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INTRODUCTION 
 
The improved understanding of the immune checkpoint 
and the application of its inhibitors in cancer 
immunotherapy has dramatically improved the survival 
outcomes of metastatic melanoma [1, 2]. The novel 
drugs that block the binding of programmed death 1  

 

receptor (PD1) to its ligand, PD1 ligand 1 (PDL1), have 
increased the historically median overall survival (OS) 
of advanced melanoma from approximately 8 months to 
over 57 months [3–5]. However, despite this 
tremendous advancement, only a subset of patients with 
metastatic melanoma receiving PD1 inhibitors derives 
clinical benefit [6]; moreover, anti-PD1 therapies, 
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ABSTRACT 
 
This study aimed to construct immune-related predictors to identify responders to anti-PD1 therapy of melanoma 
through CIBERSORT algorithm. Using the least absolute shrinkage and selection operator (LASSO) logistic 
regression, we constructed an immunoscore consisting of 8 immune subsets to predict the anti-PD1 response. This 
score achieved an overall accuracy of AUC = 0.77, 0.80 and 0.73 in the training cohort, validation cohort and on-
anti-PD1 cohort, respectively. Patients with high immunoscores had significantly higher objective response rates 
(ORRs) than did those with low immunoscores (ORR: 53.8% vs 17.7%, P < 0.001 for entire pre-anti-PD1 cohort; 
42.1% vs 15.1%, P = 0.022 for on-anti-PD1 cohort; 66.7% vs 16.7%, P = 0.038 for neoadjuvant anti-PD1 cohort). 
Prolonged survival trends were observed in high-immunoscore group (1-year PFS: 42.4% vs 14.3%, P = 0.059; 3-year 
OS: 41.5% vs 31.6%, P = 0.057). Furthermore, we found that high-immunoscore group exhibited higher fractions of 
tumor-infiltrating lymphocytes and an increased IFN-γ response. Analysis of the results of the GSEA indicated a 
significant enrichment of antitumor immunity pathways in the high-immunoscore group. Therefore, this study 
indicated that we constructed a robust immunoscore model to predict the anti-PD1 response of metastatic 
melanoma and the neoadjuvant anti-PD1 response of resectable melanoma. 
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especially combination therapeutic strategies, are 
correlated with severe immune-related adverse events 
(irAEs) and could be very costly. Thus, there exists an 
interesting issue to identify effective biomarkers to 
predict the response to anti-PD1 therapy. 
 
PD1 inhibitors exert antitumor efficacy by reinvigorating 
dysfunctional or exhausted T cells [7]. Several studies 
have reported that a special subset of T cells, such CD8+ 
TCF7+ T cells [8], strongly correlated with the response 
to anti-PD1 therapy in melanoma. Furthermore, the 
signatures of the T cell repertoire that included IFN-γ 
responses [9] as well as those signatures representing the 
activation, exhaustion and cytotoxicity of T cells [10, 11] 
were reported to have associations with the anti-PD1 
response. Mechanistically, other immune subsets within 
the tumor microenvironment (TME) beyond T cells, such 
as macrophages, natural killer (NK) cells and even 
eosinophils, may also affect anti-PD1 efficacy [6, 12]. 
Nonetheless, how and which of these immune subsets 
modulate the PD1 inhibitor-mediated activity in 
melanoma remains poorly understood and should be 
urgently clarified. 
 
To comprehensively profile the immune landscape of the 
TME of melanoma patients treated with PD1 inhibitors, 
we used the CIBERSORT algorithm [13, 14] to 
enumerate the fractions of 22 immune cell subsets based 
on RNA gene expression profiles and used the least 
absolute shrinkage and selection operator (LASSO) 
logistic regression to establish an immunoscore model to 
predict anti-PD1 efficacy. 
 
RESULTS 
 
Patient characteristics 
 
After rigid filter criteria (Supplementary Figure 1), a total 
of six series were finally analyzed; these series included 
five GEO datasets [10, 11, 15–17] (GSE115821, 
GSE123728, GSE78220, GSE91061 and GSE93157) and 
one TCGA dataset, comprising 691 melanoma patients. 
Table 1 shows detailed patient characteristics of the 
included series. The median age at diagnosis was 50.0 
(range: 38.0-85.0) years, and 342 (49.5%) of the patients 
were male. A total of 228 (33.0%) patients were treated 
with anti-PD1 therapy, among which 136 biopsies were 
obtained before anti-PD1 therapy (pre-anti-PD1 therapy 
cohort), and the remaining patients were obtained during 
anti-PD1 therapy (on-anti-PD1 therapy cohort); the 
overall ORR was 26.8% (61/228). 
 
Construction of the immunoscore model 
 
Among the 22 immune cell subsets, M2 macrophages, 
CD8+ T cells, M1 macrophages, M0 macrophages and  

Table 1. Clinical characteristics of the patients. 

 No. of patients (n = 691) (%) 
Series  

GSE115821 37 (5.3) 
GSE123728 24 (3.5) 
GSE78220 28 (4.1) 
GSE91061 109 (15.8) 
GSE93157 25 (3.6) 
TCGA 468 (67.8) 

Age   
median, range 50.0 (38.0-85.0) 

Gender  
Male 342 (49.5) 
Female 203 (29.4) 
Unknown 146 (21.1) 

TNM stage  
I/II 219 (31.7) 
III 194 (28.1) 
IV 222 (32.1) 
Unknown 56 (8.1) 

Anti-PD-1 therapy 
sample 

 

No 463 (67.0) 
Yes 228 (33.0) 

Response to anti-PD-1 
therapy  

Response 61 (26.8) 
No response 165 (72.3) 
Unknown 2 (0.9) 

TCGA, the Cancer Genome Atlas; PD-1, Programmed cell 
death protein 1. 
 

CD4+ memory resting T cells were the five most 
abundant immune cell fractions, the sum of which was 
more than 65% (Figure 1A). In the training cohort, we 
observed weak to strong correlations (r: -0.52 - 0.43) 
among the fractions of the 22 immune cell subsets 
(Figure 1B), which would bias the results of traditional 
logistic regression. Therefore, we applied LASSO 
logistic regression to select parameters to predict the 
response to anti-PD1 therapy (Figure 1C, 1D), and eight 
immune subsets were finally used to construct an 
immunoscore in the training cohort. The formula for the 
immunoscore of each patient is that: immunoscore = 
(1.13 × fraction level of naive B cells) + (1.36 × fraction 
level of memory B cells) + (5.92 × fraction level of 
eosinophils) + (9.70 × fraction level of follicular helper 
T cells) + (15.34 × fraction level of Tregs) - (1.14 × 
fraction level of M0 macrophages) - (2.31 × fraction 
level of plasma cells) - (4.52 × fraction level of γδT 
cell). Based on the fractions of eight immune subsets, 
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we calculated the immunoscore of the total population. 
The median immunoscore of the total population (691 
patients) was 0.38 (range: -0.93 - 3.16). 
 
Evaluation of the immunoscore model 
 
We then investigated the predictive value of the 
immunoscore to anti-PD1 response in the training 
cohort, validation cohort, entire cohort and on-anti-PD1 
therapy cohort. The correlation between the distribution 
of immunoscores and the response status showed that 
patients with high immunoscores generally had better 
responses to anti-PD1 therapy than did those with low 
immunoscores (Figure 2A, Supplementary Figure 2A). 

The immunoscore of the responders was significantly 
higher than those of the nonresponders (0.76 vs 0.19,  
P < 0.001 for the training cohort; 0.48 vs 0.04, P = 
0.007 for the validation cohort; 0.71 vs 0.11, P < 0.001 
for the entire cohort; 0.23 vs 0.09, P < 0.001 for the on-
anti-PD1 cohort) (Figure 2B, Supplementary Figure 
2B). The prognostic value of the immunoscore was 
evaluated using ROC analysis, with AUCs of 0.77 
(0.66-0.88), 0.80 (0.64-0.97), 0.77 (0.68-0.86) and 0.73 
(0.59-0.87) in the training, validation, entire cohort 
(Figure 2C) and on-anti-PD1 cohort (Supplementary 
Figure 2C), respectively. These results indicated that the 
immunoscore could effectively predict the response to 
anti-PD1 therapy. 

 

 
 

Figure 1. Construction of the immunoscore model. (A) Bar charts summarizing the fractions of 22 immune cell subsets of 134 
melanoma tissues before anti-PD1 therapy. (B) Hierarchical clustering shows the collinearity of 22 immune cell subsets in the training cohort, 
where each cell indicates the Pearson correlation between the row and column corresponding immune cell subsets. The legend characterizes 
the color change corresponding to the change of correlation coefficient from -0.65 to 1.0. (C) LASSO coefficient of the 22 immune cell 
subsets. Each curve corresponds to an immune cell subset; the dotted line indicates the value of λ chosen by 200-fold cross-validation via min 
criteria. (D) 200-fold cross-validation for variable selection in the LASSO regression. PD1, programmed death 1; LASSO, least absolute 
shrinkage and selection operator. 
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With the immunoscore formula, the total population 
was divided into high- and low-immunoscore groups 
according to the median value (0.38). The objective 
response rate (ORR) was 53.8% (28/52) in the high-
immunoscore group and 17.7% (14/82) in the  
low-immunoscore group (P < 0.001) for the entire pre-
anti-PD1 cohort (Figure 3A). Consistent results were 
observed for the on-anti-PD1 cohort (ORR: 42.1% 
[8/19] vs 15.1% [11/73], P = 0.022; Supplementary 
Figure 2D). We then investigated the prognostic value 
of the immunoscore to predict survival outcomes. The 
GSE93157 series reported the PFS of patients treated 
with anti-PD1 therapy. The 1-year PFS was 42.4% 
(95% confidence interval (CI) 20.6%-87.2%) in the 

high-immunoscore group and 14.3% (95% CI 4.0%-
51.5%) in the low-immunoscore group; the PFS 
difference showed a robust trend toward significance 
(HR 0.39, 95% CI 0.14-1.06; P = 0.059; Figure 3B). 
The GSE78220 and GSE91061 series reported the OS 
outcomes of patients treated with anti-PD1 therapy. We 
noted that patients in the high-immunoscore group had a 
longer OS trend than did those in the low-immunoscore 
group (3-year OS: 41.5% [23.7%-72.7%] vs 31.6% 
[22.9%-43.5%]; HR 0.59, 95% CI 0.34-1.02; P = 0.057; 
Figure 3C). 
 
Next, we explored the performance of immunoscore in 
the non-anti-PD1 therapy cohort using the TCGA 

 

 
 

Figure 2. Distribution of the immunoscore and response status to anti-PD1 therapy in the training, validation and entire 
cohorts. (A) Waterfall plots for the distribution of the immunoscore and response status of individual patients. (B) Distribution of  
the immunoscore in responders and nonresponders. The box plots inside the violin indicate the median value and interquartile range of the 
immunoscore. We calculated the P-value with a one-way ANOVA test. (C) Receiver operating characteristic (ROC) curves of the immunoscore in 
three cohorts. The area under the ROC curve in the training, validation and entire cohorts was 0.77, 0.80 and 0.77, respectively. 
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dataset and found that patients in the high-immunoscore 
group were associated with prolonged OS (HR 0.72, 
95% CI 0.55-0.94; P = 0.016; Figure 3D). The 
multivariate Cox regression analysis demonstrated that, 
adjusting for covariates of gender, age and TNM stage, 
the immunoscore remained the prognostic factor for OS 
(HR 0.63, 95% CI 0.47-0.85; P = 0.002; Supplementary  
Table 1). 
 
Correlation between immunoscore with clinical and 
molecular features 
 
The correlations between immunoscore with clinical and 
molecular features were investigated in the TCGA dataset. 

As shown in Figure 4, the immunoscore was not different, 
regardless of gender, age, TNM stage, UV signature status 
or the mutation subtype (all P > 0.1). Interestingly, 
regarding the integrative subtype, which was classified 
according to the TCGA genomic classification program 
[18], the immune subtype was associated with the highest 
immunoscore, following by the keratin and MITF-low 
subtype (P < 0.001). Subsequently, we explored the 
association between immunoscore and immune-related 
responses and found that the high-immunoscore group 
exhibited an increased antitumor immune response and 
higher fractions of tumor-infiltrating lymphocytes (TILs) 
(Figure 5), suggesting that the immunoscore can indeed 
reflect the immune level of melanoma. 

 

 
 

Figure 3. Response and survival outcomes between high- and low-immunoscore groups. (A) Objective response rate between 
high- and low-immunoscore groups across the pre-anti-PD1 melanoma datasets. “Pre” indicates the biopsy before anti-PD1 therapy. We 
calculated the P-value with the χ2 test. (B) Comparison of PFS between high- and low-immunoscore groups in the GSE93157 dataset. (C) 
Comparison of the OS between high- and low-immunoscore groups in the GSE78220 and GSE91061 datasets. (D) Comparison of the OS 
between high- and low-immunoscore groups in the TCGA dataset. Hazard ratios (HR) and P-values were calculated using the Cox regression 
analysis and log-rank test; all statistical tests were two-sided. PD1, programmed death-1; OS, overall survival; PFS, progression-free survival; 
TCGA, The Cancer Genome Atlas. 
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Biological pathways associated with the 
immunoscore model 
 
The gene expression of the TCGA dataset was analyzed 
to explore the potential biological process related to the 
immunoscore. The hierarchical clustering of 138 
immune- or antigen presentation-related gene levels 
(detailed genes list shown in Supplementary Table 2) 
indicated that patients clustered better with immuno-
score than with immune subtype and mutation subtype 
(Figure 6A), and the immunoscore was significantly 
associated with the immune checkpoint genes (all P < 
0.001, Figure 6B). Finally, the GSEA was performed 
to elaborate the biological phenotypes of the 
immunoscore model. The top 20 GSEA pathways 
enriched in high-immunoscore were mainly immune 
related (all P < 0.002, Figure 6C), eight of which were 
the antitumor immunity pathways, including antigen 
process, B/T cell receptor signaling, Epstein-Barr virus 
infection, NK cell-mediated cytotoxicity, PD-L1 
pathway, Th1, Th2 and Th7 cell differentiation (Figure 
6D). 
 
DISCUSSION 
 
The therapeutic landscape of advanced melanoma has 
dramatically shifted from cytotoxic drugs to BRAF-/ 
MEK-targeted agents and, recently, PD1 inhibitors [2], 

resulting in a durable response and prolonged survival. 
Nonetheless, innate resistance and progression after the 
initial clinical response (acquired resistance) remain the 
major issue [19] to be resolved, and it is urgent to 
predict the beneficiaries before or during anti-PD1 
therapy. By profiling the 22 immune cell phenotypes 
before and during therapy in melanoma patients treated 
with PD1 blockades, we identified several immune 
subsets that were associated with the anti-PD1 response. 
An immunoscore model was established to predict the 
response effectively; the robustness of the model was 
verified by a series of molecular features and biological 
pathway exploration. 
 
Among the features of TME, the immune cell 
phenotype is one of the critical keys to predict the 
response to anti-PD1 therapy. The baseline level and 
location of CD8+ T cells in pretreatment tumor biopsies 
have been reported to correlate with an effective anti-
PD1 response [20–22]. Furthermore, through high-
dimensional single-cell RNA-seq, Sade-Feldman et al. 
[8] found that a subset of CD8+ T cells that express the 
transcription factor TCF7 protein can better predict  
the clinical anti-PD1 response. Beyond T cells, the 
numerous other types of immune cells (e.g., myeloid 
cells and NK cells) in the TME intertwine and interact 
in a highly orderly manner that can also affect anti-PD1 
efficacy [6, 23]. In line with this notion, we found that 

 

 
 
Figure 4. Distribution of the immunoscore in different clinicopathological characteristics in the TCGA dataset. The 
classifications of the UV signature, mutation subtype and integrative subtype are described by the TCGA genomic classification program [18]. 
The box plots inside the violin indicate the median value and interquartile range of immunoscore. We calculated the P-values using one-way 
ANOVA. UV, ultraviolet; TCGA, The Cancer Genome Atlas. 
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the adverse macrophage types (M0, M1 and M2) and 
the favorable T cell subsets (CD8+ T cell and CD4+ 
memory resting T cell) account for a major fraction of 
the immune cells, and we noted the strong association 
among the fractions of the 22 immune cell subsets; 
these results further indicated that the features of the 
TME in melanoma are complicated and coordinated. 
 
The central finding of our study is that we constructed a 
robust immunoscore model that could effectively 
predict clinical responses and survival outcomes to anti-
PD1 therapy. Anti-PD1 therapy revitalizes the pre-
existing tumor immune response [6, 11, 24]. Therefore, 
biomarkers that represent pre-existing tumor immune 
phenotypes can theoretically be used to predict the anti-
PD1 response. We noted that patients with high 
immunoscores have a significantly higher proportion of 
TILs, which increases the IFN-γ response and reduces 
the TFG-β response. Recent studies have demonstrated 
that the increased IFN-γ signature is a robust indicator 

of reinvigorated T cells and may improve the response 
likelihood to anti-PD1 therapy [9, 25]. The GSEA 
results of our study showed that eight of the top 20 
biological pathways enriched in the high-immunoscore 
population were antitumor immunity related. Therefore, 
these results indicated that the immunoscore can reflect 
the pre-existing tumor immune response, and we can 
distinguish the responders from nonresponders before 
the initial use of PD1 blockade through the immuno-
score, which can avoid the unnecessary use of anti-PD 
agents for metastatic melanoma. 
 
Therapeutic combinations, including PD1 inhibitors in 
combination with innate immune stimulants [26] or 
molecularly targeted agents, are promising strategies to 
enhance the efficacy and reduce the risk of irAEs. 
Nonetheless, routine tests of PDL1 expression or lactate 
dehydrogenase are not predictive biomarkers [3–5], and 
these combinational strategies still lack appropriate 
biomarkers [27]. Surprisingly, our study showed that

 

 
 

Figure 5. Immune-related features between high- and low-immunoscore groups in the TCGA dataset. These immune-related 
features are described according to the immune classification study of Thorsson et al. [34]. The P-values were calculated using one-way ANOVA. 
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the immunoscore positively correlated with several co-
stimulating molecules, such as 4-1BB (TNFRSF9) and 
GITR (TNFRSF18), suggesting that the immunoscore 
may serve as a potential biomarker to assist in the 
identification of the beneficiaries for these agonistic 
antibodies in combination with anti-PD1 inhibitors, 
which deserves further exploration. 
 
The dynamic risk assessment using serial tumor 
biomarkers may promote the accurate prediction of 
clinical outcomes [28]. Riaz et al. reported that the 
change in CD8+ T cells, NK cells and M1 macrophages 
during Nivo therapy correlated with the response to 
therapy [11]. Similarly, in addition to immunoscore pre-
therapy, we found that immunoscore on-therapy can 
also predict anti-PD1 efficacy. Therefore, we inferred 

that a comprehensive analysis of serial immunoscores in 
different treatment stages can improve the prediction 
accuracy of the anti-PD1 response; this concept should 
be further explored. 
 
Recently, two clinical studies have reported that 
neoadjuvant anti-PD1 therapy is associated with 
encouraging clinical, pathological complete response 
(pCR) and survival outcomes [16, 29]. Nonetheless, 
PD1 inhibitors might exert an antitumor effect in a 
delayed manner and in some cases, could result in 
“tumor flare” or in the appearance of new metastases 
[30]; thus, there is concern [31, 32] for whether 
neoadjuvant PD1 blockade is appropriate for melanoma 
and how to predict the response before its initial use? 
Notably, we found that the immunoscore is independent

 

 
 

Figure 6. Clinical significance and biological function of the immunoscore. (A) Hierarchical clustering of 138 immune-related gene in 
468 melanoma patients from the TCGA dataset. (B) Correlation matrix of immunoscore and the expression of certain immune-related genes. 
The color of each cell indicates the value of the corresponding Pearson correlation coefficients. (C) Bubble plot of the top 20 biological 
pathways and processes enriched in the high-immunoscore group using the gene set of “c2.cp.kegg.v6.1.symbols”. The legend shows the 
values of gene number and -log 10- transformed P-values; all P-values < 0.001. (D)Gene set enrichment analysis reveals the 8 antitumor 
immune pathways enriched in the high-immunoscore group. 
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of tumor stage. Moreover, for the neoadjuvant anti-PD1 
cohort (GSE123728) [16], the ORR was 66.7% (8/12) 
in the high-immunoscore group and 16.7% (2/12) in the 
low-immunoscore group (P = 0.038), indicating that 
immunoscore is also a valid biomarker for neoadjuvant 
PD1 blockade. Therefore, it is scientifically rational that 
we could use immunoscore to identify the responders to 
neoadjuvant PD1 blockade and guide the longer 
treatment duration to increase the likelihood of 
achieving a pCR, which may decrease the extent of 
surgery and prolong survival [33]. 
 
This study has several limitations. First, this study was 
based on publicly available datasets; thus, we could not 
obtain all the clinicopathological characteristics for each 
patient in the GEO datasets. However, the 
characteristics, mutation subtype and immune-related 
response of the patients in the TCGA dataset provided 
preliminary evidence to explore the mechanism of 
immunoscore. Another limitation in the study inter-
pretation was that we cannot evaluate the immunoscore 
in the core of the tumor and the invasive margin 
separately since the gene expression profiles were 
derived from a core sample of tumor tissue. Third, the 
number of the patients receiving anti-PD1 therapy in 
our study is not large (226 subjects). Therefore, the 
immunoscore algorithm should be optimized with larger 
population. Finally, all datasets were obtained from 
retrospective studies, and potential bias due to the 
unbalanced clinicopathological features cannot be 
neglected. Further prospective studies are still required 
to validate this immunoscore model. 
 
CONCLUSIONS 
 
Taken together, these results indicated that we 
constructed a robust immunoscore model to predict the 
anti-PD1 response of metastatic melanoma and the 
neoadjuvant anti-PD1 response of resectable melanoma. 
 
MATERIALS AND METHODS 
 
Search strategy and series collection criteria 
 
In July 2019, we conducted a systematic search of  
Gene Expression Omnibus (GEO) datasets 
(https://www.ncbi.nlm.nih.gov/geo/) to identify the 
melanoma expression data treated with anti-PD1 
therapy. GEO search terms are shown in Appendix S1 
(supplementary materials). We also downloaded the 
RNA-sequencing (RNA-seq) data of the SKCM cohort 
from The Cancer Genome Atlas (TCGA) 
(https://xenabrowser.net/datapages/) to further explore 
the molecular features and survival outcomes. The 
inclusion and exclusion criteria for series collection  
and analysis protocols are shown in Supplementary 

Figure 1. Two independent authors (RCN and SQY) 
were responsible for assessing the potential eligible 
series, and the discrepancies during the series search 
and data extraction were resolved by two senior authors 
(ZWZ and YFL). 
 
Data collection and processing 
 
We downloaded the series matrix files from the 
corresponding GEO dataset website and retrieved the 
relevant clinical data and expression data for each GEO 
dataset using the GEOquery package of R software. For 
any series matrix that was not available through the 
GEOquery package, we downloaded the matrix files 
from the supplementary file of the relevant GEO dataset 
website. For the GES91061 dataset, we downloaded the 
survival information from supplementary material in the 
corresponding study [11]. The relevant clinical data and 
RNA-seq of TCGA were downloaded from the 
xenabrowser website (https://xenabrowser.net/ 
datapages/), and the molecular features were extracted 
from the supplementary materials of the study of 
Thorsson et al. [34]. All integrated clinicopathological 
characteristics of the GEO and TCGA are provided in 
Appendix S2 (supplementary materials). We applied the 
quantile method and trans per million (TPM) method to 
normalize the expression between microarray data 
(limma package) [35] and RNA-seq data, respectively. 
 
Estimation of immune cell subsets 
 
The CIBERSORT method with an LM22 gene signature 
matrix that contains 547 genes was used to estimate the 
immune cell subsets. The standardized processed 
expression data with relevant annotation were uploaded 
to the CIBERSORT website (http://cibersort. 
stanford.edu/), and the LM22 gene signature with 200 
permutations was used to run the CIBERSORT 
algorithm; the final CIBERSORT output contains the 
fractions of 22 hematopoietic immune subsets, 
including seven T cell types, B cell types (activated and 
resting), plasma cells, natural killer (NK) cells and 
myeloid cells [13, 14]. 
 
Random grouping method 
 
To estimate the immunoscore model to predict the 
response of anti-PD1 therapy, we used the stratified 
randomization approach to split the pre-anti-PD1 
melanoma dataset into training and validation cohorts at 
a ratio of 7:3 through the “rsample” package. The 
patients in the training cohort were used to identify the 
predictors to construct the model, which was then 
validated by the remaining 30% of patients and the on-
anti-PD1 therapy melanoma patients as the validation 
cohorts. 

https://www.ncbi.nlm.nih.gov/geo/
https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
http://cibersort.stanford.edu/
http://cibersort.stanford.edu/
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Clinical outcomes 
 
The primary outcome is the objective response rate 
(ORR) to anti-PD1 therapy, which was defined as the 
proportion of the complete or partial responses. OS was 
defined as the date of diagnosis to death from any 
cause. Progression-free survival (PFS) was defined as 
the date of diagnosis to progressive disease or death 
from any cause. 
 
Statistical analysis 
 
One-way ANOVA and χ2 test were used to compare the 
continuous and categorical variables, respectively. We 
applied Pearson’s correlation test with correlation 
coefficient (r) to quantify the correlations among the 
immune cell subsets and between the immunoscore and 
specific gene expression. The penalized LASSO logistic 
regression (“glmnet” package) [36] was used to select 
reliable predictors of anti-PD1 therapy among the 22 
immune cell subsets. The optimal values of the penalty 
parameter λ were determined by 200-time cross-
validation via the min criteria. Then, we constructed an 
immunoscore model based on the fraction of selected 
immune subsets using the logistic regression 
coefficients in the training cohort. The predictive values 
of the immunoscore to anti-PD1 response were depicted 
by a receiver operating characteristics (ROC) curve and 
quantified by the area under the curve (AUC) of ROC 
using the “ROCit” package [37]. Survival was estimated 
by the Kaplan-Meier method and compared using the 
log-rank test. A Cox regression model was used to 
determine prognostic performance. Gene set enrichment 
analysis (GSEA) was performed to identify the 
biological pathways and processes using the 
“c2.cp.kegg.v6.1.symbols” gene set [38, 39]. 
 
All statistical tests were two-sided with P-values < 0.05 
considered significant, and all statistical analyses were 
performed using R version 3.6.0 (http://www.r-
project.org). 
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SUPPLEMENTARY MATERIALS  
 
Appendix 1. GEO search terms (n = 113) 
 
(Melanoma [Title])) AND "Homo 
sapiens"[porgn:_txid9606] AND ( ( "Expression 

profiling by high throughput sequencing"[Filter] OR 
"Expression profiling by array"[Filter] ) AND "attribute 
name tissue"[Filter]). 

 
Supplementary Figures 

 

 

 

Supplementary Figure 1. CONSORT diagram. A total of 691 patients were enrolled in the analysis. GEO, Gene Expression Omnibus; 
TCGA, The Cancer Genome Atlas; CIBERSORT, Cell type Identification by Estimating Relative Subsets of RNA Transcripts; LASSO, least absolute 
shrinkage and selection operator; PD1, programmed death 1. 
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Supplementary Figure 2. Distribution of the immunoscore and response to anti-PD-1 therapy in the on-anti-PD-1 cohort. (A) 
Waterfall plots for distribution of the immunoscore and response status of individual patients. (B) Distribution of immunoscore in responders 
and nonresponders. The box plots inside the violin indicate the median value and interquartile range of immunoscore. We calculated the P-
value with ANOVA test. (C) Receiver operating characteristic (ROC) curves of the immunoscore. The area under the ROC curve was 0·73. (D) 
Objective response rate between high- and low-immunoscore groups across the on-anti-PD-1 melanoma dataset. “On” indicates the biopsy 
during anti-PD-1 therapy. We calculated the P-value with the χ2 test. 
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Supplementary Tables 
 

Supplementary Table 1. Univariate and multivariate Cox regression analysis of immune score and clinical 
characteristics with overall survival in the TCGA cohort. 

Variables Univariate analysis  Multivariate analysis 
 HR (95% CI) P-value  HR (95% CI) P-value 
Gender  0.301    
Female  1     
Male 1.16 (0.87-1.55)     
Age  < 0.001   0.001 
< 60 year 1   1  
≥ 60 year 1.96 (1.43-2.68)   1.78 (1.27-2.50)  
TNM stage  0.001   0.003 
I/II 1   1  
III/IV 1.63 (1.21-2.20)   1.58 (1.17-2.13)  
Immune score  0.016   0.002 
Low 1   1  
High 0.72 (0.55-0.94)   0.63 (0.47-0.85)  

P-values were calculated with the two-sided log-rank test; TCGA, the Cancer Genome Atlas; HR, hazard ratio; CI, confidence 
interval. 
 

Please browse Full Text version to see the data of Supplementary Table 2. Clinicopathological feature of the patients 
of the included series and immune gene list. 
 
 
 


