicated by each data type. Three groups are evident within the 
network by the extent of their interconnectivity. (c) One group is highly concordant with M7.16 (q = 1.26xl0−7). (D) Another with the M3.6 cytotoxic T cell module 
(q = 6.31xl0−5). (e) The third is overlaps the canonical KEGG chemokine signaling (q = 3.98xl0−5).
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p = 0.0016, q = 0.095) were associated with the CD4+/CD8+ ratio. 
miR-320 controls the inhibition of cell division and regulates 
glycolysis (67) and may also control signaling through the Wnt 
and insulin PI3K pathways (68, 69). Dysregulation of miRNA 
expression during aging may impair critical signaling pathways 
necessary for immune function.

Telomerase, Trec, and 
immunosenescence
In our cohort, we identified a number of genes, epigenetic regula-
tory elements, and protein markers correlated with telomerase or 
TREC expression. Interestingly, miRNAs associated with TERT 
expression controlled a number of important pathways associ-
ated with aging and with immune function, including the mTOR, 
MAPK, p53, and PI3K signaling pathways. TREC levels were 
associated with miRNAs controlling a similar array of signaling 
pathways (MAPK, Wnt, ErbB, PI3K-Akt, calcium), as well as the 
B cell receptor signaling pathway, perhaps reflecting the role of 
these pathways in the activation and differentiation of naïve lym-
phocytes. Our data suggest that miRNA-mediated control of these 
pathways may contribute to both aging and immunosenescence.

cD4+/cD8+ T cells lacking expression  
of cD28 and immunosenescence
CD28 expression has been found to correlate with replicative 
ability and increases in the CD28− compartment of both CD4+ 
and CD8+ T cells is an indicator of immunosenescence (70, 
71). It has been proposed that CD28 downregulation occurs in 
response to chronic immune stimulation in older individuals 
(72). Our results demonstrated a remarkable amount of overlap 
in both the individual variables (CpG sites, miRNAs, mRNAs) 
and the pathways/biological functions that correlated with either 
the percent of CD4+ or the percent of CD8+ T cells lacking CD28.

cD4+/cD8+ T cell ratio and 
immunosenescence
An individual’s CD4/CD8 ratio has been used as a predictor of 
mortality, a component of an immune risk phenotype, and has 
been used to monitor HIV progression (49, 73, 74). A higher 
ratio in females has been previously reported (75), and there 
is an indication that the ratio is controlled by multiple genetic 
factors. Our data indicate that individuals with a high CD4/CD8 
ratio had gene expression profiles enriched in pathways directly 
contributing to lymphocyte function (i.e., NK cell function, TCR 
signaling pathway, leukocyte migration, antigen processing), 
although further work will be necessary in order to determine if 
differential gene expression is the result of or cause of the differ-
ences in CD4/CD8 ratio.

network Biology and integrated analysis 
of immunosenescence
Individually, each data type (mRNA expression, miRNA expres-
sion, DNA methylation, protein expression) highlighted several 
biological activities correlated with markers of immunose-
nescence. Collectively, our integrated network-based analysis 
provided further insights into immunosenescence and indicated 

that alterations in signaling pathways span multiple complex 
biological spaces. A more complete picture emerges (Figure 2) 
once the data are analyzed together. Importantly, changes in 
activity may not result from changes in gene expression or protein 
abundance, but can be due to post-translational modification, 
changes in localization, etc. (76, 77). This integrated analysis 
highlighted genesets/pathways known to be dysregulated during 
immunosenescence: chemokine signaling, immunodeficiency, 
cytotoxic T cell activity, and hematopoietic cell lineage. Of note, 
we also identified five gene modules with previously undeter-
mined function (M7.16, M8.96, M9.7, M9.18, and M9.20) that 
are associated with markers of immunosenescence. Further 
study is needed to elucidate the biological mechanisms regulated 
by these genesets, but their role in immunosenescence makes 
them interesting candidates for their potential to modulate 
immune responses.

Within the subnetwork, three groups of genes are evident 
by their mutual associations within our integrated network 
resource. Each of these groups represent the genes corresponding 
to canonical pathways and network modules represented within 
the subnetwork (Figure 2). The first group encompasses nearly 
all of the genes contributing to enrichment of M7.16. The second 
group encompasses nearly all M3.6 genes and the third, the axon 
guidance canonical pathway. While each group contained genes 
from multiple modules or pathways, one module/pathway always 
had greater representation than the others and was, therefore, 
identified as the group’s primary function. Externally defined 
canonical pathways and modules are believed to represent real 
cellular functions due to established biochemical and genetic 
assays demonstrating the encoded relationships between genes, 
and their recurrent activity changes in multiple studies. Our 
network biology approach identified an interconnected set of 
modules and pathways that were associated immunosenescence 
markers and are co-regulated by multiple biologic mechanisms, 
giving us enhanced confidence in our findings. Our results sug-
gest that these diverse biological activities may be controlled by 
shared regulatory features that are dysregulated during immu-
nosenescence. This information may provide a starting point to 
adapt future vaccination efforts to aging and immunosenescent 
populations.

strengths and limitations of the study
Our study has several notable strengths: (1) the use of datasets 
derived from multiple biological spaces (mRNA, miRNA, 
protein, cell subsets, functional immune outcomes) for the 
same samples; (2) the comprehensive nature of each dataset; 
(3) the range of immunosenescence markers studied; and (4) 
the network biology approach facilitating the integrated analy-
sis and interpretation of biological functions associated with 
immunosenescence markers. One limitation of our study is that 
our cohort only spans ages 50–74 years, which may not reflect 
the full spectrum of declining immune function. Our subjects 
were also selected based on good general health and stable 
medication use. It is possible that this resulted in a population 
that is more immunocompetent than the general population. 
The immunosenescence effects characterized by the markers 
we have measured may have already achieved their major 
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impact on immune function by the minimum age sampled, and 
a direct comparison with a young population is not available. 
Despite the limited age range of our cohort, we were able to 
successfully identify multiple factors across different biological 
spaces (e.g., genes, miRNAs, CpG sites, proteins, lymphocyte 
subsets) associated with common immunosenescence mark-
ers. Another limitation of studies involving high-dimensional 
data is the possibility of false positives, which we control for 
through the use of both p-value and q-value thresholds. Our 
study utilized PBMCs rather than a specific cell subset (NK 
cells, plasmacytoid DCs, effector memory CD8+ T cells) and 
the results represent the collective response of multiple cell 
types. While this approach allows for ease of biospecimen col-
lection, reduces ex vivo manipulation, and better approximates 
the in vivo situation, it does have some disadvantages, includ-
ing the presence of multiple signals due to cell type-specific 
responses increasing the “noise” present in the data, and the 
inability to track identified transcriptomic signatures back to a 
defined cell population.

Our cohort consisted of older individuals from a population 
with high vaccination rates. It is reasonable to assume that our 
cohort all received the monovalent, pandemic influenza A/H1N1 
vaccine in 2009 and that the vaccination studied in this report is 
their second immunization against pandemic influenza A/H1N1. 
Due to the age range of this cohort, it is likely that they have had 
multiple prior exposures to various influenza strains. One pos-
sible explanation for the weak associations between markers of 
immunosenescence and humoral immunity in this population is 
that repeat immunization may partially overcome the effects of 
immunosenescence. For example, booster vaccines may increase 
the number of antigen-specific T cells, known to correlate with 
protection in older adults (78).

cOnclUsiOn

Our findings provide further evidence that immunosenescence 
is a complex phenomenon involving multiple aspects of both 
innate and adaptive immunity (79, 80). We believe that a systems 
level vaccinomics approach will be necessary in order to capture 
not just the individual defects of specific cell subsets, but also 
the altered interactions, networks, and signaling pathways that 
are dysregulated during the aging process (14, 32, 61, 62, 81–88). 
Our work has started this process by linking immunosenescence 
markers with transcriptomic and epigenomic factors and their 
associated functional pathways. The identified associations were 
found in pathways controlling cell proliferation, oncogenesis, 
and hormone regulation, as well as the metabolic activities likely 
to be necessary for activation, proliferation, and differentiation 
of lymphocyte subsets. These pathways also undergo significant 
changes during the aging process and the phenotypic changes 
that we collectively categorize as “immunosenescence” may 
be symptoms of a more fundamental breakdown in cellular 
function.

An enhanced understanding of immunosenescence has 
profound implications for vaccine use in older populations. 
Vaccine efficacy is severely compromised in the elderly. This is 

due, in large part, to immunosenescence. The ability to define 
the key processes that are disrupted during immunosenescence 
may also allow us to develop new adjuvants, delivery systems, 
and formulations that overcome those deficits and stimulate 
robust, protective immune responses. The high-dose formula-
tion of influenza vaccination is one example of an attempt to 
overcome reduced immune function through increased antigen 
dose. Alternative approaches may rely on the stimulation of 
specific immune responses; for example, the newly licensed 
MF59-adjuvanted influenza vaccine demonstrated to have 
higher immunogenicity and result in longer-lived antibody 
responses following vaccination (89–91). Additional examples 
include the use of GLA-SE (a TLR4 agonist) leading to increased 
production of TNFα, IL-6, and IL-12, as well as a Th1 shift in 
response to influenza challenge (92); or the use of Ov-ASP-1 
(a helminth-derived protein adjuvant that stimulates both Th1 
and Th2 responses with resulting increases in influenza-specific 
antibody titer in both young and old mice) (93). This knowledge 
may also provide useful biomarkers for the testing and evalua-
tion of vaccine candidates. T cell responses have been shown to 
be better correlates of protection in the elderly than antibody 
titer (78). This knowledge, combined with results demonstrating 
the presence of T cell epitopes in additional influenza proteins 
(94, 95), may lead to vaccines with an altered composition 
designed to be maximally immunogenic in the elderly (96). Our 
own results indicate that, in addition to alterations in immune 
pathways, metabolic activity and other housekeeping processes 
are also dysregulated. With this in mind, treatments (e.g., 
vitamins or nutritional supplements) that correct imbalanced 
or dysregulated metabolic or other physiologic processes may 
be administered to individuals prior to receipt of current vac-
cine products. The next important step for the field will be to 
begin systematically evaluating the identified immunologic and 
immunosenescence-related molecular signatures as biomark-
ers, and for targeted manipulation in order to shape immune 
response outcomes and elicit protective immunity in vulnerable 
populations.
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