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ABSTRACT Metagenomics is increasingly used to describe microbial communities
in biological specimens. Ideally, the steps involved in the processing of the biological
specimens should not change the microbiome composition in a way that it could
lead to false interpretations of inferred microbial community composition. Common
steps in sample preparation include sample collection, storage, DNA isolation, library
preparation, and DNA sequencing. Here, we assess the effect of three library prepa-
ration kits and two DNA sequencing platforms. Of the library preparation kits, one
involved a PCR step (Nextera), and two were PCR free (NEXTflex and KAPA). We
sequenced the libraries on Illumina HiSeq and NextSeq platforms. As example micro-
biomes, two pig fecal samples and two sewage samples of which aliquots were
stored at different storage conditions (immediate processing and storage at 280°C)
were assessed. All DNA isolations were performed in duplicate, totaling 80 samples,
excluding controls. We found that both library preparation and sequencing platform
had systematic effects on the inferred microbial community composition. The differ-
ent sequencing platforms introduced more variation than library preparation and
freezing the samples. The results highlight that all sample processing steps need to
be considered when comparing studies. Standardization of sample processing is key
to generating comparable data within a study, and comparisons of differently gener-
ated data, such as in a meta-analysis, should be performed cautiously.

IMPORTANCE Previous research has reported effects of sample storage conditions and
DNA isolation procedures on metagenomics-based microbiome composition; however,
the effect of library preparation and DNA sequencing in metagenomics has not been
thoroughly assessed. Here, we provide evidence that library preparation and sequencing
platform introduce systematic biases in the metagenomic-based characterization of mi-
crobial communities. These findings suggest that library preparation and sequencing are
important parameters to keep consistent when aiming to detect small changes in micro-
biome community structure. Overall, we recommend that all samples in a microbiome
study are processed in the same way to limit unwanted variations that could lead to
false conclusions. Furthermore, if we are to obtain a more holistic insight from micro-
biome data generated around the world, we will need to provide more detailed sample
metadata, including information about the different sample processing procedures, to-
gether with the DNA sequencing data at the public repositories.
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Microbes are omnipresent and inhabit even the most extreme environments on
Earth. Metagenomics-based analyses have provided unprecedented insight into

these microbial communities. Metagenomics is applied heavily to human microbiomes,
as well as animal and environmental microbiomes, and is being implemented to
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understand disease states (1–4), for diagnostic purposes (5), and for surveillance of
pathogens and antimicrobial resistance (6–9). The data from such studies are a grow-
ing resource that can be utilized in meta-analysis and data mining, revolutionizing
medicine, agriculture, and food production (6, 9–12).

Findings from microbiome studies can be difficult to replicate as observed in differ-
ent meta-analyses of 16S rRNA gene amplicon studies (13–16). Considering the large
number of features (including functional and taxonomic) under investigation in meta-
genomics, it is not surprising that studies do not seem to lack significant results (17).
Data dredging is a real concern in metagenomics, which brings to mind the “replica-
tion crisis” that has been highlighted in the field of psychology (18, 19). Due to the
challenges of replicating results, one must not overemphasize the results from explora-
tory research and keep in mind that there is a need to continually validate the robust-
ness and ability to replicate results in microbiome studies (20, 21). With the improve-
ment of genome reference databases and bioinformatics tools, the validation is an
ongoing process (22–25).

Technical variation due to sample processing is an important factor that researchers
have to minimize to make proper inferences in metagenomics studies. For example,
the DNA isolation procedure has been shown to impact microbiome composition (26–
28). The effect of library preparation and sequencing platform has been investigated in
metagenomics primarily on human fecal samples. Library preparation was found to
affect taxonomic and functional characterization of human fecal samples and in silico-
constructed mock communities (21, 29). In a study by Costea et al. (26), the effect of
library preparation was found to be lower than DNA isolation and intra- and intersam-
ple variation in general. The choice of sequencing platform also appears to have an
effect on the characterization of microbiomes (30).

The aim of the present study was to assess the effect of library preparation
(Nextera, KAPA PCR free, NEXTflex PCR-Free) and sequencing platform (Illumina HiSeq
and NextSeq) on the metagenomics-based inference on DNA samples from two differ-
ent pig feces and two different sewage microbiomes from a previous study (31). We
show that library preparation and sequencing platform introduce systematic bias in
the inferred microbial community composition for both sample types and that this
effect is important when comparing similar samples, such as pig feces, in the present
study. This highlights the need for consistent sample processing and demonstration of
caution when comparing data from different studies.

RESULTS

A subset of DNA samples was selected from a large-scale study (31) to assess the
effect of library preparation and DNA sequencing on inferred microbiome composition
based on metagenomics. The DNA samples originated from two pig fecal samples (pig
feces 1 and pig feces 2) and two sewage samples (sewage 1 and sewage 2). For the pres-
ent study, we selected DNA aliquots from fecal and sewage samples that originally were
processed immediately (time point 0) and were subjected to storage at 80°C, respec-
tively, to not only assess whether one can distinguish different samples but also samples
that have the same origin but exhibit differences due to different handling conditions.
The DNA aliquots underwent a total of four different strategies for library preparation
and DNA sequencing (Fig. 1A), namely, KAPA PCR-free library preparation with sequenc-
ing on a HiSeq (KAPA HiSeq), NEXTflex PCR-Free library preparation with sequencing on
a HiSeq (NEXTflex HiSeq), NEXTflex PCR-Free library preparation with sequencing on a
NextSeq (NEXTflex NextSeq), and Nextera library preparation with sequencing on a
NextSeq (Nextera NextSeq). The latter sequencing strategy was performed twice (Nextera
1 NextSeq and Nextera 2 NextSeq).

Quality control of sequencing output. The number of raw reads from the different
library preparations and sequencing platforms was similar with about a factor of 2 dif-
ference when comparing the medians. The highest number of reads was obtained
from the NEXTflex HiSeq run (median, 12.1; range, 6.3 to 30.8 million reads) and the
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lowest from the NEXTflex NextSeq run (median, 7.6, range; 2.7 to 9.4 million reads)
(Table S1 in the supplemental material). The outputs from the KAPA HiSeq run (me-
dian, 9.4; range, 7.8 to 17.4 million reads) and the Nextera NextSeq runs (median, 10.2;
range, 6.5 to 16.5 million reads) were about the same. More reads were obtained from

FIG 1 Study design and comparison between sample groups. (A) Two pig feces samples and two sewage samples were processed directly or after storage at 280°C
for 64 h. The DNA isolation was performed in duplicates, respectively. Library preparation and sequencing were performed in four different combinations, NEXTflex
PCR-Free library preparation with sequencing on a HiSeq (NEXTflex HiSeq), KAPA PCR-free library preparation with sequencing on a HiSeq (KAPA HiSeq), NEXTflex
PCR-Free library preparation with sequencing on a NextSeq (NEXTflex NextSeq), and Nextera library preparation with sequencing on a NextSeq (Nextera NextSeq). The
latter sequencing strategy was performed twice (Nextera 1 NextSeq and Nextera 2 NextSeq). The setup resulted in a total of 80 metagenomes plus 5 negative
controls (i.e., DNA extraction controls). (B) Boxplots display pairwise Aitchison distances between different groupings of samples. Within the different groups, dots
representing the distances were colored according to which sample the comparison was made in. Blue dots represent a distance between two different samples.
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the pig fecal samples than the sewage, but a larger proportion of the sewage reads
mapped to the reference databases. The microbial community of the sewage samples
exhibited a higher Simpson diversity than the pig feces (Table S1). The number of
mapped reads was higher for the sewage samples, and many of the samples had
reached a plateau as observed when drawing a rarefaction curve (Fig. S1). Similar
results were obtained when comparing the mean of the percentage of unmapped
reads of the same sample across the different library preparation and sequencing plat-
form runs (pig feces 1, 87.4 to 88.4; pig feces 2, 89.7 to 90.5; sewage 1, 70.1 to 74.1;
sewage 2, 54.2 to 59.3) (Table S1).

Sample processing impacts on inferred microbiome structure. Considering the
compositionality of data, the taxonomy table was centered log ratio (CLR) transformed
before calculating Euclidean distances to have data not confined to the simplex. The
resulting pairwise Aitchison distances (corresponding to Euclidean distances between
CLR-transformed compositions) were calculated between all the samples and visual-
ized using principal-component analysis (PCA) (Fig. S2A). The sample type explained
the greatest variance, and pig feces and sewage samples were clearly separated on the
first axis. A clear separation of the two sewage samples was observed on the second
axis, while the two pig fecal samples clustered together. Ordination of the pig feces
and sewage samples separately revealed that it was possible to differentiate the two
pig fecal samples (Fig. S2B). However, there were also two clusters within each pig
fecal sample. A clear separation of the two sewage samples was still observed (Fig.
S2C). Also in a boxplot visualization, library preparation, sequencing platform, and stor-
age condition did not hamper the ability to differentiate between the two sewage
samples (Fig. 1B). However, we observed an overlap between pig feces 1 and 2 com-
parisons relative to comparing within the two samples, representing the effect of the
different sample processing parameters. Nevertheless, the median suggested there is a
difference between pig feces 1 and 2 (Fig. 1B). In general, larger distances were calcu-
lated for the comparisons of sample processing parameters in pig fecal samples than
sewage. The shortest distances were observed when comparing the DNA isolation rep-
licates and the replicates of the Nextera NextSeq runs, respectively. The distances
between samples that differed in library preparation and sequencing platform were
greater than samples that differed in storage conditions (i.e., whether they were proc-
essed directly or after freezing at 280°C for 64 h). The sequencing platform appeared
to be a major contributor of variation when comparing the samples that were pre-
pared with NEXTflex and sequenced on both an Illumina HiSeq and an Illumina
NextSeq platform, respectively (Fig. 1B, third box from the right), whereas using two
different preparation kits, i.e., NEXTflex and KAPA sequenced on an Illumina HiSeq,
introduced a relatively lower variation (Fig. 1B, second box from the right). The differ-
ences were observed to be even lower when samples were prepared with the two
library preparation kits, NEXTflex and Nextera, and sequenced on an Illumina NextSeq
(Fig. 1B, first box from the right).

To investigate the effect of sample processing further, PCAs were performed for the
individual samples (pig feces 1, pig feces 2, sewage 1, and sewage 2). Similar patterns were
observed in all samples, indicating that there was a systematic effect from sequencing plat-
form, library preparation, and storage condition (Fig. 2). The samples clustered primarily
according to sequencing platform and library preparation along the x axis that represents
most of the variation. On the y axis, samples clustered according to storage condition. In
general, the DNA isolation replicates were similar, as well as the two Nextera NextSeq runs
(Fig. 2). All the parameters had a significant effect based on permutational multivariate
analysis of variance (PERMANOVA) except for storage when comparing all of the samples
and in pig feces 2 (Table 1). The percent variations in pig feces attributed to sample (pig
feces 1 and pig feces 2) (21.1%) and sequencing platform (19.1%) were at similar levels, fur-
ther emphasizing the importance of sample processing when comparing communities
that are more similar to each other (Table 1).

Sample processing impacts on inferred microbial abundances. To investigate the
effect of library preparation and sequencing platform on the abundance of specific
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microorganisms, an overview of the 30 most abundant genera was visualized in heatmaps
(Fig. 3). For the pig samples, the aliquots appeared to cluster mainly based on the sequenc-
ing platform (NextSeq versus HiSeq) (Fig. 3A). In contrast, it was possible to distinguish the
two sewage samples, which clustered according to sample origin (sewage 1 versus sewage
2) (Fig. 3B). A clustering of samples was also observed to a certain degree for both pig feces
and sewage according to storage condition and library preparation.

The pig feces contained both Gram-negative and Gram-positive bacteria, and clus-
ter 3 exclusively consisted of Gram negatives. There were a few Gram negatives in the

FIG 2 Principal-component analysis (PCA) subset to the different sample matrices. Euclidean distances were calculated after performing centered log-
ratio transformation (CLR) of the count data (Aitchison distances). Variance explained by the two first axes are included in their labels. The same DNA
samples processed differently are connected with dotted lines.

TABLE 1 Effect of sample origin (pig feces 1, pig feces 2, sewage 1, and sewage 2) and different parameters in sample processing (library
preparation, DNA sequencing)a

Sample(s) included Sample P value (%)b Storage P value (%)b Library prepn P value (%)b Sequencing platform P value (%)b

All ,1025 (81.9) 6.4� 1022 (0.5) 4.2� 1022 (1.0) 3.0� 1024 (1.8)
Pig feces ,1025 (21.1) 3.8� 1023 (3.3) 5.7� 1024 (6.2) ,1025 (19.1)
Sewage ,1025 (61.7) 2.5� 1022 (2.9) 3.0� 1022 (4.1) 4.4� 1023 (4.5)
Pig feces 1 NAc 2.8� 1023 (9.7) 2.8� 1022 (8.9) ,1025 (26.2)
Pig feces 2 NA 0.17 (2.7) 5.4� 1023 (12.3) ,1025 (25.3)
Sewage 1 NA ,1025 (15.1) 3.6� 1024 (14.4) ,1025 (12.8)
Sewage 2 NA ,1025 (14.0) 6.0� 1025 (17.8) ,1025 (19.6)
aStatistical tests were performed by multiple permutations partitioning sum of squares (PERMANOVA). The P value, as well as the percentage of variation explained by the
parameters, is reported, testing different sample sets (all, pig feces, sewage, pig feces 1, pig feces 2, sewage 1, and sewage 2).

bProportion of the variation explained in the PERMANOVA.
cNA, not applicable; no P value obtained when variable subset to a single sample (pig feces 1, pig feces 2, sewage 1, and sewage 2).

Library Preparation & Sequencing Impact on Microbiomes Microbiology Spectrum

March/April 2022 Volume 10 Issue 2 10.1128/spectrum.00090-22 5

https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.00090-22


FIG 3 Heatmaps of pig feces and sewage samples separately with the 30 most abundant genera. Complete-
linkage clustering was performed to create dendrograms for both genera and samples. Spearman correlation
was used to cluster the genera, and Aitchison distances were used to cluster the samples. Genera abundance
depicted in the cells were CLR-transformed counts standardized to zero mean and unit variance. Grouping of
organisms were included in genera names according to cell wall structure based on Gram-positive staining
(G1), Gram-negative staining (G2), or belonging to Archaea (Ar). (A) Heatmap of all pig feces samples, where
the first branching was according to sequencing platform. The third cluster of genera exclusively contained
Gram negatives. (B) Heatmap of all sewage samples. The fourth cluster mainly consisted of Gram positives. A
few Gram positives were also present in the other clusters. For explanation of colours, see panel A.
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other clusters, indicating that sample processing shifts the abundance profiles for spe-
cific groups of organisms; in this case, it appeared to be associated with cell wall struc-
ture (Fig. 3A). A similar pattern was observed for sewage that mainly consisted of Gram
negatives. The majority of Gram positives were part of cluster 4, including Clostridium,
Faecalibacterium, Roseburia, and Ruminococcus. However, this cluster also contained
Gram-negative genera (Fig. 3B).

One explanation for the community differences observed by sample processing could
be a possible contamination during the library preparation and sequencing steps. To eluci-
date this, sparse partial least-squares discriminant analysis (sPLS-DA) was performed,
assessing which genera best characterize the library preparation and sequencing platform
processing methods. Components 1, 2, and 3 were included in the model containing 5, 50,
and 20 different genera, respectively (Fig. S3). The majority of microorganisms were abun-
dant organisms observed across all of the sample processing methods. However, a few
were clear indicators of contamination during library preparation and sequencing and
were mainly present in a single processing method. This included Methylobacterium in the
KAPA HiSeq run and Cutibacterium in the second Nextera NextSeq run, bacteria that previ-
ously have been associated with kit contamination (32). A heatmap of the 30 most abun-
dant genera in the blank controls additionally revealed a high abundance of Ralstonia in
the Nextera NextSeq runs that were performed with the same kit reagents (Fig. S4).
Overall, the organisms associated with contamination were limited. The separation of the
samples according to the different processing parameters therefore appeared to be real
changes to the relative abundances between organisms inherently present in the micro-
biomes and not due to contamination.

A constrained ordination analysis (here, redundancy analysis [rda]), also subset accord-
ing to whether samples were processed directly or after freezing, was performed to assess
whether groups of organisms at a taxonomically higher level were associated with a spe-
cific library preparation and sequencing method. In the pig feces, Proteobacteria seemed
associated with the HiSeq runs (Fig. S5). However, this was not observed for sewage. For
sewage, Archaea were associated with the HiSeq runs, but also Eukaryotes consisting of
fungi and Cryptosporidium seemed associated with the HiSeq runs in sewage 1 (Fig. S5).
Overall, it was difficult to observe a pattern when assessing this grouping of genera, high-
lighting that it might be difficult to generalize the effect of sample processing in different
sample types and different samples of the same type.

DISCUSSION

With the increasing amount of metagenomic data in public repositories, meta-anal-
ysis and pooling of data from different studies are exciting new opportunities to gain
further insight into the microbial world (10–12, 24, 33). Data generation is usually not
performed with a standard procedure across studies, and sample processing is an im-
portant factor to be aware of when trying to make inferences in these cross-study
investigations (21, 26). In the present study, both library preparation and sequencing
platform had a significant effect on explaining the variance in the data (Table 1). That
these parameters affect the community description has also been observed previously
(21, 29, 30). In the study by Costea et al. (26), DNA isolation had the largest effect com-
pared with other technical variations. In the present study, DNA isolation was per-
formed centrally by the same person, while library preparation and sequencing were
performed in-house or at external providers, but not in any of the cases by the same
person, possibly increasing variation due to DNA shipping and handling in this specific
step. When performing a validation study assessing the technical variation of sample
processing, the large number of methodologies and variations thereof make it impossi-
ble to test all parameters. It is likely that selecting methods that are based on different
principles and for specific purposes yield results that highlight the importance of this
specific step. Jones et al. (21) investigated the effect of library preparation and
observed that members of a mock microbial community became skewed depending
on the library preparation kit. While they noted that each method had advantages and
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disadvantages, they recommended using a PCR-free library preparation approach, as it,
for example, reduces PCR bias. Bowers et al. (29) investigated community changes
using different amounts of input DNA and observed that this modification had a signif-
icant effect on community description. This effect can increase bias associated with
library preparation and sequencing platform in other studies where starting material is
of variable quality. In the present study, investigation of sequencing platforms was lim-
ited to the NextSeq and HiSeq, which are both Illumina platforms resembling each
other in technology and which were selected due to their popularity in metagenomics
with low cost relative to output (34). However, the platforms have been reported to ex-
hibit differences in index hopping (35). In the present study, a large effect was attrib-
uted to the sequencing platform, and that was also observed when using the same
library preparation kit (NEXTflex PCR-Free) (Fig. 1B). The library preparation included
two methods that required prefragmented DNA that was prepared PCR-free (KAPA
and NEXTflex). It was decided to include the Illumina Nextera library preparation as
well to compare with a technique that does not resemble the others in having enzy-
matic fragmentation and which involved a PCR step that is commonly applied when
not enough DNA is available to prepare DNA for sequencing PCR free. However, the
two Nextera runs were relatively similar to the NEXTflex run when sequenced on the
NextSeq (Fig. 2). The present study was not a full factorial experiment, and this should
be emphasized when comparing the effect sizes of specific processing parameters.

One explanation for the differences observed between the processing runs can be
contamination bias. When designing a metagenomics study, it is, to some extent, pos-
sible to remove kit contaminations or carryover between sequencing runs from the
data in silico, if, for instance, blank controls are included or by rotating indexing pri-
mers between adjacent runs, respectively (36). In the present study, comparing the
sPLS-DA results with the blank controls rarely identified the same genera, indicating
that the genera reported to explain the specific sample processing the most were not
due to contamination during DNA extraction. The general variation associated with
redoing the library preparation and sequencing was low when comparing the two
Nextera sequencing runs (Fig. 1 and 2). The differences observed are therefore most
likely due to true variation associated with the sample processing. Furthermore, it was
possible to detect that these patterns were systematic in the different samples (Fig. 2)
and that this could be partly explained with some crude features such as distinguish-
ing between Gram-negative and Gram-positive bacteria or at a higher taxonomic clas-
sification (Fig. 3 and Fig. S5 in the supplemental material). The grouping of genera into
Gram negative and Gram positive might be confounders of an underlying explanation that
could be associated with DNA characteristics such as guanine-cytosine percent (GC%) or
other specific DNA patterns. Another possibility is that DNA fragmentation during sam-
pling, storage, and DNA isolation provided DNA of different quality for specific organism
groups. A shift in community structure is then reflected in the selection of different frag-
ment sizes during the library preparation and sequencing. Practical limitations were also
an issue when designing the study. To reduce the bias associated with DNA extraction, the
QIAamp Fast DNA stool minikits were all ordered together, ensuring that kits were from
the same manufacturing batch. Another possible bias might arise from DNA samples that
were frozen in between processing them for sequencing. However, only small changes
were observed between the two Nextera NextSeq runs.

The Aitchison distances obtained from comparing within the two pig fecal samples
separately relative to within the two sewage samples also revealed that storage, library
preparation, and sequencing platform has a larger effect in pig feces (Fig. 1B). Since
the distances between the two pig fecal samples were smaller than the distances
between the two sewage samples, it was difficult to discern the two pig fecal samples
when samples were processed differently (Fig. 3). It is concerning that the variation
due to sample processing might hamper the ability to differentiate between two differ-
ent pig fecal samples, and this might obstruct the ability to draw meaningful conclu-
sions when technical variations cannot be distinguished from true changes. These
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results should, on the other hand, not be overstated; the two pig fecal samples were
obtained from an in-bred race raised under very similar conditions, including feeding,
and even though they were obtained from two different healthy pigs at two different
farms, the two communities are relatively similar. The finding highlights that the im-
portance of technical variation depends on the differences that one is trying to detect
(16). The technical variation did not hamper the ability to differentiate between the
two sewage samples.

We show that library preparation and sequencing platform introduce systematic bias in
the metagenomic-based characterization of microbial communities. These findings suggest
that library preparation and sequencing are important parameters to keep consistent
when aiming to detect small changes in community structure. In the present study, the
bias was somewhat dependent on sample type, highlighting the importance of assessing
the effect of sample processing in the specific sample type under investigation.

MATERIALS ANDMETHODS
Sample processing. A subset of 85 DNA samples was selected from a large-scale study examining

the effect of sample storage conditions on inferred microbiome composition (31). The DNA samples ori-
ginated from two pig fecal samples (pig feces 1 and pig feces 2) and two sewage samples (sewage 1
and sewage 2). The two pig fecal samples were collected on different occasions from different conven-
tional pig production farms near the laboratory. The two sewage samples were collected at a local
wastewater treatment facility on different occasions. DNA isolation was performed in duplicate with a
modified QIAamp Fast DNA stool minikit (Qiagen) protocol, including an initial bead-beating step (Mo
Bio garnet beads) (27) (Fig. 1B). A DNA extraction (blank) control was included at each time of DNA isola-
tion (5 controls as part of the present study). For a detailed list of all samples included in this study, see
Table S1 (column H, “Other study [library preparation]”) in Poulsen et al. (31). The concentration of DNA
samples was measured with the Qubit double-stranded DNA (dsDNA) high-sensitivity (HS) assay kit on a
Qubit 2.0 fluorometer (Invitrogen, Carlsbad, CA) before storing the DNA at 220°C.

Library preparation and sequencing. Library preparation and sequencing were performed in the
order described below, and the DNA was frozen between the sequencing runs:

(i) KAPA PCR-free on a HiSeq. DNA was shipped for sequencing to an external provider (Admera
Health, NJ, USA). The DNA (500 ng) was fragmented mechanically (Covaris E220 evolution; aimed insert
size, 350 bp) using ultrasonication. The KAPA library preparation was run PCR free according to the man-
ufacturer’s recommendations (KAPA HyperPrep kit; catalog no. KR0961 v6.17). Sequencing was per-
formed on an Illumina HiSeq 4000 (2 � 150 cycles, paired end).

(ii) NEXTflex PCR-Free on a HiSeq. DNA was shipped for sequencing to an external provider
(Oklahoma Medical Research Foundation, OK, USA). The DNA (500 ng) was fragmented mechanically (Covaris
E220evolution; aimed insert size, 350 bp) using ultrasonication. The NEXTflex library preparation was run PCR
free according to the manufacturer’s recommendations (Bioo Scientific NEXTflex PCR-Free DNA sequencing
kit; catalog no. 5142-01). Sequencing was performed on an Illumina HiSeq 4000 (2� 150 cycles, paired end).

(iii) NEXTflex PCR-Free on a NextSeq. The DNA (500 ng) was fragmented with mechanical frag-
mentation (Covaris E210, aimed insert size, 350 bp, duty factor, 10%; intensity, 5; cycle burst, 200; treat-
ment time, 240 s) using ultrasonication. The NEXTflex library preparation was run PCR free with NEXTflex
barcodes (NEXTflex-96 DNA barcodes) according to the manufacturer’s recommendations (Bioo
Scientific NEXTflex PCR-Free DNA sequencing kit; catalog no. 5142-01). Sequencing was performed in-
house on an Illumina NextSeq 500 (midoutput v2, 2 � 150 cycles, paired end).

(iv) Nextera 1 and 2 on a NextSeq. The Nextera XT library preparation was performed twice. The
Nextera XT protocol was carried out according to the manufacturer’s recommendations (Nextera XT DNA
library prep kit; document no. 15031942v02). This included a tagmentation step that fragments the DNA
(1 ng) and ligates adaptors and a PCR step amplifying DNA and adding indexing primers. Library cleanup
was performed with AMPure XP beads and normalized before sequencing was performed in-house on an
Illumina NextSeq 500 (midoutput v2, 2 � 150 cycles, paired end). The bioanalyzer results revealed that the
aimed insert size of 350 bp was larger than expected (File S6 in the supplemental material).

Bioinformatics and statistical analysis. Preprocessing of raw reads included trimming (Phred qual-
ity score, 20) and removal of reads shorter than 50 bp (BBduk2) (37). Mapping was performed with a
Burrows-Wheeler aligner (BWA-mem) as implemented in MGmapper (22). Mapping was performed in
the default “best mode” to 11 databases, first filtering against the human database and then extracting the
number of raw reads mapping to the genomes of bacteria, fungi, archaea, viruses, and Cryptosporidium. A
read count correction was implemented to adjust large hit counts to specific contigs as implemented in
Hendriksen et al. (9). All counts in the count table were divided by 2 to account for reads mapping as proper
pairs and then aggregating to genus level. The raw reads are deposited in the European Nucleotide Archive
(ENA) (BioProject accession no. PRJEB31650).

All statistical analyses adhered to the compositional data analysis framework and were performed in
R version 3.5.2 (38–40). Alpha diversity was calculated based on the raw count table estimating richness
(Chao1), evenness (Pielou’s), and diversity (Simpson) using the diversity function in vegan. Initial filtering
of the count matrix was performed by removing all genera below an average count of 5. The estimation
of zeroes was performed using simple multiplicative replacement (41). Centered log-ratio transformation
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(CLR), where the log of each feature is compared relative to the geometric mean, was used to enable
real-space calculations (40, 42, 43). CLR was used in principal-component analysis (PCA), heatmaps to
perform complete-linkage clustering analysis of the samples, boxplots to calculate pairwise Euclidean
distances between samples (Aitchison distance), and permutational multivariate analysis of variance
(PERMANOVA; a nonparametric multivariate statistical test, with 99,999 permutations assessing the mar-
ginal effects of the terms [44]), sparse partial least-squares discriminant analysis (sPLS-DA; a multivariate
dimensionality-reduction tool, with 5-fold cross-validation repeated 10 times [38]), and constrained ordi-
nation with redundancy analysis (rda) (38, 40, 42, 45). Spearman correlation on CLR-transformed data
was used to cluster the genera visualized in the heatmap, but the genera abundance depicted in the
cells was standardized to zero mean and unit variance after CLR transformation for comparability.
Analyses performed are included (File S7), and the code is available from https://github.com/csapou/
LibraryPreparationandSequencingPlatform.

Data availability. The raw reads supporting the conclusions of this article are available at the
European Nucleotide Archive (ENA) (BioProject accession no. PRJEB31650). The statistical analyses per-
formed are provided in File S7. The statistical analysis is furthermore available at https://github.com/
csapou/LibraryPreparationandSequencingPlatform.
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