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Abstract

A variety of cognitive diagnostic models (CDMs) have been developed in recent years to

help with the diagnostic assessment and evaluation of students. Each model makes differ-

ent assumptions about the relationship between students’ achievement and skills, which

makes it important to empirically investigate which CDMs better fit the actual data. In this

study, we examined this question by comparatively fitting representative CDMs to the

Trends in International Mathematics and Science Study (TIMSS) 2007 assessment data

across seven countries. The following two major findings emerged. First, in accordance with

former studies, CDMs had a better fit than did the item response theory models. Second,

main effects models generally had a better fit than other parsimonious or the saturated mod-

els. Related to the second finding, the fit of the traditional parsimonious models such as the

DINA and DINO models were not optimal. The empirical educational implications of these

findings are discussed.

Introduction

Assessing students’ current level is the first step towards improving their academic skills.

Indeed, effective educational assessment is important because it helps inform students of the

extent of their current knowledge, and can facilitate timely follow-up and support from teach-

ers or parents [1]. One of the most familiar types of formal assessment is the achievement test,

which measures what a student already knows or can do. In order to extract useful information

from these achievement tests, a number of psychometric models have been developed.

One of the most famous and important set of models related to educational assessment,

which are often used specifically for high-stakes tests, is item response theory (IRT) [2].

Among these models, the 1–3 parameter logistic (1–3 PL) models [3] are rather popular. How-

ever, because IRT models are not designed to model diagnostic information, they typically

restrict examinees’ latent ability to be unidimensional or, at most, a few dimensions. Thus, IRT

models might not be appropriate for modeling numerous attributes, which is often needed for

educational diagnosis.
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To overcome this issue, in the past few decades researchers have developed a new class of

test models called the cognitive diagnostic models (CDMs) [4]. CDMs are probabilistic, confir-

matory multidimensional latent variable models that typically have a complex loading struc-

ture [5]. From a broader perspective, CDMs can be regarded as a special case of the latent class

model [6,7]. The key feature of CDMs is that they allow for multiple criterion-referenced inter-

pretations and associated feedback for diagnostic purposes [5]. Unlike IRT models, CDMs can

consider a variety of cognitive abilities or skills—called attributes—in solving the test items.

The diagnostic information yielded from these models would in turn help students realize

what they must study next, which can help them save time and resources. This is supported by

Yeany and Miller’s meta-analysis [8], which showed that diagnostic information improves stu-

dent learning effectiveness. Additionally, Tatsuoka and Tatsuoka [9] found that diagnostic

feedback in remedial courses helped improve students’ mathematical ability. Furthermore, not

only students but also teachers benefit from CDMs: teachers can review their curriculums

based on concrete evidence, and can concentrate on teaching specific attributes that many of

their students do not understand. Thus, CDMs have the potential to be a powerful basis for tai-

lored education.

To be able to consider multiple attributes, CDMs use the Q-matrix, which represents the

relations between the test items and attributes [10]. Table 1 shows a simple artificial example

of a Q-matrix with three arithmetic attributes: addition/subtraction, multiplication, and divi-

sion. For instance, in this Q-matrix, the item “103 + 203” requires only the addition/subtrac-

tion attribute for correct answering, whereas item “12 × 13” requires only the multiplication

attribute. However, the item “21� 7–8 × 4” is different from the others because it requires all

three attributes. The relationship shown in Q-matrixes is constructed through a literature

review, expert discussion, and protocol analysis during the test [11].

In order to effectively apply CDMs, the item response function must be determined.

Broadly speaking, CDMs comprise three major classes of models that differ in their item

response functions: simple parsimonious models, main effects models, and the saturated

model. The parsimonious models include the well-known deterministic-input noisy “and”

gate (DINA) [12] and deterministic-input noisy “or” gate (DINO) [13] models, which have the

longest history in the literature of CDMs. The main effect models assume that each attribute

has an additive effect on the linear predictor without any interactions [14]. On the other hand,

the saturated model includes all possible interactions between attributes in addition to the

main effects [14]. A more detailed account of each type of model is given in the Cognitive

Diagnostic Models section of this paper.

Because a variety of CDMs have been proposed, an important research question is which

model better describes existing large-scale assessments. A number of past studies have com-

pared several CDMs for large-scale educational assessments such as the Programme for Inter-

national Student Assessment (PISA) and the Michigan English Language Assessment Battery

(MELAB) reading test. Chen and de la Torre [15] found that the full generalized deterministic-

input noisy and gate model (G-DINA model) [14] was comparatively the best model among

the sub-models of the G-DINA framework for the reading section of the PISA. Li, Hunter, and

Table 1. Example of a Q-matrix.

Attributes

Items Addtion/Subtraction Multiplication Dividion

103 + 203 1 0 0

12 × 13 0 1 0

21� 7–8 × 4 1 1 1

https://doi.org/10.1371/journal.pone.0188691.t001
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Lei [16] compared the sub-models of the G-DINA for the MELAB reading test, and found that

the full G-DINA model was a better fit in terms of its Akaike information criterion (AIC),

whereas the additive CDM (A-CDM) [14], one of the main effects models, was superior in

terms of the Bayesian information criterion (BIC). Jang [17] examined reading skills in English

as a second language and applied the Fusion model [18], which is a kind of main effects CDM.

Furthermore, Suzuki, Toyota, Yamaguchi, and Sun [19] applied the G-DINA models to the

Kyoukenshiki Standardized Achievement Test, a norm-referenced mathematics test, when it

was taken by first-year students of a Japanese junior high school; they found that the A-CDM

fitted the data well. Selecting well-fitting model out of the various existing CDMs would facili-

tate, for example, international comparison of large-scale educational assessment [20, 21].

The Trends in Mathematics and Science Study (TIMSS) is an international assessment of

the trends in mathematics and science achievements, which is run by the International Associ-

ation for the Evaluation of Educational Achievement (IEA) [22]. The goal of the TIMSS is to

provide information about students’ achievement in order to improve their learning [22].

Based on the discussion so far, it would be meaningful to apply CDMs to TIMSS data because

this would help capture students’ current cognitive status as well as the direction of their learn-

ing. While the TIMSS was originally developed for a unidimensional scale in the IRT frame-

work, CDMs might provide the additional benefits of individualized diagnosis and treatment.

In support of this view, many studies have applied one of the CDMs to the TIMSS datasets

[23–25]. In particular, Birenbaum, Tatsuoka, and Xin [23] pointed out the shortcomings of the

IRT score-based feedback of the TIMSS, as this precludes an accurate diagnosis at the individ-

ual level. They also discussed the potential of a diagnostic approach in overcoming these

challenges.

However, compared to other large-scale international assessments such as the PISA, there

have been few comparative studies of CDMs for the TIMSS. In existing CDM studies of the

TIMSS, the quantitative analysis was typically pre-determined by the researchers. For instance,

several former studies [26–29] employed the rule space method (RSM) [30], a statistical pat-

tern recognition method based on item response data. However, the RSM is not a probabilistic

model, and does not employ likelihood-based estimation. Therefore, it is difficult to evaluate

the magnitude of the errors in a probabilistic sense or to compare between different models

based on information criteria using this method.

Another study that fitted CDMs to large-scale educational data was by Chen and de la

Torre [15], who considered the G-DINA family of models for data from the reading section of

the PISA. Both the TIMSS and PISA are large-scale international educational assessments that

originally aimed to compare achievements among countries in the framework of the unidi-

mensional IRT model. Thus, in the same manner as Chen and de la Torre [15], it would be

meaningful to apply CDMs to TIMSS data in order to extract diagnostic information.

To the best of our knowledge, there are three existing TIMSS studies that have applied

probabilistic models and likelihood-based inference. First, Lee, Park, and Taylan [31] com-

pared the deterministic-input, noisy and gate model (DINA model) [30], a recently developed

latent-class-based stochastic CDM, and IRT models for the TIMSS fourth grade mathematics

assessment in a U.S. national sample and samples from only Minnesota and Massachusetts.

They found that the DINA model fit better than did the IRT models in terms of both AIC and

BIC. Second, Choi, Lee, and Park [32] compared Korean and U.S. national samples using the

DINA model for the TIMSS 2003 eighth grade mathematics assessment. They did not conduct

a formal likelihood-based model comparison, and instead examined the differences in attri-

bute mastering profile between the two countries. Finally, Yamaguchi and Okada [33] con-

ducted a model comparison study using only Japanese data, but their domestic study was not

comprehensive, serving only as preliminary results.

Comparison among cognitive diagnostic models
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These existing studies have provided a novel viewpoint for modeling the TIMSS assessment

data. However, the following main two questions remain. First, Lee et al.’s [31] finding that the

CDM was a better fit to the data than the IRT model was based only on U.S. samples. There-

fore, it seems reasonable to ask whether this finding can be generalized to other countries out-

side of the United States or not, as one would expect that samples within a single country are

relatively homogeneous (i.e. the United States). Thus, evaluation of the generalizability of

these findings seems necessary.

Second, Lee et al. [31] focused solely on the DINA model; no other CDMs were considered,

despite the fact that numerous others exist (see the Cognitive Diagnostic Models section

below). As we stated previously, CDMs can be divided into three different classes—simple par-

simonious models, main effects models, and the saturated model—in terms of their represen-

tation of item response behavior. Thus, it seems pertinent to question which class of CDMs is

a better fit to the TIMSS.

Related to the second question, if CDMs do in fact fit the data better than do IRT models,

which specific CDMs are more representative of the characteristics of the TIMSS data? Al-

though the good model might differ between countries, we may be able to identify trends that

reflect a difference in culture or students’ cognitive characteristics. Originally, the TIMSS was

not designed for diagnostic purposes. However, it would still be meaningful to investigate

what type of CDMs achieve a good fit to the current TIMSS items. CDMs can tell us what

abilities students require to solve the items and which abilities students have gained because

the attributes of the test would be selected by a sophisticated search and because each item

response function utilizes different assumptions for solving items; such information might not

be obtained from IRT models. In other words, well-fitted CDMs would provide us with infor-

mation on the individual differences in skills that students would need for solving the test.

The main objective of the current study was to attempt to answer the above two questions

by analyzing the TIMSS 2007 assessment data in seven countries. First, we sought to replicate

the previous finding (Lee et al. [31]) that CDM models are a better fit than IRT models in

countries other than the United States. This would tell us whether Lee et al.’s findings were

unique to the United States or whether they can be generalized to other countries. Second, we

exploratorily investigated whether parsimonious models, main effect models, or the saturated

model better fit the TIMSS 2007 assessment. This was done by conducting a statistical model

comparison among the CDMs using probabilistic models and likelihood-based estimation. In

addition, we sought to determine the best-fitting models for each of seven countries. This was

achieved using the same model comparison and estimation, with a focus on each specific

country rather than the aggregate. By investigating which type of model better fits to TIMSS

data, we might, for example, obtain new insights that could help in the future diagnostic exten-

sion of the TIMSS.

Methods

Data

Following Lee et al. [31], we analyzed the assessment data from booklets four and five of the

TIMSS 2007 fourth grade mathematics assessment. We analyzed the data of not only the

United States, which was already analyzed in Lee et al. [31], but also in six other countries.

These countries were chosen because of their places in the mathematics achievement ranking

depicted in Exhibit 1.1 in Martin et al. [22]. Specifically, we chose two countries each from

among the high-, average-, and low-ranked countries, including Hong Kong SAR and Singa-

pore from the high-ranked countries; Slovenia and Armenia from the average-ranked coun-

tries; and Qatar and Yemen from the lower-ranked countries. Note that the IEA uses

Comparison among cognitive diagnostic models
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“countries” in all cases to differentiate between participating entities. We use the same termi-

nology throughout this paper, even though Hong Kong is a Special Administrative Region

(SAR) of China. We excluded the data of examinees who had no or only one response to the

items because we would not be able to estimate these participants’ attribute mastery patterns.

Table 2 depicts each country’s sample size by gender. The largest sample size was 1,130 (in the

U.S.) and the smallest was 543 in Hong Kong SAR.

Attributes and Q-matrix

By design, the TIMSS 2007 mathematics achievement test has three content domains, each of

which has multiple topic areas. Each topic area comprises 38 objectives. Lee et al. [31] asked

three researchers with degrees in mathematics education and two domain expert researchers

to determine the preliminary attributes required for the data from the topic area. Then, Lee

et al. [31] modified these attributes to better suit the research objective, ultimately generating a

total of fifteen attributes. We employed the same attributes and Q-matrix; the complete Q-

matrix used in this study is depicted in Table 3 of Lee et al. [31]. The attributes formed three

content domains [22]: number (NUM), geometric shapes and measurement (GM), and data

display (DD). Each domain comprised several attribute areas, each of which in turn comprised

several specific attributes.

The NUM domain comprised four attribute areas: “whole numbers,” “fractions & deci-

mals,” “number sentences with whole numbers,” and “patterns & relationships.” There are a

total of eight attributes in the NUM domain, such as “1. Representing, comparing, and order-

ing whole numbers as well as demonstrating knowledge of place value” and “2. Recognize

Table 2. Sample size in each country.

Country Girls Boys Sample size

USA 587 543 1130

Hong Kong SAR 252 291 543

Singapore 345 372 717

Slovenia 319 301 620

Armenia 287 299 586

Qatar 519 480 999

Yemen 375 461 836

https://doi.org/10.1371/journal.pone.0188691.t002

Table 3. Mean (SD) rate that each attribute is required for correctly answering items.

Attributes in Number (NUM) domain Attributes in Geometric Shapes &

Measurement (GM) domain

Attributes in Data & Display (DD) domain

Attribute number Mean (SD) Attribute number Mean (SD) Attribute number Mean (SD)

1 .240 (.427) 9 .120 (.325) 13 .160 (.367)

2 .640 (.480) 10 .280 (.449) 14 .120 (.325)

3 .440 (.496) 11 .080 (.271) 15 .080 (.271)

4 .120 (.325) 12 .120 (.325)

5 .120 (.325)

6 .080 (.271)

7 .080 (.271)

8 .120 (.325)

Note. The data comprise 25 items (Booklets 4 and 5).

https://doi.org/10.1371/journal.pone.0188691.t003
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multiples, computing with whole numbers using the four operations, and estimating computa-

tions.” The GM domain comprises three attribute areas: “lines & angles,” “two- and three-

dimensional shapes,” and “location & movement.” There are a total of four attributes in the

GM domain, such as “9. Measure, estimate, and understand properties of lines and angles and

be able to draw them” and “10. Classify, compare, and recognize geometric figures and shapes

and their relationships and elementary properties.” Finally, the DD domain, which is the

smallest of the three, has only three attributes, such as “13. Read data from tables, pictographs,

bar graphs, and pie charts” and “15. Understanding different representations and organizing

data using tables, pictographs, and bar graphs”.

The means and standard deviations of the rates that each attribute is required for correctly

answering items are shown in Table 3. Items require on average 2.80 attributes (SD = 1.20,

Min = 1, Max = 6). Almost all of the items required more than one attribute to be correctly

answered. Thus, the Q-matrix has a complicated structure.

Cognitive diagnostic models

We considered and compared the wide range of CDMs that make up the sub-models of the

G-DINA model framework [14]. Specifically, we considered two parsimonious models (the

DINA [12] and DINO [13] models), three main effects models (A-CDM [14], linear logistic

model (LLM) [34], and reduced reparametrized unified model (R-RUM) [18]), and the satu-

rated full G-DINA model. The models are summarized in Table 4. In the following paragraphs,

we provide a brief overview of the G-DINA family of models in order to clarify the models that

we are considering. For a more detailed explanation of the G-DINA model framework, includ-

ing discussions on model identification and parameter constraints, please see de la Torre [14].

Much like the analysis of variance (ANOVA) model, the G-DINA model framework com-

prises both main effect and interaction terms. In other words, the model considers both the

unique effects of the attributes as well as the combined effects of more than two attributes at

once. Let us denote the lth attribute mastery pattern for item j as a�lj ðl ¼ 1; . . . ;K�j Þ, which is a

vector comprising 1s for the mastered attribute and 0s for the attribute that is not yet mastered.

For example, consider three attributes and the attribute mastery pattern vector a�lj ¼ ½0; 1; 0�;

this attribute mastery pattern indicates that the first and the third attributes have not been

mastered while the second attribute has been mastered. K�j indicates the number of attributes

required for item j, which is always less than the total number of attributes K. Then, in the

G-DINA model framework, the probability of a correct item response (Xj = 1) for participants

who have the attribute mastery pattern vector a�lj for item j, is given as follows:

Pjðα
�

ljÞ ¼ PrðXj ¼ 1jα�ljÞ ¼ δj0 þ
PK�j

k¼1δjkαlk þ
PK�j

k0¼kþ1

PK�j � 1

k¼1 δjkk0αlkαlk0 þ � � � þ δj12���K�j

QK�j
k¼1αlk: ð1Þ

Table 4. Summary of sub-models of G-DINA model framework.

Model Link function Model type Main effects Interaction effects #Item parameters

G-DINA Identity Saturated ✓ ✓ 2
K�j

DINA Identity Parsimonious ✓ 2

DINO Identity Parsimonious ✓ ✓ 2

A-CDM Identity Main effects ✓ 1þ K�j
LLM logit Main effects ✓ 1þ K�j
R-RUM log Main effects ✓ 1þ K�j

Note. The check mark, ✓, indicates that we needed to estimate the terms.

https://doi.org/10.1371/journal.pone.0188691.t004
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Here, δj0 is an intercept term representing the correct response probability when an examinee

has not mastered an attribute needed for the item. Main effect term δjk represents the incre-

ment of correct response probability when an examinee has the kth attribute αk. First order

interaction term djkk0 ; k 6¼ k0; represents the amount of change in the correct response proba-

bility when an examinee has attributes αk and ak0 . In a similar fashion, dj12���K�j
represents the

highest order interaction for item j.
By constraining some of the components of Eq (1) to zero, reparametrizing some of the

components, and suitably choosing the link function, we can obtain the various sub-models of

the G-DINA model framework. The DINA and DINO models are the most constrained of the

G-DINA sub-models. The DINA model contains only an intercept parameter and the highest

interaction term. The DINO model also has only two parameters for each item, and has some-

what complicated constraints for the main effect and interaction terms.

The A-CDM, LLM, and R-RUM have only the intercept and main effects parameters, but

no interaction parameters. These models are less constrained than are the DINA and DINO

models. The difference in these model is in their link function. The A-CDM model has an

identity link function, the LLM model has a logit function, and the R-RUM has a log-link func-

tion; thus, the interpretation of the parameters differs from each other to some degree. How-

ever, these three models are similar in terms of their parameterization.

As mentioned above, the saturated full G-DINA model has not only the intercept and main

effects parameters, but also the interaction parameters between all possible combinations of

attributes. This means that the saturated full G-DINA model is the most fully parameterized

model in the framework.

Note that there are other ways of classifying the CDMs, such as the compensatory and non-

compensatory family of models [35]. However, we chose to compare between the above three

classes of models because this classification reflects the complexity of the models. Thus, the

comparative results may be suggestive in understanding the required complexity of the models

for the given problem.

Data analysis

We analyzed each country’s data using the full G-DINA model and its sub-models as well as

the 1–3PL IRT models. Specifically, we compared the fit of three IRT models and six CDMs

for each country by computing the deviance (− 2 log(Likelihood), and then computing the

Akaike information criterion (AIC; Deviance + 2 × [number of item parameters]) and Bayes-

ian information criterion (BIC; Deviance + [number of item parameters] × log[sample size]).

We used the AIC and BIC for model comparison.

For completeness, we also calculated two absolute fit measures: the mean absolute deviation

correlation (MADcor) [35] and standardized root mean square residual (SRMSR) [36]. It is

expected that IRT models would provide a better absolute fit than would CDMs because while

IRT models assume only continuous latent variables, CDMs assume discrete latent variables

that correspond to attribute mastery/nonmastery. It is also expected that CDMs with a greater

number of parameters would have a better absolute fit than would those with fewer parame-

ters. Therefore, our primary measures of model comparison were the AIC and BIC, and the

absolute measures should only be considered as a reference. The MADcor is defined as

MADcor ¼
2

JðJ � 1Þ

P
j0<jjrj0 j � r̂ j0jj; ð2Þ

where rj0 j is the sample observed correlation coefficient between items j0 and j, and r̂ j0 j is the

expected correlation coefficient. Thus, the MADcor corresponds to the mean of the absolute

Comparison among cognitive diagnostic models
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difference between r̂ j0 j and rj0 j for all item pairs. Likewise, the SRMSR is defined as

SRMSR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

JðJ � 1Þ

P
j0<jðrj0 j � r̂ j0jÞ

2

s

: ð3Þ

The SRMSR corresponds to the root mean squared difference between the expected and

observed correlations of all item pairs. These formulae can be found in the help files of the

CDM package [37].

For the CDM, we employed the GDINA package [38] for the open-source statistical lan-

guage R. Marginal maximum likelihood estimation (MMLE) was used to estimate the item

parameters and participants’ attribute mastery statuses. We used twelve starting values and

selected the highest log-likelihood solution to avoid local solutions. For the IRT models, we

employed the tpm function in the ltm package [39]. The MMLE was used for estimating the

item parameters, while empirical Bayes estimation was used to estimate the latent traits of the

examinees. To calculate the absolute fit indices in the IRT models, we used the tam.modelfit

function in the TAM package [40] based on item parameters estimated with tpm function.

Results

Model comparison

The results of the model comparison are shown in Table 5. The best model for each criterion

within each country is shaded. Slovenia, Qatar, and Yemen exhibited improper solutions

under the 3PL IRT model, but we have presented the values for reference in Table 5 in any

case. Because the full G-DINA model was a saturated model, it had the smallest deviance in all

of the countries. For the MADcor and SRMSR, we used complete pairs to calculate the correla-

tions. Note that in Qatar, all responses were zero for one item (M031247), and thus this item

was removed from the calculation.

According to the AIC and BIC, the same model was chosen in almost all countries, with the

exception of Singapore. Moreover, the CDMs showed a better fit than did the 1–3PL IRT mod-

els in all of the countries. Thus, this replicates the previous finding by Lee et al. [31] that the

CDMs show a better fit than the IRT models. More specifically, for the United States and Slo-

venia, the main effect model R-RUM was the best fitting model. In the five other countries, the

other main effect models were selected as the best fitting models: the LLM was selected in

Hong Kong SAR, Qatar, and Yemen, while the A-CDM was selected in Singapore and Arme-

nia. The R-RUM, LLM, and A-CDM are all the main effects model. Therefore, the main effects

models were selected in almost all countries from the perspective of the information criteria.

As theoretically expected, absolute fit measures were minimal in the 3PL model in all coun-

tries. Among the CDMs, the saturated G-DINA model achieved the smallest absolute fit

measures.

Using the best-fitting model based on the BIC for each country, we provide the summary

statistics of the estimated number of mastered attributes in each country in Table 6. We chose

the BIC rather than the AIC because it has greater penalties for overfitting [41]. This result is

based on expected a posteriori estimation; in other words, participants were treated as having

mastered the attribute when their posterior mean mastery probability exceeded .5. In Hong

Kong SAR and Singapore, examinees had mastered six attributes of NUM, three attributes of

GM, and two or three attributes of DD. Thus, examinees lacked only one or two attributes for

each content domain in these two countries. In Slovenia and Armenia, examinees had mas-

tered fewer attributes than did those in Honk Kong SAR and Singapore, but more than those

in Qatar and Yemen. The results for Slovenia and Armenia were in fact similar to those in the
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Table 5. Comparison of IRT models and CDMs in each country.

Country IRT/CDM Model Deviance AIC BIC MADcor SRMSR #Item Parameters

USA IRT 3PL 21197.05 21347.05 21724.29 .030 .041 75

2PL 21245.88 21345.88 21597.38 .031 .042 50

1PL 21605.52 21655.52 21781.27 .061 .078 25

CDM G-DINA 18383.19 18907.19 20225.04 .072 .072 262

DINA 21173.55 21273.55 21525.05 .084 .077 50

DINO 21244.69 21344.69 21596.19 .105 .102 50

A-CDM 18649.78 18839.78 19317.62 .081 .082 95

LLM 19088.42 19278.42 19756.27 .070 .074 95

R-RUM 18584.39 18774.39 19252.23 .080 .081 95

Hong Kong SAR IRT 3PL 7812.17 7962.17 8284.45 .045 .059 75

2PL 7841.21 7941.21 8156.06 .046 .059 50

1PL 7996.71 8046.71 8154.14 .076 .094 25

CDM G-DINA 6437.60 6961.60 8087.44 .091 .089 262

DINA 7707.45 7807.45 8022.31 .135 .121 50

DINO 7712.32 7812.32 8027.18 .130 .115 50

A-CDM 6653.40 6843.40 7251.63 .101 .096 95

LLM 6582.56 6772.56 7180.79 .095 .093 95

R-RUM 6783.54 6973.54 7381.77 .115 .107 95

Singapore IRT 3PL 10554.09 10704.09 11047.22 .035 .047 75

2PL 10600.62 10700.62 10929.37 .038 .050 50

1PL 10976.23 11026.23 11140.60 .092 .114 25

CDM GDINA 8926.62 9450.62 10649.29 .103 .101 262

DINA 10561.27 10661.27 10890.03 .155 .136 50

DINO 10645.89 10745.89 10974.64 .169 .155 50

A-CDM 9261.37 9451.37 9886.00 .108 .105 95

LLM 9406.80 9596.80 10031.44 .115 .111 95

R-RUM 9308.16 9498.16 9932.79 .111 .106 95

Slovenia IRT 3PL 10697.15 10847.15 11179.38 .038 .049 75

2PL 10725.67 10825.67 11047.15 .040 .052 50

1PL 10908.81 10958.81 11069.55 .065 .085 25

CDM G-DINA 9178.72 9702.72 10863.31 .080 .079 262

DINA 10552.44 10652.44 10873.92 .123 .113 50

DINO 10622.81 10722.81 10944.29 .124 .114 50

A-CDM 9436.26 9626.26 10047.08 .088 .083 95

LLM 9388.83 9578.83 9999.65 .091 .091 95

R-RUM 9234.20 9424.20 9845.02 .095 .097 95

Armenia IRT 3PL 9420.97 9570.97 9899.10 .060 .082 75

2PL 9439.23 9539.23 9757.98 .060 .083 50

1PL 9564.28 9614.28 9723.66 .082 .106 25

CDM G-DINA 7795.31 8319.31 9465.12 .116 .111 262

DINA 9256.33 9356.33 9575.00 .146 .136 50

DINO 9217.19 9317.19 9535.86 .153 .140 50

A-CDM 8063.70 8253.70 8669.16 .121 .120 95

LLM 8069.33 8259.33 8674.80 .120 .119 95

R-RUM 8173.22 8363.22 8778.68 .123 .119 95

(Continued )
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United States. Qatar and Yemen had only one or two attributes mastered in each area on aver-

age. Furthermore, based on the estimated medians, it was postulated that most students had

mastered only one or none of the attributes in each area. Taken together, these results indicate

that the attribute mastery patterns differed noticeably but in an interpretable manner among

the countries, and that the estimated mastered attributes had a corresponding relationship

with mathematical competency.

Correlations between IRT and CDMs scores

If the students’ achievement estimated from the CDM models do not correlate with that from

the IRT models, it might indicate that these two models measure completely different aspects

of student traits. We therefore conducted two additional analyses to evaluate the correlation

between the attributes mastery patterns and the IRT-based unidimensional latent traits. We

employed the best fitting model for each country to estimate students’ attribute mastery pat-

terns. This was because, based on both the current and former studies, it would be too strict to

assume that students’ item response functions would be the same across countries.

First, in each country, we calculated the correlations between the number of mastered attri-

butes, which was estimated from the best-fitted CDM, and the proficiency, which was esti-

mated from the 2PL IRT model. The results are shown in Table 7. For all attributes, we

observed moderate to strong correlations in all countries. Qatar and Yemen had moderate cor-

relations in all areas, especially DD. The United States, Hong Kong SAR, Singapore, Slovenia,

and Armenia all had strong correlations in the NUM domain, and had correlations of more

than .50 but less than .80 in GM and DD.

Second, we calculated the correlations between the average number of mastered attributes

and the official TIMSS 2007 achievement score for each country (see Exhibit 1.1 in Martin

Table 5. (Continued)

Country IRT/CDM Model Deviance AIC BIC MADcor SRMSR #Item Parameters

Qatar IRT 3PL 13112.33 13262.33 13630.41 .044 .057 75

2PL 13188.73 13288.73 13534.12 .047 .059 50

1PL 13564.05 13614.05 13736.74 .075 .091 25

CDM G-DINA 11479.83 12003.83 13289.40 .093 .094 262

DINA 13045.53 13145.53 13390.87 .098 .089 50

DINO 13008.34 13108.34 13353.68 .094 .087 50

A-CDM 11820.48 12010.48 12476.63 .092 .097 95

LLM 11720.40 11910.40 12376.54 .101 .104 95

R-RUM 11949.82 12139.82 12605.96 .100 .105 95

Yemen IRT 3PL 10402.46 10552.46 10907.20 .056 .073 75

2PL 10448.07 10548.07 10784.56 .058 .077 50

1PL 10886.10 10936.10 11054.34 .098 .125 25

CDM G-DINA 8978.58 9502.58 10741.48 .125 .137 262

DINA 10313.60 10413.60 10650.03 .129 .124 50

DINO 10295.34 10395.34 10631.77 .148 .143 50

A-CDM 9291.09 9481.09 9930.31 .141 .153 95

LLM 9247.31 9437.31 9886.53 .140 .151 95

R-RUM 9314.84 9504.84 9954.06 .134 .145 95

Note. CDM = cognitive diagnostic model; IRT = item response theory; 1–3PL = 1–3 parameter logistic model. The best value for each criterion within each

country is shaded.

https://doi.org/10.1371/journal.pone.0188691.t005
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Table 6. Summary statistics of the number of mastered attributes.

Country Attribute Mean (SD) Median Skewness Kurtosis

USA NUM 4.263 (2.270) 4 0.082 -1.009

GM 1.826 (1.115) 2 0.251 -0.687

DD 2.174 (0.865) 2 -0.737 -0.351

All 8.263 (3.498) 8 -0.027 -0.939

Hong Kong SAR NUM 5.722 (1.846) 6 -0.652 -0.160

GM 2.972 (1.002) 3 -0.702 -0.315

DD 2.230 (0.868) 2 -0.951 0.131

All 10.924 (2.999) 11 -0.539 -0.289

Singapore NUM 5.922 (2.154) 7 -0.948 -0.021

GM 2.580 (1.235) 3 -0.444 -0.891

DD 2.379 (0.867) 3 -1.197 0.379

All 10.881 (3.812) 12 -0.922 -0.114

Slovenia NUM 4.590 (2.222) 5 -0.278 -0.926

GM 2.174 (1.075) 2 -0.178 -0.532

DD 1.773 (1.010) 2 -0.203 -1.137

All 8.537 (3.527) 9 -0.256 -0.643

Armenia NUM 4.790 (2.039) 5 -0.317 -0.948

GM 2.348 (0.983) 2 -0.124 -0.475

DD 1.539 (1.073) 1 -0.002 -1.262

All 8.677 (3.404) 9 -0.236 -0.862

Qatar NUM 2.004 (1.208) 2 0.729 0.271

GM 1.209 (1.007) 1 0.515 -0.391

DD 1.019 (0.912) 1 0.532 -0.598

All 4.232 (2.132) 4 0.596 0.137

Yemen NUM 2.300 (1.320) 2 1.159 1.753

GM 0.962 (0.919) 1 0.686 -0.300

DD 0.610 (0.712) 0 0.884 0.060

All 3.872 (2.142) 4 1.040 1.772

Note. The numbers were based on expected a posteriori estimation. NUM = Number, GM = Geometric Shapes & Measurement; DD = Data & Display;

All = sum of three content domains.

https://doi.org/10.1371/journal.pone.0188691.t006

Table 7. Correlations between the unidimensional proficiency and the number of mastered attributes.

NUM GM DD All

Country r 95% CI r 95% CI r 95% CI r 95% CI

USA .878 [.864, .891] .558 [.517, .597] .517 [.636, .701] .913 [.903, .922]

Hong Kong SAR .850 [.825, .872] .591 [.534, .643] .534 [.588, .687] .906 [.890, .920]

Singapore .879 [.861, .895] .751 [.717, .781] .717 [.730, .791] .913 [.900, .925]

Slovenia .895 [.878, .910] .516 [.455, .571] .455 [.647, .729] .919 [.905, .930]

Armenia .853 [.829, .873] .649 [.600, .694] .600 [.618, .709] .908 [.893, .921]

Qatar .534 [.488, .577] .402 [.349, .453] .349 [.222, .336] .612 [.572, .650]

Yemen .441 [.385, .494] .426 [.368, .480] .368 [.166, .294] .531 [.481, .578]

Note. NUM = Number; GM = Geometric Shapes & Measurement; DD = Data & Display; All = sum of three content domains. All correlations were significant

(p < .001).

https://doi.org/10.1371/journal.pone.0188691.t007
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et al. [22]). This result is shown in Table 8. The sample size here was equal to the number of

countries (i.e., seven). Thus, the resultant confidence interval was rather wide. However, the

obtained correlations were notably strong, with all point-estimates exceeding .90. This indi-

cates that number of mastered attributes can be considered a good indicator of general mathe-

matical ability. The results of these above two analyses can be interpreted as evidence of the

validity of the attributes we considered in this study.

Discussion

The findings of this current study for the TIMSS 2007 mathematical assessment can be sum-

marized as follows in light of our two objectives. First, CDMs fitted better than did the IRT

models in all of the countries considered. Second, the main effects models were found to fit

better than were the parsimonious models or the saturated model in almost all of the countries.

In other words, although we observed some variations between countries in terms of the best-

fitted CDMs, the traditional, less-parameterized CDMs such as the DINA and DINO models

were generally not selected as best-fitting models.

The first main finding is consistent with previous findings in the United States (Lee et al.

[31]); thus, our study provides evidence of the generalizability of this claim. The fact that

CDMs fit better than did the IRT models suggests that to succeed in the TIMSS mathematics

assessment, students require more than one skill. While unidimensional IRT models might be

helpful for ordering students on a single scale in high-stakes test, they are likely to be too sim-

ple to explain students’ cognitive process of problem solving. Thus, unlike IRT models, CDMs

reflect actual students’ item response behavior based on the TIMSS objectives.

Of course, the choice between the CDMs and IRT models clearly depends on the objective

of the analysis. For example, unidimensional IRT models might be more suitable when the

objective is not to diagnose, but rather to order the examinees based on a specific unidimen-

sional proficiency, such as when the aim is to develop large-scale computer-based adaptive

testing. However, our finding that CDMs generally have better fit than the IRT models sug-

gests that, when their application is suitable, CDMs can help us extract considerable informa-

tion, including diagnostic information, about examinees.

Our second finding was that the main effects models were selected as the best-fitting models

in almost all countries. Specifically, in most countries, the selected models were R-RUM,

A-CDM, or LLM. This result suggests that the main effects models might better explain the

structure of the TIMSS assessment as compared to the other CDMs. On the other hand, the

DINA and DINO models generally had worse fits than did the main effects models, suggesting

that these parsimonious models are too simple to apply. Thus, the current results suggest that

the TIMSS 2007 fourth grade mathematics assessment might not require students to have all

of the designated attributes for each item in order to correctly answer that item. In other

Table 8. Correlations between the official TIMSS 2007 achievement scores and the average number of

mastered attributes.

r p 95% CI

NUM .962 < .001 [.758, .995]

GM .941 .002 [.645, .991]

DD .969 < .001 [.800, .996]

All .984 < .001 [.892, .998]

Note. n = 7 (number of countries). NUM = Number, GM = Geometric Shapes & Measurement, DD = Data &

Display, All = sum of three content domains.

https://doi.org/10.1371/journal.pone.0188691.t008
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words, it might be reasonable to think that students could separately, rather than simulta-

neously, apply their knowledge to solve the problems. Both the DINA and DINO models

assume that respondents can be classified into two groups (being able to answer correctly or

not) for each item. On the other hand, other CDMs examined in this study classify respon-

dents into more than two groups, and thus these models can express group differences more

flexibly than can the DINA and DINO model.

We should, however, be careful in interpreting this result because it is based on the assump-

tion that all items have the same item response function within a country. The assumption

could be too rigid; each item might have different item response functions in real situations.

Still, this is one of the common assumptions of CDMs, and we believe that the result could

provide a hint in making use of the TIMSS data for diagnostic purposes. For example, the cur-

rent TIMSS test items could require multiple cognitive skills to solve, and thus it might be bet-

ter to develop items that simultaneously involve various cognitive skills for DINA-model-

based diagnostic tests.

In this study, we chose a wide range of countries in terms of TIMSS achievement score. The

trend in the selected models for the TIMSS data might not relate to the TIMSS official score,

which reflects mathematics ability—rather, model selection could depend on the sample. Still,

results showed that the models selected in each country were largely main effects models,

which were generally better than were other, more restricted or complicated models. CDMs

consider only individual cognitive situations, but not individual environmental information.

The country differences might therefore derive from differences in the education system or

curricula between the countries. TIMSS data are rich in information about students’ learning

customs, school curricula, and parents’ information, and so on. Therefore, in the future, it

would help to examine the relationship between diagnostic results and students’ background

data using TIMSS data.

The finding that the DINA and DINO models achieved worse fit than did the other, more

relaxed CDMs might be important for model developers. Traditionally, model development

studies have used the DINA model as their basis because it is one of the first probabilistic

CDMs to have been developed. By showing that the DINA model might actually be too restric-

tive to reflect actual students’ knowledge status, future model development studies might give

further weight to the empirical fit of the models to a real dataset.

While these findings are all based on the TIMSS 2007 mathematics assessment, we believe

that they might have implications beyond it. For example, in educational diagnostic assess-

ment, quite a few studies (e.g., [31, 32, 42]) have applied the DINA model. For example, Sun,

Suzuki, and Kakinuma [42] analyzed the fraction test for sixth grade students using the DINA

model, and then gave them actual feedback based on the DINA model diagnosis. However,

based on our results, the DINA model may be too restrictive for modeling item responses.

Thus, more relaxed CDMs, such as the A-CDM, LLM, or R-RUM, might provide a better fit to

this assessment. Of course, this claim must be tested; if it holds, future studies using the more

relaxed CDMs might be able to more accurately estimate students’ knowledge, which would

help in constructing more effective learning environments.

Of course, generally, the goodness-of-fit in CDMs depends not only the item response func-

tion but also the settings of the Q-matrix. In the current study, for our objective, we used the

same Q-matrix as in a former study. We might be able to expect better model fit if we design a

test for the DINA model using items that better fit the DINA.

In some former studies, there were conflicting results about whether the main effects mod-

els or the other models fit better to mathematics tests. For example, Roussos, Templin, and

Henson [43] reported that “the assessment of mixed number subtraction included methods

for model comparison, ending with the selection of the DINA model as the best fitting

Comparison among cognitive diagnostic models

PLOS ONE | https://doi.org/10.1371/journal.pone.0188691 February 2, 2018 13 / 17

https://doi.org/10.1371/journal.pone.0188691


(p. 305).” This claim might be valid if the test was fully designed using the DINA model, but it

does not imply that the DINA models are more appropriate for mathematics tests in general.

Our results therefore present the possibility that if a mathematics test was not originally built

for diagnostic purposes but fitted by CDMs, main effects models might better explain its

structure.

We should also discuss the difference in the dimensionality of the CDM attributes and

IRT’s proficiency parameter; in other words, we might interpret them differently. IRT’s unidi-

mensional proficiency could in reality comprise a rich set of mathematical skills, knowledge,

and understanding that are relevant to the test. Thus, the construct that is represented by the

IRT’s proficiency parameter may actually be a composite of numerous mathematical compo-

nents. On the other hand, the attributes of CDMs are included as categorical latent variables

that correspond to somewhat narrow learning components with good grain size. The consider-

able difference between these parameter interpretation of these types of models might there-

fore render comparison between the models inappropriate. IRT models might be used for

linking or equating items to make a common scale used for assessing multiple countries, even

though they might not capture students’ actual test answering behaviors. CDMs, by contrast,

might be used to better reflect students’ cognitive abilities.

Of course, this study has several limitations. In this study, we analyzed the results of only

seven countries, despite the fact that a rather large number of countries participate in the

TIMSS assessment. Future studies would evaluate the generalizability of our findings in other

countries or other time points.

Furthermore, in this study, we employed the attributes and Q-matrix constructed by Lee

et al. [31]. Using Lee et al.’s Q-matrix was most appropriate for our two objectives because it

let us maintain comparability with previous studies. In other words, this choice of Q-matrix

helped us replicate and extend their findings. On the other hand, the Q-matrix developed in

Lee et al. [31] does not satisfy the identifiability condition. Recent studies [44–46] have found

that when the Q-matrix is incomplete, the model parameters are unidentifiable. A Q-matrix is

said to be complete when it contains items requiring only one attribute for each attribute; oth-

erwise it is incomplete [46]. The Q-matrix used in this study was incomplete, which means

that it cannot satisfy the identifiability condition.

Even so, this identifiability issue should not affect the maximized model likelihood. In the

unidentified model, it is the parameter estimates with the highest likelihood value that are not

uniquely determined. Even in such a case, the maximized likelihood value itself is still appro-

priate. Thus, even when parameters are not identified, we can perform model comparisons

based on likelihood. Exploratory factor analysis model presents a good example. Specifically,

an exploratory factor model has a parameter identification issue, that is, any rotation of the fac-

tor loadings does not change the maximized likelihood. Despite this, it is a very widely used

model in educational and psychological science, allowing researchers to compare models with

different numbers of factors based on their likelihood.

That being said, in the future study, it would be fruitful to further reduce the number of

attributes used in the current study, leaving only the most stable, essential attributes. A former

study on clarifying the structure of attributes might help in identifying such essential attributes

[47].

Furthermore, in recent years, there have been a number of novel methodological develop-

ments in estimating the Q-matrix based on data. For example, de la Torre and Chiu [48] pro-

posed a new discrimination index that can be used to empirically validate the Q-matrix by

identifying and replacing its misspecified entries. Chen [49] proposed an alternative residual-

based approach to validate Q-matrix specifications, while a Bayesian estimation method for

estimating the Q-matrix of the DINA model was developed by Chen, Culpepper, Chen, and
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Douglas [50]. Although these methods are still being developed, and have not been extensively

tested empirically, methodological advances might help us in better constructing and validat-

ing the application of CDMs. Thus, it would be ideal for future studies to re-investigate the Q-

matrix specification in the TIMSS assessment by using these Q-matrix estimation methods.

CDMs have computational difficulties in their solutions, such as the local maxima. To

tackle this issue in the present study, we employed multiple starting values. Another possible

way to avoid this issue would be to use a different estimation algorithm, such as Bayesian or

simulated annealing approaches.

Another future research topic includes the interpretation of the results in view of the micro-

scopic item-scoring mechanism and the country-specific curricula. To actually apply diagnos-

tic information, such a detailed investigation would be necessary. Discussion based on real

curricula would enable greater utility for CDMs. It would also be interesting to investigate the

relationships between the contents taught in each country and CDM results.
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