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Abstract 

Background:  Infertility and subfertility affect a significant proportion of humanity. 
Assisted reproductive technology has been proven capable of alleviating infertility 
issues. In vitro fertilisation is one such option whose success is highly dependent on 
the selection of a high-quality embryo for transfer. This is typically done manually by 
analysing embryos under a microscope. However, evidence has shown that the suc‑
cess rate of manual selection remains low. The use of new incubators with integrated 
time-lapse imaging system is providing new possibilities for embryo assessment. As 
such, we address this problem by proposing an approach based on deep learning 
for automated embryo quality evaluation through the analysis of time-lapse images. 
Automatic embryo detection is complicated by the topological changes of a tracked 
object. Moreover, the algorithm should process a large number of image files of differ‑
ent qualities in a reasonable amount of time.

Methods:  We propose an automated approach to detect human embryo development 
stages during incubation and to highlight embryos with abnormal behaviour by focusing 
on five different stages. This method encompasses two major steps. First, the location of 
an embryo in the image is detected by employing a Haar feature-based cascade classifier 
and leveraging the radiating lines. Then, a multi-class prediction model is developed to 
identify a total cell number in the embryo using the technique of deep learning.

Results:  The experimental results demonstrate that the proposed method achieves an 
accuracy of at least 90% in the detection of embryo location. The implemented deep 
learning approach to identify the early stages of embryo development resulted in an 
overall accuracy of over 92% using the selected architectures of convolutional neural 
networks. The most problematic stage was the 3-cell stage, presumably due to its short 
duration during development.

Conclusion:  This research contributes to the field by proposing a model to automate 
the monitoring of early-stage human embryo development. Unlike in other imaging 
fields, only a few published attempts have involved leveraging deep learning in this 
field. Therefore, the approach presented in this study could be used in the creation 
of novel algorithms integrated into the assisted reproductive technology used by 
embryologists.
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recognition, Multi-class prediction
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Background
Infertility is a growing problem worldwide. According to the World Health Organiza-
tion, one in every six couples has issues leading to infertility problems. It has been 
noted that the global in  vitro fertilisation (IVF) market is expected to grow at an 
approximated 10% compound annual growth rate between 2018 and 2026 [1]. Geo-
graphically, Europe dominates the market by capturing the largest share, which is 
driven by low fertility rates, government financial support for the adoption of IVF and 
other fertility treatments, and the increasing success rate of IVF methods. According 
to the forecasts [2], the Asia-Pacific region is anticipated to demonstrate rapid growth 
in the foreseeable future. Causes of infertility are numerous, potentially including 
factors such as anatomical or genetic problems, physiological dysfunction, sexu-
ally transmitted diseases, endocrinological or immunological problems, and many 
more. Moreover, the rising trend towards delaying pregnancy due to career concerns, 
financial reasons or not finding the right partner has also increased the need for IVF 
services. The success of IVF procedures is closely linked to many biological and tech-
nical issues. The fertilisation and in vitro culturing of embryos are dependent upon 
an environment that should be stable and correct with respect to temperature, air 
quality, light, media pH and osmolality. After fertilisation, an embryo that develops 
normally will continue to divide, growing to the blastocyst stage by the fifth or sixth 
day; however, only one-third of all embryos are capable of reaching this stage [3]. The 
success rate of IVF procedures resulting in a pregnancy varies between age group in 
average it is less than 52% [4]. For this reason, more than one embryo is transferred, 
which subsequently increases the risk of multiple pregnancies. In fact, more than 30% 
of IVF-induced pregnancies are multiple-infant births. For this reason, embryo viabil-
ity is monitored by an embryologist during the IVF procedure. Nevertheless, embryo 
assessment is subjective and based on limited observations if it is performed visually 
by placing the fertilised embryo under a microscope once to a few times per day.

Time-lapse (TL) systems developed over recent years (with or without computer 
algorithms) provide a massive number of digital images of embryos at frequent time 
intervals, thus enabling embryologists to assess the quality of the embryos without 
physically removing them from their culture environment [5]. Embryos can be trans-
ferred to the uterus at the cleavage stage (Day 2 or 3, Fig. 1b–e) or blastocyst stage 
(Day 5, Fig. 1f ). Transferring embryos at the blastocyst stage may increase the likeli-
hood of selectively transferring viable and genetically normal embryos [6]. The cor-
rect identification of cell number creates presumptions for determining the timing 
parameters from time-lapse imaging, such as the duration between different stages, 
which was approved as being significant in the evaluation of embryo quality [7].

Fig. 1  Images of embryo development stages: a 1-cell embryo; b 2-cell embryo; c 3-cell embryo; d 4-cell 
embryo; e > 4-cell embryo; f no visible cells



Page 3 of 20Raudonis et al. BioMed Eng OnLine          (2019) 18:120 

Despite all of the recent advances in computer vision research, the automatic detec-
tion and tracking of cells remain challenging. This task is complicated by the topological 
changes of tracked objects (cell division) in addition to the possible presence of randomly 
appearing noise in the images. In comparison, many other medical imaging applications 
exist, where the variability of relevant data, such as target object, surrounding structures 
or image acquisition parameters, have a large impact on the decisions made by domain 
experts. For example, a previous experiment [8] emphasised the need to study longitudi-
nal retinal nerve fibre layer (RNFL) thickness changes in patients with open-angle glau-
coma, while the need to develop a single software package to automatically determine 
differences in aortic diameter from multiple scans of the same patient was presented 
recently [9]. Moreover, the algorithm to be developed should process a large number of 
image data files of different quality in a reasonable amount of time. Unlike in other fields 
of image recognition, far too little attention has been paid to the use of artificial intelli-
gence in the detection of human embryo quality development.

Deep learning is now a state-of-the-art artificial intelligence model across a variety of 
domains and is seen as a key technique for future human-support technologies. As indi-
cated by previous studies [10, 11], deep learning methods—more specifically convolu-
tional neural networks (CNNs)—hold huge potential for medical imaging technology, 
medical diagnostics and healthcare in general. Unlike conventional machine-learning 
techniques, deep neural networks simplify the feature engineering process, provide 
abstract learning through a hierarchical representation of the data, efficiently deal with 
vast amounts of data and demonstrate their superiority in detecting abnormalities in 
medical images. Recently, an approach named STORK was developed that can be used 
for unbiased and automated embryo assessment using TL images [12]. They formulated 
a binary classification problem focusing on good- and poor-quality embryo assess-
ment, which was tackled using deep neural networks, more specifically Inception-V1 
architecture. In their research, authors used a large collection of human embryo time-
lapse images (approximately 50,000 images) from a high-volume fertility centre in the 
US. The authors highlighted that STORK was able to predict blastocyst quality with an 
area under curve (AUC) of > 0.98 , which is a very promising result. In the same man-
ner, Iwata et al. [13] examined the use of deep learning on images of human embryos for 
predicting good- and poor-quality embryos. They also referred to other studies [14–16] 
that utilised artificial intelligence approaches for quality prediction or grade classifica-
tion with varying degrees of success. Comparatively, in another study [17], the authors 
used a list of the main morphological features of a blastocyst with the aim of automating 
embryo grading using support vector machine (SVM) classifiers. They reported accu-
racies ranging from 0.67 to 0.92 for embryo development classification. Overall, these 
studies represent attempts to develop reliable algorithms for the prediction of a two-
class problem.

Notably, the application of artificial intelligence focusing on multi-class prediction 
remains scarce. The recent study proposed a standalone framework based on Inception-
V3 CNNs as the core to classify individual TL images up to the 4-cell stage for mouse 
and human embryos, respectively [18]. In their work, 31,120 images of 100 mouse 
embryos and 661,060 images of 11,898 human embryos cultured in the TL monitoring 
system were analysed. The experimental study on the test set demonstrated an average 
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classification accuracy of 90% when the model was applied to predict individual images 
up to the 4-cell stage, while accuracy of 82% was achieved when it was applied to identify 
embryos up to the 8-cell stage. In this context, a three-level four-class embryo stage clas-
sification method based on the Adaboost ensemble was proposed with the aim to iden-
tify the number of cells at every time point of a TL microscopy video, which resulted in 
an average accuracy of 87.92% for human embryos, but exhibited only 20.86% accuracy 
for 3-cell detection [19]. To the best of our knowledge, these are the few known works 
that have addressed the identification of early-stage embryo development by formulat-
ing a multi-class prediction problem.

In line with these findings, the present study contributes to this field by proposing a 
model to automate the monitoring of early-stage human embryo development by focus-
ing on the prediction of the cell number during the division process for up to 5 days. 
This involves segmenting embryos from the image and then predicting defined number 
classes that relate to the embryo development stages (i.e. 1-cell, 2-cell, 3-cell, 4-cell and 
> 4-cell; see Fig. 1) using CNNs. Whereas one of the key elements of the system is the 
detection of embryo location in an image, the algorithm is proposed for this purpose. It 
first determines the rough embryo location using a Haar feature-based cascade classifier 
and then specifies its accurate location by means of the radiating lines. The use of this 
algorithm allowed us to achieve an accuracy of over 92% in predicting the early stages of 
embryo development.

Results
Images of early-stage embryo development were captured using a ESCO Miri TL incu-
bator system with an integrated camera, which has a 2.35-megapixel image sensor that 
provides a 1936 × 1216 pixels (px) resolution output (2.48 px = 1.00 µm). It captures the 
embryo image in 7 different focal planes. The camera is capable of capturing 47 frames 
per second. However, recording of the development process is performed at 5-min inter-
vals since embryo development is a relatively slow process. The experiment included 300 
TL embryo development sequences for a total of 114,793 frames (18.73%, 25.45%, 9.35%, 
20.65% and 25.82% of the data set for 1 to > 4-cell stages, respectively).

First, the automatic detection of embryo location in the image was performed using 
the cascade classifier. It was noted that mostly linear diagonal Haar-like features were 
leveraged by the algorithm (see Fig. 2a). Unfortunately, the location of the entire embryo 
was not always successfully detected, as illustrated in Fig. 2. For instance, (a) a wrong 
area of the entire embryo is determined; (b) the individual cells are detected but not the 
entire embryo; (c) the empty areas are determined; or (d) the objects of no interest are 
also detected. Therefore, the algorithm developed by the authors was used for embryo 
location detection. The proposed embryo location detection algorithm was considered 
successful for a problem if the entire embryo and its fused membrane were correctly 
identified in the image. The thickness of the membrane, its brightness and the number 
of granules are among the top criteria for assessing the quality of an embryo. That is why 
their detection is a crucial step in the present research. In Fig. 3, a well-localised embryo 
is highlighted by a green circle.

The algorithm proposed here includes the drawing of radiating lines, which are used 
to visualise the gradient direction, in which the gradient values are computed from the 
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pixel values. Higher gradient values are obtained when the line is radiating over the 
embryo boundaries, where digital images have discontinuities. This allows us to indicate 
the physical limits (a boundary) of embryo.

The length of the line and the angle between radiating lines are the main parameters 
to be considered. The change of line length affects the area of the image to be covered, 
while the change of angle between lines determines a different density to be explored in 
the image. Figure 4 demonstrates the scattering of lines in the image for different lengths 
of radiating lines, given in µm.

The ability of the proposed algorithm to correctly detect an entire embryo location 
is demonstrated in Fig. 5, where different radiating line lengths and the angle between 
them are investigated.

As illustrated in Fig.  5, the correct location detection rate for the entire embryo 
is rather high. However, the algorithm is more sensitive to changes in angle size 
between lines (see Fig.  5a). The increase of angle negatively impacts the detection 
quality. On the other hand, the number of points to be processed increases rapidly if 
the angle is decreased. Figure 5b shows that the detection rate is above 90% if the line 
length is over 70  µ m when the angle is 5 ◦ . Typically, an embryo covers an area from 
101 × 101 µ m up to 121 × 121 µm.

Fig. 2  Illustration of accurate localisation (black rectangle) and unsuccessful localisation (red rectangle) 
of early-stage embryo including a a detection of wrong area; b a determination of individual cells; c a 
determination of empty areas; d a detection of not relevant objects

Fig. 3  Case of well detected embryo location: the green circle should fit the boundaries of the embryo; the 
red point illustrates the centre of detected region
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Next, the classification of embryo development stages is explored. In the present 
research, five classes were specified in order to represent each early stage of embryo 
development (i.e. 1-cell, 2-cell, 3-cell, 4-cell, > 4-cell). The obtained confusion matrix 
for two CNNs architectures, such as AlexNet and VGG16, is presented in Table 1.

It can be seen that the classification performance is generally quite high. The com-
parison of two classifiers was performed by computing the confusion matrix-based 
performance measures [20, 21]. All experiments demonstrated in the paper have been 
performed forming training and testing image data sets in a ratio of 70:30, respec-
tively. The tenfold cross-validation has been performed in order to estimate the pre-
diction accuracy of a classifier using CNNs. The stratified version of this method was 
selected so that the correct proportion of each of the class values would be assigned to 
each fold. The results of stratified cross-validation are provided in Appendix C, where 
Table 4 reports the classification accuracy averaged over all tenfold achieved using the 
selected CNN architectures. One can see that VGG model achieved average accuracy 
of 0.936 and its standard deviation of 1.2%. Comparatively, AlexNet model resulted in 
average classification accuracy of 0.927 and smaller standard deviation of 0.8%. Unsur-
prisingly, the 3-cell stage was the most challenging since the lowest average accuracy 
accompanied with the largest deviation was achieved when either model was used. On 
the whole, cross-validation results give us assurance that the accuracy estimate is stable.

Table  2 highlights that the overall performance in terms of selected measures using 
the AlexNet architecture is slightly worse when compared to results from using the 
VGG architecture. It is evident that no difference exists between micro-accuracy and 

Fig. 4  Radiating lines with lengths of 40 µ m (a), 60 µ m (b), and 80 µ m (c)

(a) (b)

Fig. 5  Investigation of automatic detection of embryo location



Page 7 of 20Raudonis et al. BioMed Eng OnLine          (2019) 18:120 

macro-accuracy. Compared to a macro-F1 score, micro-F1 obtains larger values for 
both CNNs architectures used in the experiment. Since F1 score is a balance between 
precision and recall, Table 3 was created to reveal the classifier performance by class to 
address these measures.

Table 3 shows that precision is rather low for the third class, which defines the embryo 
stage as having three cells. Since micro-averaging favours classes with a larger number of 
instances, the final estimate was influenced by good performance for the classification of 
the other classes.

The training and testing data sets consist of images of different embryos (more than 
one patient). The quality of images is different, because of several reasons, such as the 
image is out of focus, the embryo is partly occluded with foreign objects, the embryo is 

Table 1  Confusion matrices: each column shows the  reference, while  numbers running 
diagonally show the  percentage of  correct classification for  every class considered 
in the experimental study

Prediction Reference

1 2 3 4 > 4

VGG architecture

 1 0.930 0 0 0 0

 2 0.023 0.943 0.036 0.019 0.027

 3 0.022 0.029 0.932 0.022 0.027

 4 0.025 0.027 0.032 0.957 0.028

 > 4 0 0 0 0.001 0.917

AlexNet architecture

 1 0.910 0 0 0 0

 2 0.030 0.944 0.039 0.030 0.026

 3 0.029 0.029 0.920 0.032 0.026

 4 0.031 0.027 0.041 0.937 0.031

 > 4 0 0 0 0.001 0.917

Table 2  Overall performance

VGG AlexNet

Macro-accuracy 0.936 0.927

Micro-accuracy 0.935 0.925

Macro-F1 0.926 0.919

Micro-F1 0.963 0.952

Table 3  Class-specific performance

VGG AlexNet

Precision Recall Precision Recall

1 1.000 0.930 1.000 0.910

2 0.927 0.943 0.915 0.944

3 0.790 0.932 0.767 0.920

4 0.901 0.957 0.888 0.937

5 0.999 0.917 0.999 0.917
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captured outside of the image sensor, etc. The image data set was carefully examined and 
labelled by a skilled embryologist. Poor data such as low-resolution images, images with-
out an embryo or images with an occluded embryo with a material that does not belong 
to the embryo were excluded. The duration of the 3-cell stage is approximately 8–10 
times shorter than, for example, the 2-cell stage; as such, the number of samples of the 
3-cell stage in the image data set is smaller. Therefore, the number of samples at other 
cell stages (1-cell, 2-cell, 4-cell, or higher) was limited to the number of 3-cell samples.

Discussion
The evaluation of early-stage embryo quality has been a matter of debate for many years. 
Using novel computer vision algorithms, various techniques have been developed to 
maximise the effectiveness of assisted reproductive technology. The use of TL imag-
ing might increase the IVF success rate since this new approach allows the detection of 
abnormal behaviour in developing embryos.

TL imaging enhanced the selection criteria of the transferable embryo since the devel-
opment of the embryos is observed to be more accurate. The quality of an embryo can 
be described by the KIDScore grading method [22]. It demonstrates that the embryo 
transition or cleavage from one stage to another has a certain optimal time. If an embryo 
cleaves from one cell to more cells too quickly or too slowly, then the embryo has a low 
probability for transfer. The authors of this paper aim to evaluate the embryo develop-
ment with the use of deep learning techniques in order to automate the assessment of 
embryo quality at early development stages. The proposed method consists of two major 
steps: the embryo localisation into 2D image space and embryo stage classification.

The accurate localisation of the embryo into 2D image is very important task. It is 
done using the combination of Haar-like features and computation of the gradients 
on cell boundaries. Haar-like features are sensitive to the contrast of the image. These 
features provide more accurate output when captured embryo image has sharp edges. 
Lower accuracy is acquired, when image is out of focus and embryo boundaries are 
fuzzy. The appearance of foreign objects in the cultivating dish is not common thing. 
However, when foreign objects appear they can partly occlude an embryo or be next to 
it. Foreign objects can be mistaken as an embryo or can distort final classification result 
by occluding the embryo. The authors of the research work are proposing to use as many 
as possible Haar-like feature to lower risk of the false classification. More Haar-like fea-
tures describe more embryo-specific characteristics in the image and it becomes separa-
ble from foreign object. Notably, the proposed approach has certain limitations. A deep 
learning-based method is only as smart and accurate as the data provided in training. 
For this research, the model was trained using TL images from a private IVF clinic. The 
training database used to construct a decision-making core could be expanded by cap-
turing more possible variations of different embryos. Synthetic images of human embryo 
cells could be generated using Generative Adversarial Networks (GANs) due to a lack of 
real-world data [23], however the highest results of 96.2 % have been achieved for 1-cell 
embryo images only. Specifically, unrealistic synthetic images consisting of more cells 
could be created using GANs algorithm. For example, evaluating 4-cell images, 80 % 
accuracy was obtained (i.e. one out of five images was generated inaccurately). GANs are 
very suitable for expanding the variability of the training database where all variations 
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of objects are allowed [24]. The method has shown its superiority in generating data 
for medical imaging in solving unsupervised classification problem, which suffers from 
a small training set and includes only two classes of images (i.e. cancer or not cancer) 
[25]. However, our research goal is to find embryos with the best quality among others 
for human IVF while solving a multi-class prediction problem, therefore learning using 
only realistic images is reasonable. Therefore, it might be interesting to explore different 
algorithms for generating partial or hybrid data set, where original and synthetic data 
are used in learning. This could be the next step towards being able to build a fully auto-
matic monitoring system for evaluating embryo quality.

Conclusion
The present study has reported the problems and suggested methods to automate 
early-stage human embryo detection. The proposed algorithm consists of two compo-
nents, namely embryo localisation in the image and classification of embryo develop-
ment stage. The detection of embryo location has been successful by using the improved 
object detection algorithm. First, the rough centre of the embryo is identified using 
Haar-like features. Then, a more accurate location of the embryo is computed by lev-
eraging the radiating lines. The experimental investigation showed that detection accu-
racy of at least 90% was reached using radiating lines of length 80 µ m placed at every 5°. 
It was also determined that 80 µ m is the optimal line length (radius detected from the 
rough centre of an embryo), which is sufficient to wrap the entire embryo in the image. 
Embryo stage classification performance had an overall accuracy above 92%, which was 
achieved for both CNN architectures considered in the paper. The most problematic was 
the third class, which defines the 3-cell stage. This might have been caused by this stage 
usually being short compared to the other classes defined in the paper.

Methods
Time‑lapse system

Time-lapse (TL) system is part of the IVF incubator, which is used to register embryo 
development during its cultivation (see Fig. 6). It captures images of an embryo at cer-
tain time intervals (in our case, every 5 min) and stores the images. Typically, such a 
system consists of three main components: (1) a light source, (2) microscope optics and 
(3) a video camera. Usually, red light at 650 nm is used to illuminate an embryo, which is 
cultivated in a specially designed culturing dish, called a culture coin. Microscope optics 
magnify the embryo cells by 20 times. The TL system is equipped with a 2-megapixels 
video camera that allows the capture of an embryo in a 121 × 121 μm area. The TL sys-
tem uses a special mirror (prism) that concentrates light and directs it to the embryo and 
camera sensor.

Embryo assessment is based on the time intervals between cell cleavages, which are 
visually registered. The embryo is considered of high quality when the cleavage time 
intervals fit the normative data. Intervals that are too short or too long between cleav-
ages signal the abnormal development of an embryo, which might lead to pregnancy 
failure. The TL system facilitates the recording of embryo development for up to 5 days 
at 5-min intervals to create the sequence of images. Modern time-lapse incubators such 
as ESCO Miri TL have optical microscopes with which is possible to capture a human 
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embryo at seven different focal planes for more information. Now, embryologists must 
evaluate each individual image in the sequence and decide which embryo is suitable for 
transfer. It is a complicated task not only because the embryo can behave unexpectedly 
during its development, but also because of the massive image data set that includes 
over 10,000 images per embryo, which must be manually assessed. A skilled embryol-
ogist requires less than 2 min to annotate one embryo in the case where embryos do 
not have a high percentage of fragmentation. Usually, IVF patients have up to 5 or 10 
embryos. Henceforth, the manual annotation of all embryos for one patient can take up 
to 20 min. The automated annotation system can do the same work 10 times faster and 
without human intervention.

Therefore, an automated detection system of embryo development is presented in 
the paper that consists of two main components: (1) the localisation of an embryo in an 
image and (2) the identification of embryo development stages with the aim to identify 
abnormal division patterns. Since the detection of an embryo localisation in an image is 
a crucial step, the algorithm is proposed that uses a Haar feature-based cascade classifier 
to determine the rough embryo location and specify the accurate location with the help 
of the radiating lines.

Automatic detection of embryo location

Cascade classifier

One of the main steps in this research is to automatically determine embryo location. 
IVF embryos usually have a round shape with brighter edges. A cascade classifier was 
trained on a sample containing images with the target object labelled as positives, with 
negative images containing none of these objects. After the classifier is trained, it can 
be applied to identify targets in the image. In order to investigate the entire frame, the 
search window is moved across the image. The search window of a classifier can be eas-
ily changed when the size of the target object is unknown. In this case, the search should 

Fig. 6  Scheme of time-lapse system
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be performed several times using all possible search window sizes, which are placed on 
all possible locations in the image [26–28].

Cascading is a particular case of ensemble model that is built from several classifi-
ers that are sequentially connected. Learning is a multi-stage process where an exten-
sion of the original data by the insertion of new attributes is performed in each step. 
This process accelerates image processing multiple times, as there is no need to check 
all of the features that are already learned. Haar-like features (see Fig. 7c) are usually 
used as inputs to the basic classifiers.

As seen in Fig. 7, Haar-like features are extracted from adjacent rectangular regions 
at a specific location in a search window. Then, the difference between the sums of 
the pixel intensities in each region is computed. The numerical value of one Haar-like 
feature is computed using integral images. The integral images are two-dimensional 
lookup tables in the form of matrix of the same size as the original image. Each element 
in the integral image is a sum of all pixels located on the up-left position of the original 
image. The numerical value or the sum S of Haar-like feature is expressed using formula

where A, B, C and D are the points, which belong to the integral image I. The sum S 
depends on the type of Haar-like feature to be selected. Usually, a large number of Haar-
like features must be retrieved to describe the target object with sufficient accuracy. 
Therefore, these features are fed into a cascade classifier to construct a strong learner.

Proposed algorithm for the detection of embryo location

By default, a cascade classifier allows us quickly to determine the approximate loca-
tion of an embryo; however, this is not sufficient for solving our problem. Therefore, 
the embryo location detection algorithm is developed (see Algorithm  1). Embryo 
detection consists of two main processing steps. The first step involves the application 
of a cascade classifier for the detection of rough location. A more accurate location of 
the embryo is then estimated in the next step using the radiating lines over the image 
filtered by a Sobel filter. Two Sobel operators Gx and Gy are used in this work, which 
are expressed as

S = I(C)+ I(A)− I(B)− I(D),

Fig. 7  Graphical representation of Haar-like features: a simplified example of Haar-like feature represented 
on integral image; b templates of different Haar features; c a sub-image of embryo with different feature 
templates
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where Gx is the image gradient in horizontal direction and Gy is the image gradient in 
vertical direction. Absolute gradient value G is given by

 The proposed algorithm uses a gray-scale image as an input. The rectangular region of 
interest (ROI) is returned after the execution of the algorithm. The input image is pro-
cessed in different scales in order to locate an embryo of the correct size (steps 3–10). If 
all Haar-like features are applied to satisfy the condition in step 7, then the rough loca-
tion of the embryo is detected (step 8). A more accurate location (ROI*) of the embryo 
is estimated in steps 11–15. Sobel filter [29] is used to find the approximate gradient 
magnitude at each point in the gray-scale image at the ROI (step 11). The radiating lines 
at each point of the detected square are drawn based on the given parameters, such as 
line length and the angle between lines. For this purpose, Bresenham’s line-drawing 
algorithm [30] is applied (step 13). Please refer to Appendix A, for a more detailed expla-
nation of this algorithm. The sum of gradient magnitude for each concentric circle is 
determined at each point located on the lines. The result of this step is a histogram of 
obtained values (see Appendix B). The point estimate is computed by determining the 
maximal value in the histogram and its distance from the centre (step 14). 

Gx =





−1 0 1

−2 0 2

−1 0 1



 ,

Gy =





1 2 1

0 0 0

−1 −2 −1



 ,

∣

∣G
∣

∣ =

√

G2
x + G2
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The advantage of the proposed algorithm is the ability to strengthen edges at a sub-
stantially equal distance from the central point. Although Sobolev gradient-based opti-
misers have been used in some previous studies [31–33], the method proposed in this 
work efficiently uses the traditional optimiser. In addition, the proposed approach is 
suitable for detecting weak and round curves in a noisy background since it provides 
successful results without an extra step for noise reduction or intensity normalisation, as 
seen in previous studies [34, 35]. In comparison, noise reduction is usually applied based 
on the determined noise types or levels while using traditional methods [36, 37]. For the 
further processing of images, it is important that the entire embryo is correctly cropped, 
which is the basis for the determining the cell size, monitoring embryo development 
stages and then classifying them into defined classes.

Alternatively, this task could be solved using object detection methods such as Local 
Binary Patterns (LBP) or Histogram of Oriented Gradients (HOG). Both methods were 
tested, but the cascade classifier was selected for further development. The HOG and 
LBP methods lack localisation accuracy because they require a high-contrast image, 
where the target object is captured with sharp edges. Moreover, these methods fail in 
detecting partially overlapped, noisy or blurred objects, as well as they are too sensitive 
to object rotation and the location of a region of the target object [38–41]. An embryo 
image captured using a time-lapse system is slightly blurry and the boundaries of the 
embryo are too fuzzy; therefore, methods that are able to generalise the results should 
be employed.

Identification of embryo development stage by developing a convolutional neural 

network‑based classification system

The identification of early-stage embryo development is formulated as a multi-class pre-
diction problem with the aim to identify the cell number during the division process 
until day 5 of embryo development. The first attempt to solve the given problem incor-
porated the use of principal component analysis (PCA) and SVM. A cascade classifier 
was used to detect the location of the embryo in the image. PCA was for the reduc-
tion of data dimensionality and feature extraction. SVM was trained to classify differ-
ent cell stages based on PCA features. The combination of a cascade classifier, PCA and 
SVM gave approximately 85% classification accuracy. Therefore, we employed CNNs 
to construct an embryo cell classification system, since CNNs have become one of the 
most widely used models of deep learning and demonstrate high accuracy performance 
results in various image recognition tasks [42, 43]. A general CNNs architecture con-
sists of several convolutions, pooling, and fully connected layers. A convolutional layer 
computes the output of neurons that are connected to the local regions in the input. 
A pooling layer reduces the spatial size of the representation in order to minimise the 
number of parameters and computations in the network. These layers are followed by 
fully connected layers leading to the Softmax layer, which is the final classifier. Two pop-
ular architectures, AlexNet and VGG16, were selected for the present experiments (see 
Fig. 8). Experimental investigations were executed on a Windows 10 machine with 16.0 
GB of RAM installed with an Intel Core i7-7700K 4.20GHz CPU. Less than 45 ms were 
required to process one image and around 1 min (depending on the number of incubat-
ing days) was required to analyse entire embryo development from the beginning to end.
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AlexNet demonstrates high classification results in different types of applications 
while retaining a simple and clear structure [44]. As a result, the network of this 
architecture is easy to implement. The small number of parameters does not require 
large computational and memory resources. This architecture consists of five convo-
lutional layers and three fully connected layers. AlexNet includes max pooling and 
makes use of a rectified linear unit (ReLU) nonlinearity which allows training of the 
network much faster compared to using a common activation function (e.g. tanh or 
sigmoid) together with data augmentation and dropout regularisation in order to 
avoid overfitting.

VGG16 network [45] is an improvement over AlexNet by providing the deeper archi-
tecture. A total of 16 layers exist in this architecture, including 13 convolutional layers 
and 3 fully connected (FC) layers followed by a Softmax classifier. In VGG16, large ker-
nel-sized filters in the first convolutional layers ( 11× 11 , 5× 5 ) are replaced with multi-
ple 3× 3 filters that are used in all 13 convolutional layers. Max pooling layers use only a 
2× 2 px window with stride of 2. For all convolutional layers, the stride and padding are 
set to 1 px.

Comparison of these two architectures reveals that VGG16 has twice as many param-
eters ( ∼527 MB of required memory) as AlexNet ( ∼232 MB of required memory), which 
makes it more likely to observe VGG16 demonstrating ∼15% higher classification accu-
racy over AlexNet [46]. However, the computational complexity of VGG16 is very high, 
being 10 times greater than that of AlexNet. Notably, AlexNet is one of a few CNNs 
models capable of achieving super real-time performance with very small batch sizes, 
thus allowing it to reduce the consumption of system memory (e.g. a batch size of 1 
requires less than 1 GB memory). In this research, both architectures are used to explore 
and estimate their possibilities of achieving high accuracy results (more than 90%) in 
identifying a total cell number in images of an embryo.

The classification model has been implemented using MatConvNet [47], an open-
source implementation of CNNs in the MATLAB environment that can be easily 
extended in order to develop new CNNs architectures. Specific software and hardware 
requirements exist for deep learning model implementations, such as MATLAB 2016a 
(or later version), a C\C++ compiler, and a computer with a CUDA-enabled NVIDIA 
GPU supporting compute capability 2.0 or above.

Fig. 8  Embryo image classification based on AlexNet and VGG16 architectures
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In general, different types of measures are used to evaluate the performance of the 
selected classifiers. In the multi-class setting, the outcome is produced for many pre-
defined classes {C1, . . . ,Ci, . . . ,CK } , where K is the class cardinality [20, 21]. Accord-
ingly, for an individual class Ci , the main counts are defined as true positives TPi , 
false positives FPi , false negatives FNi , and true negatives TNi . These are the main 
entrances for the confusion matrix. A list of measures used to assess the performance 
of a multi-class predictor is richer compared to binary classification. The conven-
tional performance measures are modified to consider the class distribution result-
ing in macro-averaging or micro-averaging computation. A macro-average defines the 
performance treating all classes equally, whereas a micro-average considers the con-
tributions of all classes to compute the selected measure. Obviously, in a multi-class 
setting, a micro-average is preferable if the class imbalance is prominent.
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Appendix A
Bresenham’s line‑drawing algorithm

The line-drawing algorithm determines the pixels on 2D digital image that should be 
selected in order to get close approximation of a straight line between two points. 
Line example is shown in Fig. 9.

The algorithm is based on incremental error computation. There exist two basic 
assumptions concerning the particular implementation of the algorithm. First, the 
beginning of coordinates is the top-left corner. The pixel coordinates increases in 
right and down directions. Second, the pixel centres have integer coordinates. Line-
drawing algorithm selects the integer y coordinate corresponding to the pixel, which 
is the closest to the ideal y coordinate. General line equation is given by:
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where x0 , y0 are the beginning coordinates of the straight line and x1 , y1 are the end 
coordinates. The final value of coordinate y is estimated by rounding the quantity to the 
nearest integer value. To clarify, the pseudo-code of the Bresenham’s line-drawing algo-
rithm is given in Algorithm 2. 

Appendix B
The histogram of gradients is estimated by aggregating the gradient values computed 
for each radiating line. The distance from the centre of the embryo to the end of the 
radiating line is shown on the horizontal axis in µ m. The aggregated and normalised 
gradient values are shown on the vertical axis (Fig. 10).

Filtered version of aggregated histogram of gradients is used in this work. The 
embryo boundaries (or edge) are determined based on the given histogram. The 
highest gradient values are acquired in the image areas where rapid changes in col-
our intensities appear. These regions are usually the boundaries of the embryo cell. 
The distance from the beginning of the histogram to its peak determines what radius 
for embryo localisation should be selected in the analysis. The filtered histogram is 
shown in Fig. 10b).

y− y0

y1 − y0
=

x − x0

x1 − x0
,

Fig. 9  Example of a straight line drawn using Bresenham’s algorithm
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Appendix C
See Table 4.

Results of tenfold stratified cross-validation.

Fig. 10  Example of aggregated histogram of gradients (a) and filtered histogram of gradients (b)
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