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Considerable interest in the relationship between biodiversity and disease

has recently captured the attention of the research community, with impor-

tant public policy implications. In particular, malaria in the Amazon region

is often cited as an example of how forest conservation can improve public

health outcomes. However, despite a growing body of literature and an

increased understanding of the relationship between malaria and land

use / land cover change (LULC) in Amazonia, contradictions have emerged.

While some studies report that deforestation increases malaria risk, others

claim the opposite. Assessing malaria risk requires examination of dynamic

processes among three main components: (i) the environment (i.e. LULC

and landscape transformations), (ii) vector biology (e.g. mosquito species

distributions, vector activity and life cycle, plasmodium infection rates),

and (iii) human populations (e.g. forest-related activity, host susceptibility,

movement patterns). In this paper, we conduct a systematic literature

review on malaria risk and deforestation in the Amazon focusing on these

three components. We explore key features that are likely to generate these

contrasting results using the reviewed articles and our own data from

Brazil and Peru, and conclude with suggestions for productive avenues in

future research.

This article is part of the themed issue ‘Conservation, biodiversity and

infectious disease: scientific evidence and policy implications’.
1. Introduction
The idea that environmental change alters the risk of malaria transmission is well

established in the literature [1–7]. However, despite a growing body of papers on

land use / land cover change (LULC) and malaria in the Amazon (especially

related to deforestation), uncertainty pervades our understanding of the relation-

ship between forests, LULC change and malaria in the region. For instance,

over the past decade, popular headlines have broadcast contradictory findings:

Smithsonian.com declared, ‘Save the Amazon, Increase Malaria’ [8], while

ConservationMagazine.org reported, ‘Malaria Linked to Deforestation’ [9].

These claims are based on published scientific articles from Valle & Clark [10]

and Vittor et al. [11]. As one of the most biodiverse biomes on the planet, conser-

vation of the Amazon rainforests is paramount, but it is critical to determine if

conservation has a detrimental or beneficial effect on the health of local popu-

lations (i.e. trade-off or win–win scenario between conservation and public

health). Depending on the answer to this question, conservation and public pol-

icies could benefit from being developed jointly (e.g. to mitigate some of the

public health impacts of conservation or to exploit the synergies between these

policies), instead of independently as currently done.
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Malaria circulates within a complex social-ecological-

epidemiological system, and multiple dynamic processes

influence transmission risk, requiring careful examination of

a diverse set of factors, such as LULC dynamics, mosquito

life history and diversity, malaria epidemiology and human

behaviour. For example, deforestation [2,11], proliferation of

forest edges [12], streams, rivers and standing water along

forest margins [13], artificial reservoirs, such as watering

holes and aquaculture ponds [14,15] and forest-related activi-

ties such as hunting, extraction of forest products (e.g. timber,

fruits, medicinal plants), and shifting agriculture [16], have

all been blamed for increasing malaria transmission in the

Amazon region. Deforestation, in particular, is a common

theme in the literature examining the impact of environ-

mental factors on malaria in the Amazon. Still, while some

studies conclude that deforestation can reduce malaria trans-

mission [17,18], others claim that forest clearing increases

malaria risk [11,19–22]. These contradictions emerge, in

part, from differences in definitions, types of data and

unstated assumptions regarding the role of forests in malaria

transmission. In this paper, we review the current knowledge

surrounding deforestation’s impact on malaria risk in the

Amazon. To this end, we conduct a systematic literature

review to characterize and quantify current knowledge on

this topic. We then use this review, together with our own

data from Acre (Brazilian Amazon) and the Iquitos–Nauta

highway (Peruvian Amazon), to identify sources of confusion

and themes that require additional research.
2. Systematic literature review
For our literature review, we sought out original, peer-

reviewed research papers that explicitly address the impacts

of deforestation and LULC on malaria in the Amazon

region. We used a combination of geographical (e.g. names

of countries in the Amazon basin), LULC and malaria-related

search terms to query PubMed. Details of our systematic

literature search and paper selection are explained in elec-

tronic supplementary material, S1, together with a diagram

summarizing the filtering process that led to a final list of

47 papers for review. Reviewed articles were published

between 1989 and 2015, and most studies originated in

Brazil (32). The remaining papers were based in French

Guiana (5), Peru (5), Colombia (2), Bolivia (1), Venezuela

(1) or covered the entire Amazon region (1). Fourteen papers

are entomological studies (30%), 23 are epidemiological

studies (49%) and 10 use both entomological and epidemio-

logical data (21%). A complete list of articles returned from

our query (with the reasons for exclusion, if applicable) is

provided in electronic supplementary material, table S1.

In terms of the relationship between forest cover and

malaria, 11% (5 of 47 articles) of the reviewed articles sup-

ported a positive association [10,16,23–25], 32% (15 of 47)

identified a negative association [11,20–22,26–36] and 26%

(12 of 47) found no clear relationship [13,17,37–46]. The

ambiguity in the latter cases arose from varying results

based on mosquito species in question and the landscape

context [42], the type of forest studied (sustainable forest

reserve versus protected forest reserve; [45]), or the metric

used to measure malaria (entomological inoculation rate

(EIR) versus human-biting rate (HBR); [46]). Also, five of

these 12 papers supported the idea that initial deforestation
in new settlements increases malaria risk, but as deforestation

proceeds it can translate into lower malaria risk [13,17,37–39].

Fifteen per cent of reviewed articles (7 of 47) specifically

evaluated deforestation rate [10,16,25,39,43,47,48], but only

three of these found a positive association between deforesta-

tion and malaria [39,47,48]. In short, we fail to find

overwhelming evidence supporting a consistent simple and

straightforward relationship between forests, deforestation

rate and malaria.

Importantly, our literature review uncovered substantial

differences in method, scale and approach that might help

explain how deforestation can both increase and decrease

malaria depending on context and study details. We discuss

in greater detail the differences that we have found, first focus-

ing on the environment and then focusing on mosquitoes and

humans. Within each of these sections, we target aspects that,

in our opinion, strongly shape results and conclusions.
3. The environment
In exploring the linkages between malaria and forests in

the Amazon, different researchers rely on different LULC

definitions, LULC classification methods and forest exposure

metrics to explain malaria risk, all of which may lead to

substantially different conclusions. First, we describe the

different definitions for ‘deforestation’ that researchers have

adopted. Second, we briefly discuss different approaches

to LULC classification and their associated advantages and

shortcomings. Third, we highlight the different forest

exposure metrics that are commonly employed. Finally, we

end this section by discussing the role of water in mediating

the relationship between malaria and forests.

(a) Definitions of ‘deforestation’
We focus on the definition of ‘deforestation’ because con-

siderable confusion surrounds this term in the literature.

Forest cover and deforestation are often assumed to represent

two sides of the same coin, but they need not be. While 25%

(12 of 47) of the reviewed articles define deforestation as the

area of land cleared of forest (oftentimes measured within

predetermined buffer zones around households or mosquito

collection sites), deforestation has also been characterized as

the rate of forest clearing over time (15% of the reviewed

articles, 7 of 47). These two definitions describe different

concepts—one being static and the other a process. Another

23% (11 of 47) of reviewed articles directly measure forested

area, or forest cover. Contrary to intuition, higher deforesta-

tion rates often occur in areas with high forest cover

although this relationship may not be linear.

To illustrate this concept, we consider deforestation rates

and forest cover in the Brazilian state of Acre. Using infor-

mation on individual properties within rural settlement

projects in Acre (n ¼ 16 188) and annual deforestation maps

from 2001 to 2013 based on Landsat imagery (PRODES

project, Brazilian Space Agency (INPE)), we find that defores-

tation rate initially tends to increase for properties with high

forest cover and then decrease as forest cover is lost (figure 1).

In other words, high deforestation rates tend to be associa-

ted with relatively high forest cover, and therefore, a strong

association between malaria and deforestation rate may

be the result of greater malaria risk in areas with higher

forest cover.
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Figure 1. Deforestation rate tends to be higher for properties with substan-
tial forest cover (65 – 90%) in rural settlement areas in the Amazon region
(Acre State, Brazil), decreasing as forest cover is reduced. Original forest
cover was discretized into 5% bins (break points are represented with vertical
grey lines), and deforestation rate percentiles (0.7 to 0.95) are shown with
different colours. Although this figure is based on cross-sectional data, a tem-
poral analysis of the properties that originally had high forest cover reveal the
same qualitative pattern.
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Accounts of the historical increase in malaria cases in the

Brazilian Amazon region during the late 1970s and 1980s

typically attribute this malaria surge to the massive and

uncontrolled migration to the region, which led to large-

scale deforestation and increased contact of non-immune sub-

jects with forested areas [37,49–52]. Unfortunately, there has

been little effort to disentangle the effect of proximity to

forest from the effect of deforestation per se.

(b) Land use / land cover classification
How the landscape is characterized can also shape con-

clusions about the impact of forests on malaria. To estimate

deforestation and forest cover, many authors in our review

employed remotely sensed imagery (49%, 23 of 47 articles),

but level of detail varies substantially among studies [7].

A relatively high percentage of the reviewed papers that use

remote sensing relied on a binary classification of LULC

(i.e. forest and non-forest; 35%, 8 of 23 articles). This is prob-

ably due to the large spatial scale of these studies, which

often leads researchers to adopt existing remote sensing pro-

ducts instead of attempting to create a customized LULC

classification. For instance, a particularly popular remote sen-

sing product is the yearly deforestation maps provided by

INPE’s PRODES project (30%, 7 of 23 articles that used

remote sensing used these maps). Unfortunately, a binary

forest/non-forest classification might be an overly simplistic

representation of what is likely to be a continuous vegetation

cover gradient [53]. Furthermore, INPE’s deforestation maps

do not allow for polygons previously classified as deforested

to be subsequently classified as forested. As a result, this pro-

duct fails to capture areas with secondary-forest regrowth

that might favour malaria vectors [11,20,29,41].

In our review, 57% of articles that employed remote sen-

sing (13 of 23) identified multiple LULC classes, such as
grassland, agriculture and secondary forest. Distinguishing

among multiple LULC classes can be important because of

potential differences in vegetation structure, shading and

luminance (reflected light), which affect mosquito feeding/

biting, resting and reproduction (i.e. larval habitats) [2,40].

However, allowing for multiple LULC classes also has its

perils. First, researchers seldom use the same LULC cat-

egories, hampering the comparison of results from different

studies. Second, the same LULC can be labelled in multiple

ways, again complicating comparison among studies and

leading to substantially different conclusions. For instance,

an LULC class with a moderate amount of vegetation may

be labelled shrub/low-vegetation or secondary-growth

forest. The first label can be interpreted as vegetation that

results from natural processes (e.g. flooding or low soil ferti-

lity), while the second label implies that the area was

deforested and vegetation is re-growing.

Third, researchers use a plethora of methods to classify

LULC. While these methods may yield similar results at the

landscape level, as judged by overall measures of classification

accuracy (Kappa index and overall percentage of cases

correctly allocated), specific LULC classes might be poorly

predicted and relatively large discrepancies may arise in

LULC transitional areas, such as those close to human settle-

ments where most malaria studies are conducted. To illustrate

some of these issues, we compare LULC classifications from

the Peruvian Amazon performed by two independent

research groups (figure 2). The first LULC classification was

based on an unsupervised classification of a 2001 Landsat

image, which resulted in seven classes: clouds, cloud

shadow, forest, secondary forest, water, impervious area and

deforested area. The second LULC classification was based

on a supervised classification using the Random Forest

algorithm on a 2000 Landsat image and resulted in six

LULC categories: terra firme forest, flooded forest (‘varzea’),

secondary forest, agriculture and non-photosynthetic

vegetation (NPV), urban and soil, and water. A comparison

reveals overall agreement at the landscape level (left and

middle panels) but substantial variation in the proportion

of the different LULC categories within 1 km of each adult

mosquito collection site (right panels).

Going beyond a binary forest/non-forest classification is

important because the LULC that follows deforestation may

affect suitability for vectors and malaria transmission [3].

Deforested areas represent a spectrum of realities [7], and

identification of the land use or cover replacing the forest

can be just as important as the removal of the forest itself.

In many remote areas of the Amazon, after landowners

clear the original forest and cultivate crops, the area is often

abandoned after a few years due to decreased soil fertility,

eventually being covered by secondary-growth forest. From

our review, 80% of articles that classified secondary forest

separately (8 of 10) identify a positive link between malaria

and secondary forests that regrow after cycles of deforestation

and shifting agriculture. Areas with low-level vegetation (i.e.

early secondary-forest growth or taller, bushy crops) are

assumed to be critical as An. darlingi resting spots and

shaded refuges between larval habitats and households

[2,11,20,40,54]. Barros & Honório [13] also reported high den-

sities of An. darlingi larvae in water collections bordered by

secondary forest and tall grasses, and Barbieri et al. [55]

found a positive correlation between clearing of regrowth

forests and an increase in malaria prevalence.



LULC classif. 1

collection sites

forest

secondary forest

defor. / bare soil / agric.

LULC classif. 2

LULC classification 1

L
U

L
C

 c
la

ss
if

ic
at

io
n 

2

deforested / bare soil / agriculture

0.40.2 0.6 0.80

0.40.2 0.60

secondary forest
0.40.2 0.6 0.8 1.0

0

0.2

0.4

0.6

0

0.2

0.4

0.6

0.2

0.4

0.6

0.8

1.0

0.8

forest

Figure 2. Overall agreement of LULC classification at the landscape level along the Iquitos – Nauta highway (Peruvian Amazon), but with substantial variation in the
proportion of each LULC category within 1 km of each adult mosquito collection site. The ‘deforested / bare soil / agriculture’ class represents the sum of the cat-
egories ‘impervious area’ and ‘deforested area’ for LULC classification 1 and the sum of the categories ‘agriculture and NPV’ and ‘urban and soil’ for LULC
classification 2. The ‘forest’ class consists of the ‘forest’ class in LULC classification 1 and the sum of the ‘terra firme forest’ and ‘flooded forest’ classes in
LULC classification 2. A 1 : 1 line was added for reference in scatter-plots (grey line).

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

372:20160125

4

(c) Metrics of forest exposure
The literature reviewed here utilizes different metrics to

assess the impact of forests on malaria risk. For instance, sev-

eral studies rely on the proportion of different LULC

categories within a particular distance of mosquito collection

sites (11 of 47 articles). Distance between households and a

particular LULC class (e.g. forest, water bodies and second-

ary forest) is also commonly used to assess the influence of

the landscape on malaria risk (16 of 47 articles). The idea

that proximity to forest affects malaria incidence is a

common thread throughout the literature on forests and

malaria (13 of 47 articles). Eight publications from our sys-

tematic review specifically measure and test the idea that

proximity to forest or forest fringe influences malaria risk.

Seventy-five per cent of these (6 of 8) report an increase in

malaria incidence or HBR with greater proximity to forest

(or alternatively, malaria decreases with increasing distance

to forest).

In many of these studies, deforestation is expected to

initially increase malaria because it reflects enhanced

vector–human contact in forested areas of new human settle-

ments (assuming forests represent prime vector habitat);

however, ongoing deforestation tends to increase the distance

between households and the forest, which in turn is expected

to reduce human contact with malaria vectors [13,17,37–39].

Distinguishing between initial deforestation for human settle-

ment and ongoing deforestation in already established areas

is likely to be critical to properly understand how deforesta-

tion relates to malaria risk. Forest fringes by themselves have

also increasingly received attention as important vector
habitat. Barros et al. [40] describe the forest fringe as a

unique ecotone where larvae tend to cluster, serving as a

potential source of malaria vectors. These authors found sig-

nificantly more An. darlingi larvae in forest fringes than in

primary forest or deforested sites. Thus, increasing the dis-

tance to these transitional zones is expected to lower the

risk of contact with malaria vectors. Barros & Honório [13]

also reported the absence of An. darlingi larvae from open

sunlit deforested landscapes, and where forest cover was

experimentally removed above and around water bodies,

larval clusters disappeared. Forest clearing exposes mosquito

larval habitats to sunlight, subsequently reducing larval

populations of certain species [2,40].

Another metric often used to determine the association

between forests and malaria in epidemiological studies con-

sists of participation in forest-related activities. If malaria

risk is high in or near the forest, participation in forest-related

activities is expected to increase malaria risk. Fifteen per cent

of papers in our review (7 of 47) report that forest-related

activities (e.g. land clearing, logging, extraction of forest pro-

ducts, hunting and fishing) increase human contact with

malaria vectors leading to a rise in malaria cases, but only

57% of these (4 of 7) collected survey data to test this relation-

ship [16,19,56,57]. The association between forest-related

activities and malaria is supported by Bauch et al. [45], who

found that strictly protected forest areas promote lower

malaria transmission, while sustainable-use protected areas

are associated with higher malaria transmission. On the

other hand, Barros et al. [58] and Silva-Nunes et al. [19]

found no evidence that activities like hunting or fishing,
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which involve sleeping away from home (outside), increase

malaria risk. Conflicting findings about the connection

between forest-related activities and malaria incidence

suggest that the unique qualities of the forest under study

and the particular activity undertaken are important. Forest

characteristics such as level of degradation, degree of

human disturbance and openness of the forest canopy (e.g.

penetration of sunlight to the ground level, where water

accumulations support potential aquatic habitats for mosqui-

toes) are difficult to assess but can provide information

relevant to vector biology and in turn, malaria risk [43].

Finally, landscape-level characteristics might also be criti-

cal in determining the relationship between forests and

malaria. For instance, although both Vittor et al. [11,20] and

Valle et al. [16] focused on the role of deforestation on

malaria, the landscapes within which these studies were con-

ducted were radically different, being at almost opposite ends

of the forest cover spectrum (figure 3). Conceivably, the

removal of forest in a highly deforested landscape has a sub-

stantially different effect to removal of forest in a highly

forested landscape. Furthermore, some authors specifically

identify the configuration of forests and other LULC classes

over the landscape as an important driver of malaria risk

(3 of 47 reviewed articles). For instance, it has been suggested

that a landscape composed of more diverse LULC categories

provides more potential habitat for malaria vectors (even for

multiple-vector species), both as adults and as developing

larvae [24,33,41]. A higher degree of landscape division (i.e.

probability that two randomly chosen places in the landscape

under investigation are not situated in the same undissected

area; [59]) stimulates higher densities of malaria vectors [41]

and is correlated with malaria incidence in children [24].

An increasingly fragmented landscape is also likely to

expose more forest fringe (figure 3), which may help

explain higher malaria incidence in areas with higher levels

of landscape division than in less fragmented areas.
(d) Role of water
The relationship between forest and malaria risk is likely to

be mediated by yet another key landscape feature: water.

Female Anopheles mosquito vectors alternate between seeking

a blood-meal and oviposition in water bodies, thus water is

critical to the mosquito’s life cycle and malaria transmission

[60]. Given the climatic and environmental circumstances

that support mosquito survival, flight distances between

water and a meal determine vector abundances and distri-

butions, and the prominence and configuration of water on

the landscape can have a significant impact on malaria risk.

When landowners deforest for the express purpose of instal-

ling fish ponds or damming of waterways to form watering

holes for cattle, habitat for mosquito larvae (specifically

An. darlingi) expands, as long as some vegetation is present

in the water or along the water’s edge to provide shade [13].

The formation of fish ponds for aquaculture may be a largely

overlooked driver of elevated malaria transmission in defor-

ested areas [13]. Microdams formed when fallen trees

obstruct streams and rivers also provide prime larval habitat

for malaria vectors. According to Barros & Honório [13],

proximity of houses to water bodies with low luminance

can be more important to malaria risk than proximity to

forest fringe itself. Still, Barros et al. [40] registered signifi-

cantly higher densities of microdams in forest fringe areas.
Twenty studies in our review (43%) included either per cent

water cover or distance to water bodies as a covariate. Among

these 20 articles, eight articles report a positive relationship

between malaria and water [11,13,32,40,48,58,61,62] while

results from the remaining 12 articles were inconclusive.

One of the key challenges in determining the influence of

water on malaria risk is that many of the water bodies con-

taining An. darlingi larvae are too small to be detected by

remote sensing [20]. Even if they are large enough, vegetation

may cover the water bodies, making their detection through

optical remote sensing (i.e. non-radar) difficult. This is impor-

tant because even if water bodies in deforested areas are more

likely to harbour An. darlingi larvae [20], the overall abun-

dance of water bodies in deforested versus forested

landscapes is relevant to determining how these findings

translate into higher numbers of An. darlingi adult mosqui-

toes [63]. Finally, field data collection on water bodies can

be complicated. For example, how does one estimate the

area of (or distance to) a meandering creek or stream or

multiple very small water bodies (e.g. animal hoof prints)

in a feasible manner? Another challenge refers to the variety

of types of water bodies (e.g. deep-water ponds, fishing

farms, dammed streams, seasonally flooded areas, or river

banks), which vary substantially in terms of their suitability

as mosquito aquatic habitat [14,15,61].
4. Mosquitoes and humans
The above considerations regarding landscape features

and perceptions about the role of forests and deforesta-

tion in malaria transmission have limited value in the

absence of information on malaria vector biology/ecology

[64]. Understanding mosquito abundance, diversity and life

cycles as related to the environment, as well as the capacity

of different mosquito species to infect human populations

with malaria parasites (Plasmodium spp.), facilitates a

deeper understanding of how deforestation and its outcomes

impact malaria incidence.

In our review, 30% (14 of 47) of the articles focused exclu-

sively on entomology. Interestingly, despite the recurring

claim that the rise of mosquitoes and malaria primarily

results from an increase in aquatic habitats after forest clear-

ing, relatively few studies have specifically collected

comprehensive data on mosquito larval distributions. Nine

out of 24 reviewed studies that included entomological data

(38%) collected larval samples, whereas 88% of studies that

use entomological data (21 of 24) collected adult mosquitoes.

Ample evidence demonstrates that environmental altera-

tions, like deforestation, affect mosquito populations, both

in terms of abundance and species composition [27,33,46].

However, each mosquito species has unique life-history

characteristics and habitat preferences, and therefore reacts

differently to landscape changes. This is important because

although An. darlingi has long been acknowledged to be the

main malaria vector in Amazonia [65], other mosquito

species have also been found to be important in local trans-

mission of malaria in the region, including An. nuneztovari
[27,41], An. marajoara (a member of the An. albitarsis complex)

[28,66,67], An. albitarsis [68,69], An. benarrochi [70], An. oswaldoi,
An. trinkae and An. albimanus [71].

To understand the role of deforestation on malaria risk, it

is important to consider the impact of LULC changes on these
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Figure 3. Contrasting landscape-level deforestation in studies focused on the relationship between malaria and LULC change. (a) Landscape along the Iquitos –
Nauta highway (Peru) in 2001 in Vittor et al. [11,20]. (b) Landscape in the rural settlement project Pedro Peixoto (Acre, Brazil) in 2004 in Silva-Nunes et al. [19] and
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participated in the Pedro Peixoto study). Purple points are locations where vector data were collected. Note that no vector data were collected for the Pedro Peixoto
study. Both maps are in the same spatial scale.
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different species. To illustrate this, we compare human-biting

rates of the three most abundant mosquito vector species

collected at our study site in the Peruvian Amazon across

four LULC classes (figure 4). Displaying the highest HBR,

An. triannulatus tends to bite more in forested areas, whether

primary or secondary forest, and neither this species nor

An. oswaldoi are common in village sites. An. darlingi showed

the opposite pattern, most frequently found biting in the village

and rarely in forested areas. This complementarity reveals the

complexity of trying to associate a particular land cover or

land use with malaria. Studies focused solely on a single

anopheline species (e.g. An. darlingi) may arrive at different

conclusions to studies that include multiple-vector species.

Most studies accept the premise that malaria is contracted

primarily in and around the home (but see [41]), even though

in most parts of its vast range, An. darlingi tends to rest and

feed outdoors (P Lounibos 2016, personal communication;

see review in [73]). As a result, the majority of entomological

studies reviewed here focus mosquito sampling efforts out-

side the forest, whether in terms of biting rate, adult

mosquito capture or larval surveys: 58% of studies collected

mosquitoes in peridomestic areas and/or indoors (14 or

24). Unfortunately, this leads to a circular logic where mos-

quito sampling in peridomestic areas or indoors leads to

higher estimates of An. darlingi abundance, which reinforces

the notion that this mosquito species is the main malaria

vector in the region [42]. This conclusion then leads studies

on the relationship between LULC and malaria to focus

solely on An. darlingi, which then confirm that An. darlingi
is found in more disturbed environments [27], such as areas

close to households. Seven of the 24 articles that collected

entomology data (29%) focused exclusively on An. darlingi.
It is also important to acknowledge that a higher HBR for

a particular mosquito species does not necessarily translate

into higher malaria risk. First, substantial species differences
may exist regarding other key Vectorial Capacity parameters

[74], such as female mosquito longevity (which is critical

given the need of female mosquitoes to feed on humans to

acquire gametocytes, to complete the extrinsic incubation

process, and then to transmit sporozoites to humans)

[23,75] and the proportion infected with the malaria plasmo-

dia. Conn et al. [28] found significantly more An. marajoara
mosquitoes infected with Plasmodium spp. than An. darlingi
at a study site in the Eastern Amazon. Infection by P. falciparum
and P. vivax also varies by mosquito species. For instance,

while P. falciparum was predominantly found in An. darlingi,
in some instances P. vivax sporozoites were found at greater

frequencies in A. triannulatus, A. nuneztovari and A. albitarsis
than in A. darlingi, suggesting that the former three species

probably play an important role in the transmission of

P. vivax malaria [76]. Unfortunately, determining the robust-

ness of these results is difficult because Plasmodium spp.

infection rates in mosquitoes are very low, generally between

0.1 and 3.7% [27,34,35,41,77], and because an enzyme-linked

immunosorbent assay (ELISA) was used, which is known to

generate false-positives [78] and is not as sensitive as micro-

scopic techniques [79]. Furthermore, while it may be

tempting to attribute these results to differences in the

species’ inherent ability to carry and transmit malaria

plasmodia (i.e. vector competence), this may not be the

case. For these reasons, experimental infection studies of

distinct Anopheles species are important (e.g. [80]).

Second, people visit different LULC categories at different

times of the day and spend different amounts of time in each

place. As a result, exposure to different mosquito species

varies considerably and HBR per se might not be enough to

determine the primary malaria vector. For instance, HBR

might be high in agricultural fields based on night captures

but that may be inconsequential if people only visit their agri-

cultural plots during the day. Similarly, people may spend so
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Figure 4. Distinct LULC preferences for different mosquito vector species. Human-biting rate (HBR) for the three most abundant Anopheline species at our study site
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that An. darlingi HBR peaks between 21.00 and 23.00 [11], but ideally a comparison of HBR among species would be based on data collected all night [72].
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much time in their villages at night that, despite the lower

HBR, this LULC category is where most malaria transmission

occurs. Finally, some people sleep under bed nets at home

but readily expose themselves to mosquitoes when going

fishing or hunting at night in secondary/primary forest.

Given that no method exists to determine when and where

infection occurs, understanding human behaviour becomes

critical in determining the ultimate role of different mosquito

species as malaria vectors. Unfortunately, similar to most

entomological studies, epidemiological studies typically

correlate the environmental characteristics surrounding

each household to infection probability, with the implicit

assumption that infection occurs in the house or its vicinity.

In relation to epidemiological data, although a majority of

reviewed papers considered epidemiological evidence (70%;

33 of 47), most of these studies analysed secondary data

(i.e. data from health facilities; n ¼ 23). This can be limiting,

as people only seek help at health facilities if they feel sick,

and therefore these data fail to capture asymptomatic car-

riers. This, in turn, can bias conclusions regarding forest

cover and malaria, given that people residing longer in the

region are more likely to live in deforested areas and to

develop clinical immunity [19,81]. Secondary data are also

frequently aggregated at the health facility or county level.
While studies relating forest cover, deforestation rate and

malaria using aggregate data are useful, statistical associ-

ations established with aggregate data are notorious for

their precariousness (e.g. these associations may reverse

signs when data are disaggregated to the individual level,

a phenomenon widely known as ‘ecological fallacy’ [82]).

Furthermore, substantial differences in sampling effort (e.g.

number of health facilities) between counties may confound

results when analysing county-level malaria incidence data.

Finally, some studies suggest that An. darlingi abundance is

more a function of human presence than disturbance itself

[30,42]. For instance, even though about 10 times more mos-

quitoes (from multiple anopheline species) were captured

within dense forest than in a nearby village in Peru,

300 times more An. darlingi were captured in the village com-

pared with the forest [30]. The village and forest collection sites

were separated by less than 300 m, and the authors attribute

this stark difference in vector abundance to the availability of

human blood meals, as opposed to differences in vegetation

cover, or deforestation. On the other hand, Vittor et al. [11]

compared levels of forest cover, deforested areas and second-

ary vegetation, finding that An. darlingi was more frequently

captured at sites with little remaining forest, even after control-

ling for human presence. More studies are needed to better
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disentangle the effects of forest cover from that of human

presence for multiple-vector species.
5. Conclusion and recommendations for future
study

In this article, we have reviewed the literature on the relation-

ship between deforestation and malaria in the Amazon region

and have highlighted topics that contribute to the disparate

findings reported in the literature. We believe that the diversity

of topics covered in this article testifies to the fact that this

apparently simple problem can only be tackled by highly inter-

disciplinary research teams involving medical entomologists,

malaria epidemiologists, LULC/remote-sensing specialists

and anthropologists.

We summarize our conceptualization of how the different

drivers of malaria risk are related to each other and to malaria

using a causal diagram (figure 5). Although this is admittedly

an incomplete representation of reality, we hope that the

causal diagram is useful in highlighting the main malaria dri-

vers and their inter-relationships. Based on this diagram, we

provide several suggestions regarding how to move the field

forward. Studies that integrate entomological and epidemio-

logical data are critical to understand how environmental

changes (e.g. deforestation) influence malaria vectors and

how these changes ultimately impact malaria risk. Unfortu-

nately, these studies are still relatively rare, comprising 21%

(10 of 47) of the papers in our review. An ideal study

would devote significant effort to understanding the environ-

ment, vectors and humans and how they interact. In relation

to the environment, a good characterization of different veg-

etation types (e.g. degraded forests, secondary and primary

forests, etc.) and types of water bodies (e.g. fish ponds,

streams, hoof prints) is critical. The monitoring of multiple

mosquito species and life stages (i.e. larvae and adult mos-

quitoes) is also likely to be important in generating a more

mechanistic understanding of how the environment influ-

ences mosquito populations. Besides examining larval
habitats, entomological studies should pay close attention

to characterizing mosquito resting sites, as this is an often

cited (but under-studied) mechanism through which veg-

etation influences adult mosquito presence. As for humans,

assessing malaria prevalence is likely to require cross-

sectional surveys where all individuals are tested with very

sensitive and specific diagnostic methods (e.g. polymerase

chain reaction (PCR)). This is critical as several locations

in the Amazon region have been shown to harbour a large

fraction of infected but asymptomatic individuals that

because of their low parasitemia are often only detectable

using molecular methods such as PCR [19,83,84]. Longitudi-

nal epidemiological studies employing active surveillance

would be especially useful for elucidating the temporal

dynamics underlying ecological change and malaria trans-

mission. Finally, the monitoring of human behaviour (e.g.

movement patterns) will also be crucial in relating malaria

risk to LULC and entomological findings, and new technol-

ogies such as GPS loggers [85–87] are likely to be play an

important role in minimizing recall bias.

Our diagram also emphasizes how the association

between forest status and malaria can be confounded with

multiple factors such as water bodies, social-economic con-

ditions and immunity. For instance, in the absence of

information on the vectors, observational studies cannot ade-

quately explain how forest status influences malaria because

forests impact the vector, are associated with certain socio-

economic characteristics (e.g. people in areas with high

forest cover typically live in houses in worse conditions and

do not have access to healthcare), and are indirectly associ-

ated with immunity (i.e. long-term residents in the region

tend to live in more deforested areas and to have clinical

immunity to malaria). Therefore, the ideal study needs to

rely on carefully designed experiments to disentangle these

effects. For instance, experimental manipulation of vegetation

cover (e.g. as performed by [13]) and water could provide

important insights regarding the drivers of mosquito pres-

ence and abundance. Similarly, experimental screening of

houses could help determine the relative importance of
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indoor versus outdoor infections, whereas aggressive insecti-

cide spraying indoors and in peridomestic areas for

households involved in forest activities might reveal the pro-

portion of infections associated with these forest activities.

Finally, an experiment where stagnant water bodies in close

proximity to human dwellings are drained may reveal the

role of these water bodies on overall malaria incidence.

Unfortunately, household-level experiments to assess how

changes in forest cover are directly associated with malaria

risk, while keeping the other conditions (e.g. socio-economic

status and immunity levels) the same, are much more chal-

lenging to implement. For instance, one approach consists

in randomly choosing households to receive payment for eco-

system services, this way potentially decreasing deforestation

rates and resulting in higher forest cover around these house-

holds. The problem with this experimental set-up is that this

payment also induces changes in income and economic

activities, which may ultimately confound the experimental

results.

It has long been acknowledged that social and economic

variables are highly associated with malaria risk, such as

participation in logging and mining activities, population

density, better access to healthcare and improved housing

conditions [25,39,55,88–90]. Owing to space constraints,

our review has admittedly neglected several of these factors

and focused almost exclusively on the physical environ-

ment and how it relates to mosquitoes and malaria risk.
Nevertheless, we believe this review is useful for researchers

interested in exploring the relationship between deforestation

and malaria in the Amazon region. The Amazon is known for

its high biodiversity and relatively pristine environment, but

at the same time it is also characterized by very poor socio-

economic conditions (e.g. poverty, education, infant and

maternal mortality), including serious health problems such

as malaria [91]. Given that multiple large-scale development

projects are underway in the region (e.g. the Initiative for the

Integration of Regional Infrastructure in South America

(IIRSA)) and that deforestation is probably to continue into

the future [92], a better understanding of the interdepen-

dency between deforestation and human health will remain

a vital and urgent research theme.
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assentamento rural da Amazônia Brasileira. Oecol.
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State, Amazon region of Brazil. Mem. Inst. Oswaldo
Cruz. 84, 501 – 514. (doi:10.1590/S0074-
02761989000400008)

27. Tadei WP, Dutary Thatcher B. 2000 Malaria vectors
in the Brazilian amazon: Anopheles of the subgenus
Nyssorhynchus. Rev. Inst. Med. Trop. Sao Paulo. 42,
87 – 94. (doi:10.1590/S0036-46652000000200005)

28. Conn JE, Wilkerson RC, Segura MN, de Souza RT,
Schlichting CD, Wirtz RA, Póvoa MM. 2002
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Martı́nez Á. 2013 Malaria entomological risk factors
in relation to land cover in the Lower Caura River
Basin, Venezuela. Mem. Inst. Oswaldo Cruz 108,
220 – 228. (doi:10.1590/0074-0276108022013015)

47. Vieira G, Gim K, Zaqueo G, Alves T, Katsuragawa T,
Basano S, Camargo L, de Sousa C. 2014 Reduction
of incidence and relapse or recrudescence cases of
malaria in the western region of the Brazilian
Amazon. J. Infect. Dev. Ctries 8, 1181 – 1187.
(doi:10.3855/jidc.4422)

48. Terrazas WC, Sampaio VES, de Castro DB, Pinto RC,
de Albuquerque BC, Sadahiro M, Dos Passos RA,
Braga JU. 2015 Deforestation, drainage network,
indigenous status, and geographical differences of
malaria in the State of Amazonas. Malar. J. 14, 379.
(doi:10.1186/s12936-015-0859-0)

49. Ferreira MU, Silva-Nunes M. 2010 Evidence-based
public health and prospects for malaria control in
Brazil. J. Infect. Dev. Ctries 4, 533 – 545. (doi:10.
3855/jidc.760)

50. Marques AC. 1987 Human migration and the spread
of malaria in Brazil. Parasitol. Today 3, 166 – 170.
(doi:10.1016/0169-4758(87)90170-0)

51. Coimbra CEA. 1988 Human-factors in the
epidemiology of malaria in the Brazilian Amazon.
Hum. Organ. 47, 254 – 260. (doi:10.17730/humo.47.
3.j18mn0682146021q)

52. Ferreira MU, Castro MC. 2016 Challenges for malaria
elimination in Brazil. Malar. J. 15, 284. (doi:10.
1186/s12936-016-1335-1)

53. Caughlin T, Rifai S, Graves S, Asner G, Bohlman S.
2016 Integrating LiDAR-derived tree height and
Landsat satellite reflectance to estimate forest
regrowth in a tropical agricultural landscape.
Remote Sens. Ecol. Conserv. 2, 190 – 203. (doi:10.
1002/rse2.33)

54. Rubio-Palis Y, Curtis CF. 1992 Biting and resting
behaviour of anophelines in western Venezuela and
implications for control of malaria transmission.
Med. Vet. Entomol. 6, 325 – 334. (doi:10.1111/j.
1365-2915.1992.tb00628.x)

55. Barbieri AF, Sawyer DO, Soares-Filho BS. 2005
Population and land use effects on malaria
prevalence in the Southern Brazilian Amazon.
Hum Ecol. 33, 847 – 874. (doi:10.1007/s10745-005-
8213-8)

http://dx.doi.org/10.3201/eid1607.091785
http://dx.doi.org/10.3201/eid1607.091785
http://dx.doi.org/10.1186/1475-2875-12-420
http://dx.doi.org/10.1186/1475-2875-10-246
http://dx.doi.org/10.1186/1476-072X-10-65
http://dx.doi.org/10.1186/1475-2875-13-443
http://dx.doi.org/10.1590/S0074-02761989000400008
http://dx.doi.org/10.1590/S0074-02761989000400008
http://dx.doi.org/10.1590/S0036-46652000000200005
http://dx.doi.org/10.1590/S0102-311X2006000300006
http://dx.doi.org/10.1093/jmedent/45.6.1165
http://dx.doi.org/10.1093/jmedent/45.6.1165
http://dx.doi.org/10.1590/S0037-86822009000500008
http://dx.doi.org/10.1590/S0037-86822009000500008
http://dx.doi.org/10.1186/1475-2875-10-177
http://dx.doi.org/10.1186/1472-6785-13-45
http://dx.doi.org/10.1186/1472-6785-13-45
http://dx.doi.org/10.1186/1475-2875-13-203
http://dx.doi.org/10.1603/ME13146
http://dx.doi.org/10.1186/s12936-015-0863-4
http://dx.doi.org/10.1186/s12936-015-0863-4
http://dx.doi.org/10.1111/j.1749-6632.2001.tb02753.x
http://dx.doi.org/10.1111/j.1749-6632.2001.tb02753.x
http://dx.doi.org/10.1186/1476-072X-7-55
http://dx.doi.org/10.1186/1476-072X-7-55
http://dx.doi.org/10.1590/S0037-86822011000600019
http://dx.doi.org/10.1017/S0007485311000265
http://dx.doi.org/10.1017/S0007485311000265
http://dx.doi.org/10.1179/136485911X12899838683322
http://dx.doi.org/10.4269/ajtmh.2012.11-0547
http://dx.doi.org/10.4269/ajtmh.2012.11-0547
http://dx.doi.org/10.1371/journal.pone.0085725
http://dx.doi.org/10.1186/s13071-015-1033-9
http://dx.doi.org/10.1073/pnas.1406495111
http://dx.doi.org/10.1590/0074-0276108022013015
http://dx.doi.org/10.3855/jidc.4422
http://dx.doi.org/10.1186/s12936-015-0859-0
http://dx.doi.org/10.3855/jidc.760
http://dx.doi.org/10.3855/jidc.760
http://dx.doi.org/10.1016/0169-4758(87)90170-0
http://dx.doi.org/10.17730/humo.47.3.j18mn0682146021q
http://dx.doi.org/10.17730/humo.47.3.j18mn0682146021q
http://dx.doi.org/10.1186/s12936-016-1335-1
http://dx.doi.org/10.1186/s12936-016-1335-1
http://dx.doi.org/10.1002/rse2.33
http://dx.doi.org/10.1002/rse2.33
http://dx.doi.org/10.1111/j.1365-2915.1992.tb00628.x
http://dx.doi.org/10.1111/j.1365-2915.1992.tb00628.x
http://dx.doi.org/10.1007/s10745-005-8213-8
http://dx.doi.org/10.1007/s10745-005-8213-8


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

372:20160125

11
56. Mendez F, Carrasquilla G, Muñoz A. 2000 Risk
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