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Abstract
Respiratory syncytial virus (RSV) is a leading cause of acute lower respiratory tract
infectionworldwide, resulting in approximately sixty thousand annual hospitalizations
of < 5-year-olds in the United States alone and three million annual hospitalizations
globally. The development of over 40 vaccines and immunoprophylactic interventions
targeting RSV has the potential to significantly reduce the disease burden from RSV
infection in the near future. In the context of RSV, a highly contagious pathogen,
dynamic transmission models (DTMs) are valuable tools in the evaluation and com-
parison of the effectiveness of different interventions. This review, the first of its kind
for RSV DTMs, provides a valuable foundation for future modelling efforts and high-
lights important gaps in our understanding of RSV epidemics. Specifically, we have
searched the literature using Web of Science, Scopus, Embase, and PubMed to iden-
tify all published manuscripts reporting the development of DTMs focused on the
population transmission of RSV. We reviewed the resulting studies and summarized
the structure, parameterization, and results of the models developed therein. We antic-
ipate that future RSV DTMs, combined with cost-effectiveness evaluations, will play
a significant role in shaping decision making in the development and implementation
of intervention programs.
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1 Introduction

Respiratory syncytial virus (RSV), a highly contagious disease, has increasingly been
recognized as a leading cause of acute lower respiratory tract infection worldwide
(Nair et al. 2010, 2013). The overwhelming majority of individuals are infected by
their second year of life (Glezen et al. 1986; Henderson et al. 1979). Severe disease is
most common in young infants (< 6-month-olds), with incidence decreasing rapidly
with age (Hall et al. 2009, 2013; Rha et al. 2020). Globally, it is estimated that RSV is
responsible for approximately threemillion hospitalizations annually in children (< 5-
year-olds) (Nair et al. 2010, 2013). Lifelong reinfections with RSV are common and,
although healthy older children (5–17-year-olds) and adults (18–64-year-olds) are less
likely to develop severe disease (Hall et al. 2001), severe disease is more common in
older adults (≥ 65-year-olds), institutionalized individuals, and immunocompromised
individuals (Falsey et al. 2005; Widmer et al. 2012, 2014). Respiratory syncytial
virus epidemics exhibit rich dynamics that vary geographically and climatically; both
annual peaks, and biennial alternating high- and low-peaks, have been observed in
RSV epidemics (Bloom-Feshbach et al. 2013; Li et al. 2019).

At present there is only one immunoprophylaxis, the monoclonal antibody
palivizumab, that is recommended for the prevention of RSV disease; however, due to
its high expense and limited effectiveness, recommendations are generally limited to
high-risk patients, i.e., very premature infants, infantswith chronic lungdisease (CLD),
or infants with congenital heart disease (CHD) (Committee on Infectious Diseases
2014; Gutfraind et al. 2015). Nevertheless, development of RSV immunoprophylactic
interventions are proceeding rapidly, with over 40 RSV vaccines or immunoprophy-
lactic interventions currently under development (Higgins et al. 2016; PATH 2020).

Mathematical models play an important role in many aspects of epidemiologi-
cal research (Chubb and Jacobsen 2010). For example, the US Centers for Disease
Control and Prevention has recently developed a static model that can be applied to
evaluate the number of medically attended RSV infections subject to various inter-
ventions (Rainisch et al. 2020). Whereas static models are effective at estimating the
direct effects of immunoprophylactic interventions, they are ill-suited to the study of
indirect effects or herd immunity effects, which are frequently significant for infec-
tious diseases (Pitman et al. 2012). Thus, in anticipation of the availability of multiple
immunoprophylactic options for RSV there has been increasing interest in the devel-
opment of dynamic transmissionmodels (DTMs) that are fully capable of representing
complex interactions between virus, environment, population, and immunoprophylac-
tic interventions. Aswith staticmodels, DTMs can be integrated into cost effectiveness
analyses to aid public policy decision making with respect to the control of RSV.

The principal aim of this literature review is to provide an overview of RSV DTMs
as a resource for future RSV dynamic modelling efforts. We proceed in four parts.
First, we outline RSV DTM structures. Second, we summarize data sources used for
model calibration and common parameter values determined through model param-
eterization. Third, we present the main findings of RSV modelling papers. Finally,
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we identify key areas for future modelling research and discuss how mathematical
modelling can contribute to public health decision making.

We note that, unlike a systemic review (Munn et al. 2018), this literature review
does not consider a specific research question. Because model structure andmodelling
technique employed are often a function of both data availability (e.g., for model cal-
ibration and parameterization) and the specific research question being investigated,
comparison between different RSV DTMs is not always well defined. As such, the
presentation of a broad overview of RSV DTMs has been prioritized over analyses
comparing and contrasting model structures or modelling techniques. In other words,
whereas some general comparisons between RSV DTMs are made in a general con-
text, complex analyses comparing and contrasting RSV DTMs are beyond the scope
of this literature review and are left as future work. Similarly, whereas there exists
extensive research on animal transmission (Greenhalgh et al. 2000; Greenhalgh and
Griffiths 2009; Smith et al. 2014) and within-host (González-Parra and Dobrovolny
2018, 2019; Khan and Dobrovolny 2021) RSV dynamics, the complex nature of these
topics preclude them from the scope of this review.

2 Search strategy and results

2.1 Search strategy and selection criteria

Studies for this review were identified through searches of Web of Science (Clarivate
Analytics 2020), Embase (Elsevier 2020a), Scopus (Elsevier 2020b), and PubMed
(National Center for Biotechnology Information 2020), by use of terms (a) “respira-
tory syncytial virus”, “human respiratory syncytial virus”, “rsv”, or “hrsv”, and (b)
“mathematical model”, “dynamic transmission model”, “dynamic model”, “transmis-
sion model”, “epidemic model”, “compartment model”, or “compartmental model”.
For Embase and PubMed searches we add corresponding Emtree (“respiratory syn-
cytial virus” or “human respiratory syncytial virus”, and “mathematical model” or
“dynamic transmissionmodel” or “dynamicmodel” or “compartmentmodel” or “com-
partmental model”) and MeSH (“respiratory syncytial virus, human” or “respiratory
syncytial viruses”, and “models, theoretical”) search terms. Search terms were applied
to all fields, all dates were included, no language restrictions were applied, and only
published manuscripts were included.

Duplicates, which were determined by exact match of title, authors, and year of
publication, were removed. Subsequently, titles and abstracts were reviewed and a
priori inclusion/exclusion criteria were applied. Inclusion criteria are manuscripts that
have been published in peer reviewed journals and present a human epidemiologic
RSV DTM (e.g., animal and immunologic models are not included). Multi-pathogen
DTMs (e.g., a DTM modelling RSV and influenza concurrently) and ensemble mod-
els are excluded, as are manuscripts whose primary purpose is other than dynamic
transmission modelling of RSV (e.g., a manuscript whose primary focus is the anal-
ysis of an abstract DTM in a general context, for which an RSV DTM is given as
an example in passing). Full-text articles were retrieved for all manuscripts identified
in title and abstract screening procedure. All full-text articles were reviewed in full;
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Fig. 1 Search strategy for idenitfying RSV DTMs

inclusion/exclusion criteriawere re-applied during review of full-text articles. The sole
author of this study performed all search steps in duplicate using Endnote X9 reference
management software. The search strategy is summarized in Fig. 1. A summary of
data abstracted is given in Table 1. Data abstraction and verification were performed
manually and in duplicate by the sole author of this manuscript; no data abstraction
software was used.

2.2 Search results

There were 64, 1303, 196, and 1350 entries retrieved from Web of Science, Sco-
pus, Embase, and PubMed searches, respectively. All searches were performed on
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Table 1 Summary of data abstracted

Data abstracted Description Summary table(s)

Disease state structure Record the disease state structure
used in the RSV DTM, e.g., SI R,
SI RS, SE I RS, etc.

Table 3

Modelling approach Record the mathematical modelling
approach used in the
implementation of the RSV DTM,
e.g., ordinary differential equation
(ODE), stochastic differential
equation (SDE), or agent-based
model (ABM), etc.

Table 3

Demographic model Record whether a demographic
model is present

Table 3 and Supplemental
Table A.2.1

Age strata and ageing rates Record age strata and the rate at
which individuals age from one
stratum to the next

Supplemental Table A.2.1

Interventions Record type, timing, effective
coverage, duration, and outcomes
for interventions. If multiple
scenarios are reported, record
representative results, i.e., record
results achieved under base-case
assumptions

Tables 4, 5 and Table A.3.1

Calibration data Record location, type, age
stratification, time period,
frequency, and original references
for data used in RSV DTM
calibration

Supplemental Table A.4.1

Parameter values Record value and original references
(if available) for common RSV
DTM parameters

Supplemental
Tables A.5.1–A.5.7

Results Record major results and findings of
RSV DTMs

Supplemental Table A.6.1

December 01, 2020. Following removal of duplicates, titles and abstracts of the 2672
remaining entries were reviewed. Application of inclusion/exclusion criteria resulted
in the exclusion of 2626 entries. Full-text manuscripts for the remaining 47 entries
were retrieved and reviewed. Application of inclusion/exclusion criteria resulted in
the exclusion of seven manuscripts (Capistrán et al. 2009; Guerrero-Flores et al. 2019;
Jajarmi et al. 2020; Jódar et al. 2008; Reis et al. 2019; Villanueva-Oller et al. 2013;
Zhang et al. 2012). The remaining 40 full-text manuscripts were included in this liter-
ature review; two manuscripts were otherwise identified and included (Goldstein et al.
2018; Nugraha and Nuraini 2017).
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Fig. 2 Disease state structure for (left) SI RS and (right) M-SE I RS4 RSV DTMs. Deaths, which occur
from all compartments at a rate equal to the birth rate μ, are omitted for clarity. The total population (N )
is constant. The transmission term β(t) is a one year periodic function

3 RSV DTM structures

3.1 RSV disease state structure

The dominant paradigm for disease state structure of RSV DTMs is established in the
seminal manuscript of Weber et al. (2001). Specifically, two disease state structures
are considered: a simple susceptible-infectious-recovered-susceptible (SI RS) disease
state structure, and amore complexM-SE I RS4model structure (see Fig. 2 and below
for definition).

The SI RS model partitions individuals into three compartments: susceptible (S),
infectious (I ), and recovered (R). Infants are born into the susceptible compartment
at birth rate μ and all compartments are subject to natural death at a rate equal to the
birth rate, i.e., a constant population is assumed. There are three remaining transitions
between compartments: susceptible individuals become infectious through contact
with infectious individuals, infectious individuals recover at rate ν with full temporary
immunity to reinfection, and recovered individuals become susceptible at rate γ as
full temporary immunity wanes. To account for the periodic nature of RSV epidemics,
infection is assumed to occur as a result of mass action homogeneous mixing between
susceptible and infectious individuals at a periodic time-varying rate proportional to

β(t) = b0 (1 + b1 cos(2π t − φ)) , (1)

where parameters b0, b1, and φ represent the average transmission rate, the relative
amplitude of seasonal fluctuations in the transmission rate, and the phase shift of
the transmission rate, respectively. In other words, new infections occur at the rate
β(t)SI/N , where N is the total population.
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Table 2 Common disease states and parameters of RSV DTMs

Description

Disease compartments

M Natural maternal immunity

S Susceptible

E Exposed

I Infectious

R Recovered

Parameters

μ Birth/death rate

ξ Natural maternal immunity waning rate

b0 Average transmision rate

b1 Relative amplitude of seasonal fluctuations in the transmission rate

φ Phase shift of the transmission rate

τ Relative susceptibility to RSV infection

η Relative infectiousness while infectious with RSV

σ Rate of emergence of infectiousness

ν Recovery rate

γ Immunity waning rate

The M-SE I RS4 model structure represents a refinement of the SI RS structure
based on several additional assumptions on the natural history of RSV. First, it assumes
that repeated reinfection with RSV results in increasing levels of permanent partial
immunity to reinfection. In contrast with full immunity, partial immunity admits rein-
fection (albeit at a reduced rate). In other words, a susceptible individual with zero,
one, two, or three or more previous RSV infections are subdivided into compartments
S1, S2, S3, and S4, respectively. Individuals in these compartments become infected at
rates proportional to τ1β(t), τ2β(t), τ3β(t), and τ4β(t), respectively, where τi are the
relative susceptibilities of the different susceptible compartments. Second, as with the
SI RS model, infection is assumed to occur as a result of mass action homogeneous
mixing between susceptible and infectious individuals, where the infectiousness of
an individual with i − 1 prior RSV infections is accounted for by multiplication with
the relative infectiousness parameter ηi . In other words, new infections of individuals
with i−1 prior RSV infections occur at the rate β(t)τi Si

∑
j η j I j/N . Third, a latency

period (i.e., compartment Ei ) is assumed where individuals are infected but not yet
infectious, from which infectiousness emerges at rate σ . Finally, it is assumed that
individuals are born either susceptible (S1) or with full temporary immunity to RSV
infection due to transfer of natural maternal antibodies (M). Individuals born with
natural maternal antibodies are said to have natural maternal immunity (NMI) and
enter compartment M at a rate proportional to the fraction of recovered individuals in
the population. Natural maternal immunity wanes at rate ξ and results in individuals
becoming susceptible. A summary of parameter and compartment definitions for the
SI R and M-SE I RS4 models is provided in Table 2.
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The SI RS and M-SE I RS4 models described above are antecedent to the majority
of identified RSV DTMs and admit the (M)-XXXXn notation for similar disease
state structures. If present, the prefix M- is used to indicate that some infants are
born with NMI; otherwise, all infants are born without NMI. The body XXXX is
used to indicate the compartments for the progression of RSV infection. The suffix
n indicates the number of levels of partial immunity to RSV that are granted due to
repeat reinfections.

Whereas disease progression for the RSVDTMs that conform to the (M)-XXXXn
notation follow a simple linear pattern, disease progression in non-standard RSV
DTMs are complicated by one or more of the following elements: (a) separate com-
partments for RSV groups A and B (Kombe et al. 2019;White et al. 2005), (b) multiple
types of infectious compartments (Hodgson et al. 2020; Kinyanjui et al. 2020; Kombe
et al. 2019; Mahikul et al. 2019; Pan-Ngum et al. 2017; Yamin et al. 2016), (c) waning
of partial immunity to reinfection by RSV for susceptible individuals (Kinyanjui et al.
2020; Mahikul et al. 2019; Pan-Ngum et al. 2017; White et al. 2005, 2007), or (d)
multiple nested dynamic transmission models (Arenas et al. 2008; White et al. 2007).

A summary of models by their disease structure is provided in Table 3. For com-
pleteness, a brief summary of differences in the implementation of NMI between RSV
DTMs is provided in Supplementary Materials 1: Appendix A.1.

3.2 Demographic model structure

Demographic model structure is principally incorporated through stratification of the
population by age. With the exception of three agent-based models (Campbell et al.
2020; Kombe et al. 2019; Poletti et al. 2015), and two models restricted to < 2-year-
olds (Hogan et al. 2016; Paynter 2016), age stratification uses a finer resolution for
young children (< 5-year-olds) and a coarser resolution for adolescents, adults, and
older adults (Acedo et al. 2010a, b; Arguedas et al. 2019; Brand et al. 2020; Goldstein
et al. 2018; Hodgson et al. 2020; Hogan et al. 2016, 2017; Kinyanjui et al. 2015,
2020; Kombe et al. 2019; Leecaster et al. 2011; Mahikul et al. 2019; Moore et al.
2014; Pan-Ngum et al. 2017; Paynter et al. 2014; Pitzer et al. 2015; Poletti et al. 2015;
van Boven et al. 2020; Yamin et al. 2016). The majority of transitions between age
strata are implemented at a rate proportional to the inverse of the width of the age
strata of origin (Arguedas et al. 2019; Brand et al. 2020; Hodgson et al. 2020; Hogan
et al. 2016, 2017; Kinyanjui et al. 2015, 2020; Leecaster et al. 2011; Moore et al.
2014; Pan-Ngum et al. 2017; Pitzer et al. 2015; van Boven et al. 2020). Alternatively,
some RSV DTMs implement more complicated ageing schemes to maintain realistic
age structures (Acedo et al. 2010a, b; Kinyanjui et al. 2020; Yamin et al. 2016). A
few models provide additional demographic structure through organization of the
simulation population by household (Brand et al. 2020; Campbell et al. 2020; Kombe
et al. 2019; Mahikul et al. 2019), household and primary school (Poletti et al. 2015),
and geography (Seroussi et al. 2020). A more detailed discussion of demographic
structure is presented in Supplemental Materials 1: Appendix A.2.
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3.3 Interventions

The most common intervention considered is vaccination or monoclonal immuno-
prophylaxis that induces full temporary immunity to RSV infection (Acedo et al.
2010a, b; Brand et al. 2020; Goldstein et al. 2018; Hodgson et al. 2020; Jornet-Sanz
et al. 2017; Kinyanjui et al. 2015; Nugraha and Nuraini 2017; van Boven et al. 2020);
however, vaccination inducing partial temporary immunity to RSV infection (Hogan
et al. 2017; Kinyanjui et al. 2020; Pan-Ngum et al. 2017; Smith et al. 2017; Yamin
et al. 2016), public awareness campaigns (Nugraha and Nuraini 2017), and treatment
(Rosa andTorres 2018a, b), are also considered. Interventions are generally assumed to
occur uniformly throughout the year, however, exceptions include models that assume
vaccination occurs at arbitrary time points throughout the year (Smith et al. 2017),
seasonally according to the pattern observed in influenza vaccination (Yamin et al.
2016), at enrollment of primary school (Poletti et al. 2015), and prior to the RSV
season (Goldstein et al. 2018; Hodgson et al. 2020). Target populations are typically
newborn and infants (Acedo et al. 2010a, b; Hodgson et al. 2020; Hogan et al. 2017;
Jornet-Sanz et al. 2017; Kinyanjui et al. 2015, 2020; Nugraha and Nuraini 2017; Pan-
Ngum et al. 2017; Poletti et al. 2015; Smith et al. 2017; van Boven et al. 2020), or
young children (Hodgson et al. 2020; Poletti et al. 2015), however, vaccination of
all age strata are also considered (Goldstein et al. 2018; Hodgson et al. 2020; Yamin
et al. 2016). Maternal vaccination is also sometimes considered (Brand et al. 2020;
Campbell et al. 2020; Hodgson et al. 2020; Hogan et al. 2017; Pan-Ngum et al. 2017;
Poletti et al. 2015; Smith et al. 2017; van Boven et al. 2020), however, the effect of
maternal vaccination on the mother is frequently omitted (Hogan et al. 2017; Pan-
Ngum et al. 2017; Smith et al. 2017; van Boven et al. 2020). Additional details on
model interventions are included in Supplemental Materials 1: Appendix A.3.

3.4 Modelling techniques

Whereas the majority of models are implemented as ordinary differential equation
(ODE)-type models (Acedo et al. 2010a; Aranda-Lozano et al. 2013; Arenas et al.
2008, 2010; Arguedas et al. 2019; Brand et al. 2020; Hodgson et al. 2020; Hogan
et al. 2016, 2017; Kinyanjui et al. 2015, 2020; Leecaster et al. 2011; Mahikul et al.
2019; Moore et al. 2014; Morris et al. 2015; Nugraha and Nuraini 2017; Pan-Ngum
et al. 2017; Paynter 2016; Paynter et al. 2014; Pitzer et al. 2015; Ponciano andCapistrán
2011;Reis andShaman2016, 2018;Rosa andTorres 2018b;Seroussi et al. 2020; Smith
et al. 2017; van Boven et al. 2020; Weber et al. 2001; White et al. 2005, 2007), there
have also been RSV DTMs implemented as stochastic differential equation (SDE)
models (Arenas et al. 2009), discrete difference equation (ΔE) models (Goldstein
et al. 2018; Yamin et al. 2016), stochastic difference equation models (SΔE) (Baker
et al. 2019; Corberán-Vallet and Santonja 2014; Jornet-Sanz et al. 2017; Mwambi
et al. 2011), agent-based models (ABMs) (Acedo et al. 2010b; Campbell et al. 2020;
Kombe et al. 2019; Poletti et al. 2015), and fractional differential equation (FDE)
models (Rosa and Torres 2018a), see Table 3.
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ODE and ΔE models use a deterministic modelling approach that is specified
in continuous and discrete time, respectively. These approaches are relatively well
understood, can be solved relatively quickly (i.e., with low computational cost), and
are easily adapted to many dynamic systems. These models perform best at predicting
the average outcome under the assumption of a large well-mixed population.

SDE and SΔE models are extensions of ODE and ΔE models, respectively, that
incorporate random effects. For example, two SDE models were developed in order
to study interseason variance in RSV epidemics (Arenas et al. 2009). Similarly, SΔE
models have been developed to study infection dynamics when only small numbers
of infectious individuals are present (Corberán-Vallet and Santonja 2014; Jornet-Sanz
et al. 2017). Alternatively, whereas other models require the specification of a func-
tional form for the time-varying transmission rate β(t), two SΔE models have been
developed to estimate (a) the transmission rate β(t) as a function of time (Mwambi
et al. 2011), and (b) both the number of susceptible individuals and the transmission
rate β(t) as a function of time (Baker et al. 2019).

ABMsare characterizedby their specificationof rules for the behaviors of individual
agents. ABMs admit a granular demographic structure that is generally not considered
in standard ODE models, e.g., they are capable of organizing the population into
households (Campbell et al. 2020; Kombe et al. 2019), or households and primary
schools (Poletti et al. 2015). However, ABMs can be limited by insufficient data for
proper model calibration and parameterization, and by the high computational cost of
simulations.

Finally, FDEmodels represent a new non-local modelling approach that introduces
a form of “memory” (Du et al. 2013), in which the future evolution of a FDE model
simultaneously depends upon its present state and its past states. An initial FDEmodel
has been proposed (Rosa and Torres 2018a), however, it is unclear what advantages,
if any, exist that would justify the additional complexity of FDE models over the
alternatives proposed above.

4 Parameterization and calibration

The RSVDTMs summarized above have been calibrated to diverse data sets collected
from more than a dozen countries, i.e., Australia (Campbell et al. 2020; Hogan et al.
2016, 2017;Moore et al. 2014), Brazil (White et al. 2007), Colombia (Aranda-Lozano
et al. 2013), Finland (Ponciano and Capistrán 2011; Weber et al. 2001; White et al.
2005, 2007), The Gambia (Ponciano and Capistrán 2011; Weber et al. 2001; White
et al. 2007), Kenya (Brand et al. 2020; Kinyanjui et al. 2015; Kombe et al. 2019;
Pan-Ngum et al. 2017; Poletti et al. 2015), Mexico (Arguedas et al. 2019; Baker et al.
2019), The Netherlands (van Boven et al. 2020), Philippines (Paynter et al. 2014),
Singapore (Weber et al. 2001; White et al. 2007), Spain (Acedo et al. 2010a, b; Arenas
et al. 2009, 2010; Corberán-Vallet and Santonja 2014; Jornet-Sanz et al. 2017; White
et al. 2007), Thailand (Mahikul et al. 2019), the United Kingdom (Hodgson et al.
2020; Kinyanjui et al. 2020; White et al. 2005, 2007), and the United States (Baker
et al. 2019; Goldstein et al. 2018; Leecaster et al. 2011; Nugraha and Nuraini 2017;
Pitzer et al. 2015; Reis and Shaman 2016, 2018; Rosa and Torres 2018a, b; Seroussi
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et al. 2020;Weber et al. 2001;White et al. 2007; Yamin et al. 2016). These data mostly
consist of RSV detected in inpatient settings only, i.e., hospitalizations, or in inpatient
and outpatient settings. Onemodel usesGoogle searches for the term “RSV” as a proxy
for the number of RSV infections (Seroussi et al. 2020). Data have been gathered for
infants (< 1-year-olds) (Acedo et al. 2010a, b; Campbell et al. 2020; Corberán-Vallet
and Santonja 2014; Jornet-Sanz et al. 2017; White et al. 2005), toddlers (< 2-year-
olds) (Hogan et al. 2016, 2017; Moore et al. 2014; Paynter et al. 2014; Ponciano and
Capistrán 2011; Weber et al. 2001; White et al. 2007), young children (< 5-year-olds)
(Aranda-Lozano et al. 2013; Arenas et al. 2009, 2010; Hodgson et al. 2020; Kinyanjui
et al. 2015, 2020; Pan-Ngum et al. 2017; Poletti et al. 2015;White et al. 2007), children
(Leecaster et al. 2011; Hodgson et al. 2020; Nugraha and Nuraini 2017; Ponciano and
Capistrán 2011; Weber et al. 2001; White et al. 2005, 2007), and the entire population
(Arguedas et al. 2019; Baker et al. 2019; Brand et al. 2020; Goldstein et al. 2018;
Hodgson et al. 2020; Kombe et al. 2019; Mahikul et al. 2019; Pitzer et al. 2015; Reis
and Shaman 2016, 2018; Seroussi et al. 2020; van Boven et al. 2020; Weber et al.
2001; White et al. 2007; Yamin et al. 2016). Frequency of measurements are daily
(Leecaster et al. 2011), biweekly (Kombe et al. 2019), weekly (Acedo et al. 2010a, b;
Aranda-Lozano et al. 2013; Arguedas et al. 2019; Brand et al. 2020; Corberán-Vallet
and Santonja 2014; Hodgson et al. 2020; Hogan et al. 2016; Jornet-Sanz et al. 2017;
Kinyanjui et al. 2020;Moore et al. 2014; Pitzer et al. 2015; Poletti et al. 2015; Ponciano
and Capistrán 2011; Reis and Shaman 2016, 2018; Seroussi et al. 2020; van Boven
et al. 2020; Weber et al. 2001; White et al. 2005, 2007; Yamin et al. 2016), monthly
(Arenas et al. 2009, 2010; Hogan et al. 2017; Kinyanjui et al. 2015; Moore et al. 2014;
Mahikul et al. 2019; Nugraha and Nuraini 2017; Pan-Ngum et al. 2017; Ponciano and
Capistrán 2011; Rosa and Torres 2018a, b; Weber et al. 2001; White et al. 2007),
or annually (Goldstein et al. 2018; White et al. 2005). For additional details, see
Supplemental Materials 1: Appendix A.4.

This review has compiled values for comparison of common model parameters
determined through calibration or literature search. Comparison of parameter values
has value in not only populating future RSVDTMs, but also in identifying uncertainty
in aspects of the natural history of RSV that may require further research to resolve.
Results for four common parameters are summarized: NMI waning rate (ξ ), relative
susceptibility to RSV infection (τ ), recover rate (ν), and immunity waning rate (γ ). A
comprehensive summary of common parameter values is provided in Supplementary
Materials 1: Appendix A.5.

4.1 Natural immunity waning rate (�)

Seven models estimate NMI waning rate from literature values. For the five most
recent models the NMI waning rate lies within the range 2.7–4.1 per year, equivalent
to a duration of 90–134 days (Campbell et al. 2020; Hodgson et al. 2020; Pitzer et al.
2015; Poletti et al. 2015; Yamin et al. 2016); for the remaining two models the NMI
waning rate is 13.0 per year, equivalent to a duration of 28 days (Arenas et al. 2009;
Weber et al. 2001). In contrast, the calibration of six models produces estimates of the
NMI waning rate in the range 5.2–49.6 per year, equivalent to a duration of 7–70 days
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(Brand et al. 2020; Kinyanjui et al. 2015, 2020; Pan-Ngum et al. 2017). Comparison
of these values indicate some uncertainty exists in the NMI waning rate which may
require additional research to resolve.

4.2 Relative susceptibility to RSV infection (�)

Five models estimate relative susceptibility of individuals with at least one previous
RSV infection (τ1) to be in the range 0.45–0.77, when measured with respect to
the reference susceptibility of RSV naïve individuals (τ0 = 1) (Brand et al. 2020;
Kinyanjui et al. 2020; Mahikul et al. 2019; Morris et al. 2015; Paynter et al. 2014). In
contrast, calibration of two models produces estimates in the range 0.68–0.88 (Poletti
et al. 2015; White et al. 2007). These values are largely consistent and give insight
into the approximate range for relative susceptibility of individuals previously infected
with RSV.

4.3 Recovery rate (�)

Using literature values, twenty three papers estimate the recovery rate to be in the
range 33.2–46.8 per year, equivalent to a duration of 8–11 days (Acedo et al. 2010a, b;
Aranda-Lozano et al. 2013; Arenas et al. 2008, 2009, 2010; Campbell et al. 2020;
Corberán-Vallet and Santonja 2014; Goldstein et al. 2018; Hogan et al. 2016, 2017;
Jornet-Sanz et al. 2017; Leecaster et al. 2011; Moore et al. 2014; Nugraha and Nuraini
2017; Poletti et al. 2015; Ponciano and Capistrán 2011; Rosa and Torres 2018a, b;
Smith et al. 2017; Weber et al. 2001; White et al. 2005, 2007). In contrast, calibration
of two models produces estimates in the range 57.0–70.2 per year, equivalent to a
duration of 5–6 days (Reis and Shaman 2016, 2018). As with the NMI waning rate,
the discrepancy between literature and calibration estimates may indicate some uncer-
tainty in the recovery rate; however, it is noted that the models that estimate recovery
rate through calibration employ an SI R model structure to model each season sep-
arately, i.e., they depart from the standard (M)-XXXXn disease structure typically
employed in RSV DTMs.

4.4 Immunity waning rate (�)

Nineteen papers use literature values to estimate a range for the immunity waning
rate: 1.8–2.0 per year, equivalent to a duration of 183–203 days (Acedo et al. 2010a, b;
Aranda-Lozano et al. 2013; Arenas et al. 2009, 2010; Brand et al. 2020; Corberán-
Vallet and Santonja 2014; Jornet-Sanz et al. 2017; Kinyanjui et al. 2015, 2020; Morris
et al. 2015; Nugraha and Nuraini 2017; Pan-Ngum et al. 2017; Ponciano and Capistrán
2011; Rosa and Torres 2018a, b; Smith et al. 2017; Weber et al. 2001; Yamin et al.
2016). One model uses literature to estimate a rate of 5.8 per year, equivalent to a
duration of 63 days (Paynter et al. 2014). One model uses literature to estimate a rate
of 1.0 per year, equivalent to a duration of 359 days (Hodgson et al. 2020). In contrast,
calibration of three models produces estimates of the immunity waning rate in the
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range 1.6–2.1 per year, equivalent to 171–230 days (Hogan et al. 2016; Moore et al.
2014; Poletti et al. 2015). These values are largely consistent and give insight into an
approximate range for immunity waning rate.

5 Modelling results

In this section we summarize some important modelling results of the RSV DTMs
reviewed above. For additional details see Supplementary Materials 1: Appendix A.6.

5.1 General modelling results

The SI RS and M-SE I RS4 RSV DTMs introduced above (Weber et al. 2001) (see
Fig. 2) establish a disease state structure that informs, directly or indirectly, the dis-
ease state structure of most subsequent RSV DTMs. A sensitivity analysis performed
on the SI RS ODE model by varying initial conditions, birth rate (μ), and average
transmission parameter (b0) finds that the model is least sensitive to uncertainty in
initial conditions and most sensitive to uncertainty in average transmission parameter
(Arenas et al. 2010). Consistent results are reported for an SI RS SDEmodels (Arenas
et al. 2009).

Hogan and colleagues performed an analysis of an age-stratified SE I RS ODE
model that provides some insight into the behavior of models implementing the (M)-
XXXXn disease state structure (Hogan et al. 2016). The simple SE I RS model was
able to reproduce the diverse periodic behaviors observed inRSVepidemics: an annual
pattern of repeating peaks, a biennial pattern of repeating high followed by low peaks
where peaks occur at the same time each year, and a biennial pattern of high followed
by low peaks where high peaks occur earlier in the year than low peaks. Roughly
speaking, annual peaks result when the duration of immunity (1/γ ) is short, the former
biennial pattern results when the average transmission coefficient (b1) is large, and the
latter biennial pattern for intermediate values of the birth rate (μ).

Additional insight into the (M)-XXXXn disease structure is provided by compar-
ing a system of eight standard nested models (including, e.g., SI S, SI R, and SI RS
model structures, among others) on their ability to reproduce RSV epidemic data
(White et al. 2007). The most parsimonious model with the best fit was a model with
partial permanent immunity following an initial infection with RSV. These results
are consistent with the majority of models that implement the (M)-XXXXn disease
structure, a structure with increasing levels of partial permanent immunity resulting
from repeated RSV infections. Additional evidence supporting the inclusion of partial
permanent immunity following initial infection with RSV is provided by Morris and
colleagues (Morris et al. 2015), who conclude that the SI RS2 model is better able to
capture sensitivity of RSV epidemics to birth rate than the SI RS model.
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5.2 Results for RSV interventions

Direct comparison of modelling results is complicated by several factors. First, dif-
ferent parameter ranges are considered for vaccine effective coverage (the product of
vaccine coverage and effectiveness), and duration of protection. Second, models differ
by the mechanism of protection (e.g., full temporary immunity versus partial tempo-
rary immunity). Third, outcomes are measured with respect to different populations.
Comparison of modelling results are, therefore, qualitative in nature.

Seven models report reduction in hospitalizations or infections due to maternal
vaccination (Brand et al. 2020; Campbell et al. 2020; Hodgson et al. 2020; Hogan et al.
2017; Pan-Ngum et al. 2017; Poletti et al. 2015; van Boven et al. 2020). These models
exhibit four different mechanisms of protection: full temporary immunity provided
to both mother and infant (Brand et al. 2020; Hodgson et al. 2020; Poletti et al.
2015), full temporary immunity provided to mother and partial temporary immunity
provided to infant (Campbell et al. 2020), full temporary immunity provided to infant
only (van Boven et al. 2020), and partial temporary immunity provided to infant only
(Hogan et al. 2017; Pan-Ngum et al. 2017), see Table 4 for representative results.
For effective coverage of 35–60% and duration of protection of 3–6 months, the
reduction in hospitalizations of infants (< 1-year-olds) is approximately 6–20% and
the reduction in infections of infants (< 1-year-olds) is approximately 17–26%.

Seven models report reduction in hospitalizations or infections due to infant vac-
cination or monoclonal immunoprophylaxis (Hodgson et al. 2020; Jornet-Sanz et al.
2017; Kinyanjui et al. 2015, 2020; Pan-Ngum et al. 2017; Poletti et al. 2015; van
Boven et al. 2020). Analogous to maternal vaccination, these models exhibit two dif-
ferent mechanisms of protection: partial temporary immunity (Kinyanjui et al. 2020;
Pan-Ngum et al. 2017), and full temporary immunity (Hodgson et al. 2020; Kinyanjui
et al. 2015; Jornet-Sanz et al. 2017; van Boven et al. 2020), see Table 5 for represen-
tative results. For effective coverage of 80–90% and duration of protection of 6–12
months, the reduction of hospitalizations of infants (< 1-year-olds) is approximately
50–90% and the reduction in infections of infants (< 1-year-olds) is approximately
30–35%.

A hybrid approach is studied by Brand et al. (2020), in which maternal vaccination
is combined with vaccination of the entire household at birth. Maternal vaccination is
assumed to provide newborns with an additional 75 days of protection (for a total of
96 days of protection), vaccination of household members is assumed to provide six
months of protection, and protection for both forms of vaccination is assumed to take
the form of full temporary immunity. Under these assumptions, an effective coverage
of 75% of birth households results in a 50% reduction in RSV hospitalizations of
under 5-year-olds.

Three models compare vaccination of multiple age groups (Goldstein et al. 2018;
Hodgson et al. 2020; Yamin et al. 2016). These results of these three studies are
consistent, i.e., it is found that vaccination of under 5-year-olds is the most efficient
strategy for averting RSV infection (Hodgson et al. 2020; Yamin et al. 2016), and
vaccination of 3–6-year-olds at the beginning of the RSV season results in the greatest
reduction in the initial effective reproduction number (Goldstein et al. 2018).
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Finally, two models provide a cost-effectiveness analysis for a hypothetical vaccine
for infants in Valencia, Spain (Acedo et al. 2010a, b). These models include hospital-
ization cost, vaccination cost, and parent/caregiver loss of productivity, and find that
cost savings are possible when average parent/caregiver loss of productivity exceeds
three days per infant infected with RSV. Onemodel provides a cost-effectiveness anal-
ysis for palivizumab and three hypothetical products: a maternal vaccine, a vaccine,
and a long-acting monoclonal immunoprophylaxis (Hodgson et al. 2020). This model
includes costs for administering the vaccine or immunoprophylaxis, hospitalization,
and general practice visits, and calculates the maximum cost-effective purchase price
for various comparators, see Supplemental Materials 1: Appendix A.6 for additional
details.

5.3 Seasonal drivers

Most models presented in this review assume that there exists some periodic forcing
of RSV epidemic dynamics, e.g., see Eq. 1. Three models explore potential drivers
of this seasonal forcing in detail (Baker et al. 2019; Paynter et al. 2014; Pitzer et al.
2015). In the Philippines the peak in RSV transmission is found to precede the peak
in RSV detections by 49–67 days, and nutritional status and rainfall are identified as
two potential drivers of RSV epidemic dynamics (Paynter et al. 2014). In the United
States correlation is observed between estimated model parameters and climatic vari-
ables of temperature, vapor pressure, precipitation, and potential evapotranspiration
(Pitzer et al. 2015). For example, the relative amplitude of seasonal fluctuations in
the transmission rate (b1) and the phase shift of the transmission rate (φ) were found
to be negatively correlated with mean precipitation and mean vapor pressure, and
positively correlated with the amplitude and timing of potential evapotranspiration.
Similarly, a more recent modelling paper covering both the United States and Mexico
finds an inverse relationship between humidity and log transmission and a positive
linear relationship between rainfall and transmission rate (Baker et al. 2019). Addi-
tionally, one paper estimates the seasonal transmission rate β(t) as a function of time
for an RSV epidemic in Kilifi, Kenya, and finds two peaks in transmission (May, and
January/February) (Mwambi et al. 2011).

5.4 Forecasting RSV epidemics

Four models were developed with application to forecasting RSV epidemic dynam-
ics (Leecaster et al. 2011; Reis and Shaman 2016, 2018; Seroussi et al. 2020). First,
the average transmission coefficient (b0) and epidemic start time estimated from con-
secutive seasons are found to covary, and are potentially predictive of epidemic size
(Leecaster et al. 2011). Second, an SI R model calibrated to data in real time is devel-
oped as a forecasting model that, four weeks prior to the peak in RSV detections,
predicts the magnitude of the peak in RSV detections within 25% approximately 70%
of the time (Reis and Shaman 2016, 2018). Finally, a multicompartment SI R model
for the United States is capable of predicting infection rates and timing of infection
peaks with high accuracy in each state for the current season using the first seven
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weeks of RSV data and parameters estimated from the previous year’s data (Seroussi
et al. 2020).

6 Research gaps and future steps

The diversity of RSV DTMs and their applications admits numerous opportunities
for improvement in our understanding of RSV epidemic dynamics. Below, four areas
with significant potential for future work are discussed: alignment of RSVDTMswith
immunoprophylactic profiles, understanding sensitivity of results to model structure,
evaluation of cost-effectiveness through health economic analysis, and investigating
seasonal drivers of RSV epidemics.

6.1 Alignment with immunoprophylactic profiles

Only one immunoprophylactic product, i.e., palivizumab, is currently available for the
prevention or treatment of RSV disease. Palivizumab is extremely expensive and is
only cost-effective in high-risk communities. Because so few individuals are eligible
for palivizumab, static models are typically employed in the evaluation of palivizumab
on RSV disease. As such, in the context of vaccines or immunoprophylactic inter-
ventions for RSV approved and recommended for widespread use, the RSV DTMs
identified above are necessarily limited to implementing hypothetical products. As
the profiles of the products under development become more well defined, further
alignment with RSV DTMs will be possible. Further stratification of the model to
include additional sub-populations of interest may be necessary. For example, none
of the current RSV DTMs include compartments for high-risk infants, i.e., very pre-
mature infants, infants with CHD, or infants with CLD. In particular, stratification
by gestational age may be important when evaluating maternal vaccination strategies,
since transfer of maternal antibodies for preterm infants is expected to be incomplete
(Rainisch et al. 2020). Analogously, evaluations of interventions targeted at older chil-
dren and adults should also consider inclusion of high-risk subpopulations, i.e., older
adults, institutionalized adults, and immunocompromised adults.

6.2 Health economic analysis

As the development of RSV immunoprophylactic products intended for widespread
use continues to advance, health economic analyses will become increasingly impor-
tant tools for informing public health decision making. Whereas health economic
analyses that employ static modelling approaches will continue to play an important
role, given the highly contagious nature of RSV, we anticipate increasing demand for
analyses that are better suited to address indirect effects or herd immunity effects. In
other words, we anticipate increasing demand for health economic analyses based on
dynamic modelling approaches, i.e., DTMs. Studies that describe a cost-effectiveness
analysis based on anRSVDTMs, a subset of allmanuscripts that include anRSVDTM,
are identified in only three manuscripts (Acedo et al. 2010a, b; Hodgson et al. 2020).
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There is significant potential for additional RSV DTMs that evaluate costs related to
RSV infection in multiple countries and settings. Additionally, there is potential for
future work comparing and contrasting health economic analyses that employ static
modelling approaches to those that employ RSV DTMs.

6.3 Sensitivity of results to model structure and parameterization

Whereas inclusion of sensitivity analysis (of model results with respect to model
parameterization) has become more common in recent RSV DTM studies, there is
little consistency between studies with respect to either (a) the parameters included in
the sensitivity analyses or (b) the model outcomes used to measure model sensitivity
(Campbell et al. 2020; Hodgson et al. 2020; Hogan et al. 2016, 2017; Kinyanjui et al.
2015, 2020; Kombe et al. 2019; Morris et al. 2015; Pan-Ngum et al. 2017; Poletti
et al. 2015; Reis and Shaman 2016, 2018; Rosa and Torres 2018a, b; van Boven et al.
2020; Yamin et al. 2016). For example, whereas some RSV DTM studies include
a broad selection of parameters in their sensitivity analyses (Campbell et al. 2020;
Hogan et al. 2016, 2017; Kinyanjui et al. 2015; Morris et al. 2015; Rosa and Torres
2018a), others only include parameters related to RSV interventions (Hodgson et al.
2020; Kinyanjui et al. 2020; Pan-Ngum et al. 2017; Yamin et al. 2016) or idiosyncratic
model assumptions (Kombe et al. 2019; Poletti et al. 2015). Sensitivity analyses for
very complex and highly granular RSV DTMs (including, but not limited to ABMs)
are further complicated by the large number of parameters needed for model parame-
terization. In many cases, parameter values may not be available from the literature at
the desired granularity, necessitating additional modelling assumptions. Finally, inter-
model comparisons are limited by the diversity in model settings (e.g., countries and
time periods under consideration), the range and distribution of included parameters,
and the modelling outputs reported (e.g., RSV infections versus hospitalizations).

Limitations of sensitivity analyses of model results with respect to model structure,
which are generally evaluated through intermodel comparisons, are analogous to the
limitations of sensitivity analyses of model results with respect to model parameteri-
zation. Indeed, only six studies investigated the sensitivity of model outputs to model
structure by comparing the performance of two or more RSV DTMs (Arenas et al.
2008; Kinyanjui et al. 2020; Pan-Ngum et al. 2017; Rosa and Torres 2018a, b; White
et al. 2007). Of these, two studies compared the performance of very closely related
RSV DTMs (Rosa and Torres 2018a, b) (i.e., SIRS versus SEIRS disease state struc-
tures), two studies considered nested ODE models (Arenas et al. 2008; White et al.
2007) (see Sect. 5.1), and two studies comparedmodel structures where RSV infection
resulted in either permament or temporary partial immunity to reinfection (Kinyanjui
et al. 2020; Pan-Ngum et al. 2017). As models are developed with common settings,
and as they are aligned to common immunoprophylactic product profiles, comparison
between model predictions may become a practical strategy to validate models and to
achieve insights into the sensitivity of results to model structure and parameterization.
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6.4 Age effects and seasonal drivers of RSV

Although many RSV DTMs employ age stratification (see Sect. 3.2), only one RSV
DTM has been developed to replicate the age-specific dynamics observed in RSV
epidemics (Goldstein et al. 2018). Specifically, themechnismbywhichRSV infections
in children aged 3-6 years tends to lead infections in other age groups (and especially in
those aged ≥ 10-years-old) has not been studied in detail. The mechanisms by which
potential seasonal drivers affect epidemic dynamics have also not been described in
detail. In other words, seasonality in RSV DTMs is typically incorporated through
an exogenous forcing term, e.g., see Eq. 1, that has an arbitrary functional form.
Additional research into the sensitivity of RSV DTM results to the functional form of
the seasonal forcing term may lead to improvements in how seasonality is included in
RSV DTMs. A better understanding of how to endogenize seasonal drivers of RSV
epidemics into RSV DTMs, and how to replicate age effects, may allow for more
accuratemodels, better predictions of changing patterns in RSV epidemics (e.g., due to
climate change), and identification of more efficient intervention strategies. Together
with more granular surveillance data (e.g., age and location stratified surveillance
data), these advances may also significantly enhance RSV epidemic forecasting, and
hence, immunoprophylactic intervention strategy and timing.

7 Discussion

7.1 Stengths and limitations

This literature review, the first literature review of RSV DTMs, provides a compre-
hensive summary of RSV DTMs. Broad search terms were used and over 2600 titles
and abstracts were reviewed in order to identify 38 full-text manuscripts for inclusion
(two additional manuscripts were otherwise identified). The manuscripts included in
this review represent a diversity of RSV DTMs and admits a broad overview of RSV
DTMs provided along multiple dimensions (e.g., disease state structure, underlying
demographicmodel structure, interventions included, calibrationmethod and data, and
modelling techniques applied), and perspectives (e.g., analytical/theoretical, epidemi-
ologic, health economic). Furthermore, the Supplementary Materials that accompany
this review are a potentially valuable resource. For example, the SupplementaryMate-
rials include (but are not limited to) a detailed description of all data sets used in
calibration of RSVDTMs, a detailed description of common parameter values used in
parameterization of RSV DTMs, and a detailed description of interventions included
in RSV DTMs; where applicable, the original references to these additional data have
also been provided.

This review is subject to several limitations. First, because risk of bias and quality
for RSV DTMs (and DTMs in general) is context dependent, we do not provide an
assessment of the risk of bias or quality of the included RSV DTMs. Indeed, the
risk of bias or quality in an RSV DTM depends not only on model structure, input
parameters, calibration data, modelling technique, et cetera, but also on the modelling
objectives. For example, a simple SI R model may be appropriate to the forecasting

123



Use of mathematical modelling to assess respiratory syncytial… Page 27 of 31 26

of RSV epidemics, but it is completely incapable of assessing the impact of maternal
vaccination on infant hospitalizations. The lack of a critical appraisal of included
studies is not unusual for literature reviews (Munn et al. 2018), and a full risk of bias and
quality assessment is left as future work, e.g., as part of a future systematic reviewwith
a specific research question. Second, this review remains subject to evidence selection
bias. Specifically, although this review conducted a very broad search in multiple
databases, the choice to include only RSV DTMs presented in published manuscripts
admits the risk of publication bias. Finally, this review was entirely completed by a
single author. Although all steps in this review were completed in duplicate, we may
still expect a higher error rate in screeningmanuscripts and data abstraction than if this
review were conducted by multiple authors working independently and aggregating
their results.

7.2 Conclusions

The numerous vaccines and immunoprophylactic interventions currently under devel-
opment for prevention of RSV infection have the potential to significantly reduce the
burden of RSV in infants in the near future. Mathematical modelling provides a means
to better understand the natural history of RSV, to forecast severity of RSV epidemics
mid-season, to predict long-term changes in patterns of RSV epidemics, and to eval-
uate the effectiveness of proposed vaccine and immunoprophylactic interventions.
This review has provided an overview of existing RSV DTMs that includes disease
state structures, demographic model structure, intervention strategies, and modelling
techniques. In both the main text and the Supplementary Materials, a list of RSV epi-
demic data sources and values of common parameters determined through literature
and calibration has been compiled. This work provides a strong foundation for future
modelling of RSV epidemics and interventions. Research gaps and areas for future
potential work have also been identified. In particular, it is anticipated that RSVDTMs,
combined with economic cost-effectiveness evaluations, will play a significant role in
shaping decision making in the development and implementation of vaccination and
immunoprophylaxis programs.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s00285-021-01706-y.
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