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Abstract: In recent trends, wireless sensor networks (WSNs) have become popular because of their
cost, simple structure, reliability, and developments in the communication field. The Internet of
Things (IoT) refers to the interconnection of everyday objects and sharing of information through the
Internet. Congestion in networks leads to transmission delays and packet loss and causes wastage
of time and energy on recovery. The routing protocols are adaptive to the congestion status of the
network, which can greatly improve the network performance. In this research, collision-aware
routing using the multi-objective seagull optimization algorithm (CAR-MOSOA) is designed to
meet the efficiency of a scalable WSN. The proposed protocol exploits the clustering process to
choose cluster heads to transfer the data from source to endpoint, thus forming a scalable network,
and improves the performance of the CAR-MOSOA protocol. The proposed CAR-MOSOA is
simulated and examined using the NS-2.34 simulator due to its modularity and inexpensiveness. The
results of the CAR-MOSOA are comprehensively investigated with existing algorithms such as fully
distributed energy-aware multi-level (FDEAM) routing, energy-efficient optimal multi-path routing
protocol (EOMR), tunicate swarm grey wolf optimization (TSGWO), and CoAP simple congestion
control/advanced (CoCoA). The simulation results of the proposed CAR-MOSOA for 400 nodes are
as follows: energy consumption, 33 J; end-to-end delay, 29 s; packet delivery ratio, 95%; and network
lifetime, 973 s, which are improved compared to the FDEAM, EOMR, TSGWO, and CoCoA.

Keywords: congestion; Internet of Things; scalability; seagull optimization algorithm; wireless
sensor network

1. Introduction

The WSN is a self-organizing communication system that comprises terminal struc-
tures, sensor nodes, and base stations (BSs). The IoT represents innovative thinking and
progresses numerous communication structures, which depend upon WSNs for collecting
the data, and it can be improved through cloud/edge/fog computing [1–4]. In this way,
several services and applications of the IoT have been presented to transfer the data packets.
The IoT plans to create widespread Internet, which could influence different portions of
consumers’ requirements [5,6]. The exploitation of energy for the duration of the routing
procedure might cause a problem because of inadequate sensor strategies. Numerous
nodes are transferred in the land section over a few wireless types of machinery to analyze
the extensive possibility [7]. In IoT, WSN is a fundamental constituent that has increased
into more than a few dissimilar practical presentations [8]. Nowadays, WSNs and IoT have

Sensors 2021, 21, 8496. https://doi.org/10.3390/s21248496 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4562-4127
https://orcid.org/0000-0002-9043-8828
https://orcid.org/0000-0002-4671-6827
https://orcid.org/0000-0002-3997-5070
https://orcid.org/0000-0003-2325-855X
https://doi.org/10.3390/s21248496
https://doi.org/10.3390/s21248496
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21248496
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21248496?type=check_update&version=2


Sensors 2021, 21, 8496 2 of 17

been used in numerous risky and non-critical applications, which motivated to increase
their life expectancy [9]. WSN nodes are insignificant in battery-driven technologies [10],
so, the energy-efficient method raises the network lifespan, which is exceedingly impor-
tant. Till now, several methodologies and procedures have been used for energy-efficient
concepts in WSN-based IoT structures [11]. Moreover, the packet loss and higher delay
times occur because of congestion during the communication. Since, the congestion occurs
because of the restricted channel capacities [12,13].

In the present situation, not only have WSNs developed as important equipment,
but they are also recognized as playing a vital role in numerous applications, such as
the IoT [14]. However, the WSN resources are inadequate, therefore the routing scheme
turns out to be complex. For that reason, there is a need to create an enhanced routing
protocol that deliberates the energy-related issues [15,16]. Many types of research focus
on the clustering and routing design and additional schemes for energy conservation [17].
In the current situation, quality of service (QoS) must be enhanced because the system
should continue over an extended time [18]. After this process, additional information
about a structure is given through the optimization method [19]. The inadequacy of WSN
resources generate the designing challenge of an energy-efficient transmitting route and
network configuration [20]. Generally, these ideas have not appeared for any security and
these properties should be utilized sensitively [21]. This present research concentrates
on clustering/routing protocols established for WSN-dependent IoT applications. Here,
the routing procedure plays an essential part while transmitting the collected data from
sensors to the endpoint for additional control. The processed data could be exploited in
several applications for assisting individuals to advance their way of life [22,23].

The paper presents CAR-MOSOA for enhancing the lifetime of a network using
optimization-based clustering and routing in WSN-based IoT. The MOSOA is one of the
metaheuristic algorithms that imitate the natural behavior of the seagulls [24,25].

The major contribution of this research is as follows:

• A CAR-MOSOA based cluster head (CH) with efficient fitness function is developed.
This seagull optimization algorithm (SOA) is selected because it has the collision
avoidance property in nature, so it is mainly helpful to generate collision-aware
routing in the network.

• A CAR-MOSOA-based routing algorithm is developed with a trade-off between
transmission distance and a number of data that travel with an efficient particle
encoding scheme for the routing process.

• A simulation of the CAR-MOSOA is analyzed to demonstrate the superiority over
other existing algorithms.

The organization of this research paper is given as follows: The survey of the recent
techniques related to clustering and routing in WSN-IoT is described in Section 2. The
problem statement of this research is given in Section 3. The preliminaries and their system
model are explained in Section 4. The description of the proposed CAR-MOSOA method
with a block diagram is specified in Section 5. The simulation results and its comparative
analysis of the CAR-MOSOA method are declared in Section 6. Finally, the conclusion part
is stated in Section 7.

2. Related Work

There are numerous existing procedures, methods, and ideas from conventional
wireless networks that are yet to be exploited in WSN-IoT; however, several important alter-
ations lead to the necessity of innovative procedures and methods. In this segment, some
of the collected works concerning the clustering and routing in WSN-IoT are deliberated.

Jennifer S. Raj, Dr. Abul Basar [26] projected an energy efficient model through fuzzy
rule and neural networks clustering and routing (FNCR) for attaining the quality of service
(QOS) factors. The projected procedure employs the sequence of clustering with FNCR,
which was maintained through the shortest route with improved routing competencies for
WSN-IoT. Furthermore, the proposed FNCR consumed less energy and managed the QOS
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performance metrics. However, the FNCR has high energy consumption when compared
with other machine learning techniques.

Maryam Shafiq et al. [27] demonstrated the robust cluster-based routing protocol
(RCBRP) for WSN-IOT to recognize routing in which a smaller amount of energy was
expended to improve the life expectancy of a network. This suggested system offered
various stages to discover the transmission. Here, the energy-efficient clustering/routing
process, distance, and energy depletion control procedure have been analyzed. The analysis
clearly shows that the recommended method consumes less energy and stabilizes the load
by gathering the devices. However, at certain rounds, only a few nodes are alive, so that
the functioning of the network gets discontinued, and it reaches a dangerous situation.

Nalluri Prophess, Raj Kumar, Josemin Bala Gnanadhas [28] presented the cluster
centroid-based energy-efficient routing (CEER) procedure for WSN-supported IoT to en-
hance the lifespan of the network and minimize the energy depletion. The projected CEER
was exploited to resolve the issue of establishing zones to transfer the data professionally to
the base station (BS). Moreover, the routing process deliberates the nodes’ residual energy
and distance to BS. If the topology gets varied, the position of the node also varies and
moves beyond its sensing level.

Mohammad Ali Alharbi, Mario Kolberg, and Muhammad Zeeshan [29] demonstrated
an energy-efficient clustering/routing resolution for hot-spot difficulties present in WSN-
IoT. This clustering procedure depends on the position of nodes and exploits a CH pro-
cedure, which chooses a CH that controls the node connectivity. Correspondingly, this
proposed routing procedure manages weak situations using marginal paths to designate
the cluster leader. Conversely, it attains the better throughput standards for a few commu-
nication nodes only, later it fails to produce the best throughput.

Ipek Abastkeles-Turgut Gokhan Altan [30] presented a clustering and routing pro-
cedure called fully distributed energy-aware multi-level (FDEAM) for WSN-IoT. Here,
two-level/multi-level inter-cluster transmission processes are projected. Moreover, the
exposure region of second-level grouping was enthusiastically formed conferring to cluster
distance to BS. Self-arranged nodes elect the limits for clustering, and cluster heads are
selected by executing FDEAM method. Despite this, this method was not appropriate
for non-uniform node allocations and had the shortcoming of being reliant on a domi-
nant source.

Kavita Jaiswal and Veena Anand [31] demonstrated an energy-efficient optimal multi-
path routing protocol (EOMR) to enhance the QoS metrics in WSN-IoT presentations. This
EOMR protocol allows the source node to select a route for data transmission from the set
of identified multiple routes. Furthermore, it deliberates multiple aspects to choose the
ideal route for improving the lifespan and traffic amount at the subsequent nodes. The
transmission processes happen regularly in definite portions of the network, although
some portions are not utilized regularly throughout the period.

Nitesh Chouhan and S. C. Jain [32] presented the multi-path routing protocol using
the technique termed the tunicate swarm grey wolf optimization (TSGWO) procedure
in the WSN-IoT. By using TSGWO, the multiple routes were calculated by the source
node to numerous endpoints. The source node promotes the data packet to the end point
instantaneously. On the other hand, the route with negligible delay, routing distance, and
highest linkage lifespan was selected as the ideal route. However, this TSGWO procedure
does not consider the maintenance parameters for the calculation.

Betzler et al. [33] developed the constrained application protocol (CoAP) for the IoT.
Subsequently, this CoAP simple congestion control/advanced (CoCoA) was developed for
improving the performances of the IoT. This CoCoA was combined with the utilization
of retransmission timeout (RTO) aging approaches, dynamic RTO backoff measurements,
and round-trip time (RTT) measurements for achieving the evaluation of dynamic RTO to
forward the CoAP messages. The congestion control offered by CoCoA was convenient
for IoT features and flexible to network dynamics. However, this CoCoA only provided
congestion control for the IoT.
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From the literature review, it was observed that the WSN-IoT network paradigm is
the recent trend that attracts researchers due to its vulnerability. For over a decade, the
research community is working toward developing energy-efficient routing mechanisms
to increase network longevity. The proposed protocols with a detailed description of their
methodologies and focus on the issues that lead to high energy consumption in the nodes
with different activities are discussed in the following section.

3. Problem Statement

• The main challenge in energy-efficient routing is to have data transmission without
connectivity by exploiting stringent controlling procedures.

• Usually, sensor nodes depend on battery energy, which gets exhausted at a quicker
rate due to calculation and transmission processes [34].

• The single-hop transmission between the CH and BS creates a high energy consump-
tion over the network [35]. Therefore, data reliability must be preserved during the
data packets’ transmission.

• In WSN, the progressing of multiple subjects and node energy become serious issues
because of inadequate power delivered to the nodes [36].

Solution:
To obtain a faster and efficient solution for the clustering and routing problem, a meta-

heuristic approach or classical approach is exceedingly required. Therefore, this research
paper developed CAR-MOSOA-based clustering and routing algorithms for WSN-IoT
with the consideration of energy consumption of the sensor nodes for prolonging network
lifetime. In this CAR-MOSOA, optimal CHs are selected from the clustering by consid-
ering distinct fitness functions such as network coverage, communication cost, residual
energy, and node degree. This optimal CH selection is used to achieve load balancing
between the nodes and to minimize the energy consumption. Moreover, the routing over
the network is accomplished using the queue length, link quality, communication cost,
and residual energy. Here, the queue length considered in the MOSOA leads us to achieve
congestion-aware routing over the WSN-IoT.

4. Preliminaries

The main objective of this research is to generate collision-free (i.e., congestion-aware)
and energy-efficient routing for transmitting the emergency messages over the WSN-IoT
and also transmit the alert messages using the IoT devices to the respective destination with
a minimum delay. A multi-tier hierarchical framework based on subdivision technique
for node deployment that aims to reduce long-distance communication. The proposed
multi-tier framework can support load balancing and scalability. Scalability is a significant
aspect in planning a well-organized routing protocol for WSN-IoT. A decent transmitting
procedure has to be accessible and adaptive to alterations in the network configuration.

4.1. Multi-tier Framework

Figure 1 represents the multi-tier dependent clustering architecture. The nodes present
in this structure are either mobile or static, which depends upon the necessity of the
application. The concept of node mobility was conducted by developing the random walk
(RW) and random waypoint (RWP) model.

In this architecture, the quadrangular profile system zone is deliberated. The upper
level is constructed as the BS, and the system zone is separated into several regions. Each
region is distributed into sub-regions, then it is represented as a cluster. The regions are
condensed in the direction of the BS, and cluster counts are enlarged in the direction of
BS to steady the system load equivalently [37]. The lower level has the determined extent
through the lowest clusters count, and the upper level has the lowest extent through the
higher cluster count. The motive enumerated in this research is that the upper region
not only transfers collected information toward the BS but also relays the traffic of lower
regions. In additional confrontations, the intra-cluster distance is condensed as moving
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on the road to BS via cluster count through the diminishing region. The system model of
WSN-IoT is explained in the following section.
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4.2. System Model

Commonly, the WSN comprises a high quantity of low-priced and insignificant sensor
nodes. These nodes are frequently utilized in dissimilar presentations, for example, envi-
ronmental observation, gravity, moisture, estimating meteorological conditions, detecting
volcanic tremors, vehicular activities, and army investigation. Furthermore, the node with
substantial load traffic is deliberated as the chief influence that should be resolved to permit
improvement in the features of WSN. The network model comprehends a sensor node
through a sink node that is commonly positioned at the center of the recognition zone. The
network model with WSN-IoT is illustrated in Figure 2.
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In this research, CAR-MOSOA is considered to decrease the consumption of energy
in the WSN. In the WSN, the dead nodes correspondingly expended energy to direct the
information; however, it decreases the data speed and consumes additional energy from
the series, which diminishes the presentation and lifespan of the network. To eliminate
this, CAR-MOSOA-dependent clustering process is presented, which recognizes the finest
node for each clustering stage. Subsequently, the node in the system with high energy
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requirements need to be designated as the sink node that is termed as the leader of the
cluster group. This is because the leader recompenses the main part in the structure
to eliminate the additional energy depletion that qualifies the appropriate transmission
practice in the network.

4.3. Energy Model

Here, the energy model is calculated and the consumption of energy in the WSN
arrangement is determined. The structural design of the WSN is particularly planned
through dualistic categories of communication networks, for example, multi-path channels
depending on the distance between receiver, transmitter, and free space [38,39]. Once the
multi-path channel is employed, the channel distance is continually lessened over the
sample free space model. The architecture of the energy model for source/destination is
arithmetically expressed in Equation (1),

EnerT(1, D) =

{
L× EElec + 1 ∗ ∈FS ×D2, D < D0

L× EElec + 1 ∗ ×D2, D ≥ D0

}
(1)

where the energy required by multi-path channels is characterized as εMP, and the energy
needed for free space is specified as εFS. Moreover, the energy needed in place of an
electrical circuit is designated as EElec. The overall energy required by the transmitter
through the distance, d, is calculated in Equation (2). The energy prerequisite of a receiver
is expressed as Equation (2),

EnerR(L) = L× EElec (2)

where the receiver’s essential energy is specified as En(L), the distance between transmitter
and receiver is stated as εMP × D2 and ∈FS ×D2. EElec is calculated through numerous
features, for example, signal filtering, spreading, alphanumeric coding, and variation.

4.4. Overview of Seagull Optimization Algorithm

Here, the SOA is established to choose the leader of cluster/routing progression. A
comprehensive explanation of SOA is obtainable in this segment. Seagulls belong to the
family Laridae and can be found in the wide-ranging biosphere. There are numerous types
of sea birds, but seagulls has attractive characteristics such as, they are persistent and
their prey drive is strong. Therefore, the seagulls are referred to as clever birds [40] and
display specific migration and hunting behaviors. Seagulls are chosen over other seawater
and freshwater birds because of their extraordinary features and quick decision-making
abilities [41,42]. The seagull optimization algorithm has two important processes, i.e.,
migration and attacking, which are explained subsequently.

4.4.1. Migration

In process of migration, the seagull needs to recompense the following multiple
scenarios.

i. Collision avoidance

In the SOA, in order to avoid impact between neighbors, extra constraints are in place
for the calculation of the ideal exploration agent location as expressed in Equation (3).

Cs = A× Ps(X) (3)

where the drive features of the search agent are characterized as A, present iteration is
stated as X, search agent’s present location is specified as Ps, and Cs is not impacted by
residual agents. The search agent’s movement patterns are obtainable in Equation (4),

A = Fc− (X×
(

Fc
maxiteration

)
(4)



Sensors 2021, 21, 8496 7 of 17

where X = 0, 1, 2, . . . max iteration.
Fc is designated as 2; A is labeled linearly and condensed from Fc to 0; Fc is used to

regulate the constraint’s frequency.

ii. Movement in the direction of optimal neighbors

As soon as collision between neighbors is eliminated, the exploration agents are
detected in the direction of optimal neighbor movements, which is formulated as (5).

Ms = B× (Pb(X)− PS(X)) (5)

where the search agent and its position is specified as PS(X) & Ms; B is labeled as a
random agent, which is accountable for effectual assessment between examination and
manipulation; the exploration agent with optimal fitness is stated as Pb(X); and the random
value calculation is expressed in Equation (6)

B = 2× S = A2 × RD (6)

where RD is designated as a random quantity accessible in diversity between [0,1].

iii. Remain close to the finest search agent

At last, the location of the updated search agent is connected to the ideal search agent,
which is expressed in Equation (7),

DS = |Cs + Ms| (7)

where DS is defined as the distance between the actual search agent and the best-fit
search agent.

4.4.2. Attacking the Prey

The reason for the utilization of this algorithm is the reduced amount of calculation
involved in the exploration process. During the attacking process, seagulls modify the
migration state, in which their focus is on preserving their altitude based on air currents
and weight. In the course of attacking the prey, they may perform twisting motions in
midair. This twisting drive performance can be described as in Equations (8)–(11).

X = R× cos K (8)

Y = R× sin K (9)

Z = R× K (10)

R = U × eKV (11)

where actual logarithm base is specified as e; spiral shape quantities are defined as u and
v; k is labeled as an indiscriminate amount by the range [0 ≤ k ≤ 2π]; and the extent of
the spiral on each chance is signified as R. The updated progression of the search agent is
calculated through Equation (12),

Ps(X) = (DS× X×Y× Z) + Pbs(X) (12)

where Pbs(X) is designated as an optimum response and describes the position of the
remaining search agents.

5. Proposed Method

Here, in this research, collision-aware routing using multi-objective SOA (CAR-
MOSOA) is designed to decrease the additional consumption of energy at each node.
At preliminary circumstances, every node is produced through comparable energy bases.
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For the duration of transmission, energy is condensed for every node and determined by
the progression. Figure 3 shows the overall block diagram for the energy-efficient WSN-IoT.
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Step 1: At first, the sensor node is deployed.
Step 2: Then the multi-tier-based clustering model is created along with the sensor nodes.
Step 3: After that, the process of the fitness function is calculated based on the pro-
posed MOSOA.
Step 4: Then the process of CH selection occurs and progress the routing over WSN-IoT
based on MOSOA.
Step 5: After the clustering/routing process, the transmitted data is analyzed (to determine
whether it is collision free or not).

5.1. CH Selection

CH selection and routing are done using the MOSOA. The proposed MOSOA is
selected because it has a collision-avoidance property by nature, so it is mainly helpful to
generate congestion-aware routing during emergencies.

Fitness Function

The proposed MOSOA chooses the secure optimal CHs from the clusters for obtaining
secure data transmission over the network. The purpose is to choose the most optimal
number of nodes such as CHs. The objective is to accomplish, proper fitness by formu-
lating the network coverage, communication cost, residual energy, and node degree. The
parameters used in the clustering optimization are as follows:

a. Network coverage

The network coverage can be defined by Equation (13),

Ncov = r(Ni) (13)

where r(Ni) represents the radius covered by a node. The first objective is represented as

Minimize f1 =
1

NT

N

∑
i=1

Ncov(Ni)

b. Communication cost

The cost essential for transmitting to the neighbor node is described in Equation (14).

Ccom =
d2

avg

d2
0

(14)
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where d2
avg is specified as the distance between the neighbor and node; node radius is

defined as d2
0.

The second objective is represented as Minimize f2 = 1
NT

N
∑

i=1
Nprox(Ni), where N

represents a number of nodes.

c. Residual energy

The third objective of the residual energy is f1, which is reduced and represented in
Equation (15).

Minimize f3 =
m

∑
i=1

1
ECHi

(15)

d. Degree of nodes

Node degree is defined as the quantity of non-CH participants that go to the particular
mobile node. If a cluster head formerly had reduced participants, it sustains for an extensive
period, due to a preference for the lesser degree of nodes. Hence, the final objective is f3,
which is decreased in Equation (16).

Minimize f4 =
m

∑
i=1

Ii (16)

The above-declared objectives are convert the multi-objective function into a single
objective. Consequently, the normalization process (F(x)) is applied to every objective
α1, α2, α3, α4.

F(x) =
fi − fmin

fmax − fmin
(17)

where function value is signified as fi, and fmin and fmax are specified as the minimum
and maximum fitness values.

Minimum f itness = α1 f1 + α2 f2 + α3 f3 + α4 f4 (18)

where ∑4
i=1 αi = 1; and αi ∈ (0, 1).

In the process of routing, every population dimension is identical to the quantity of
cluster heads (m). Let Pi = (P1

i , P2
i , . . . Pm

i ) be ith population, where each dimension of
a population, i.e., P1

i = (0, 1), is randomly initialized. Further, a new plotting method is
employed to determine the following node in the direction of BS.

5.2. Routing Using MOSOA

In this phase, the collision-free optimal transmission path from the source node to
the destination is discovered using the MOSOA. The routing path generation is optimized
using the following fitness metrics such as queue length, link quality, communication
cost, and residual energy. This path generation has various phases such as representa-
tion, initialization, fitness function derivation, and iterative process. These processes are
detailed subsequently.

5.2.1. Representation and Initialization of Seagull

The probable solution for the MOSOA is represented as a seagull. The population
of seagulls characterizes that the transmission path contains a cluster head. In particular,
the seagull has x and y coordinates, and the initialization of the MOSOA is formulated in
Equation (19).

Csi = {Csi,1, Csi,2, . . . , Csi,m} (19)

where m is the number of CHs in the respective transmission path and 1 ≤ Csi,a ≤ m
defines the successive CH in the route.
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5.2.2. Fitness Function

The parameters used in the routing optimization are as follows:

a. Queue length

QL, shown in Equation (20), is considered as a primary fitness value during the routing
as it considers the congestion level of each node in the WSN-IoT. Since the developed CAR-
MOSOA is required to transmit the alert messages over the WSN-IoT, this QL is used to
improve the data delivery performances.

QL =
RPk

Total bu f f er
(20)

where the received packets at the kth node are represented as RPk.

b. Link quality

Link quality is used to define the successful data delivery between the nodes k and
l based on the amount of data packet transmissions and the retransmissions, which is
expressed in Equation (21).

Link quality =
1

f × r
(21)

where, f and r define the forward and reverse data transmission among the nodes.
The details of the communication cost and residual energy are already defined in the

section. Subsequently, all the multiple objective’s fitness is conflicting with each other, so it
is transformed into a single-objective fitness value as shown in Equation (22)

Routing f itness = δ1 ×QL + δ2 × Link quality + δ3 × CC + δ4 × RE (22)

where, δ1, δ2, δ3, and δ4 are the weighted parameters, which are equal to 0.3, 0.25, 0.25, and 0.2,
respectively; CC and RE represent the communication cost and residual energy, respectively.

5.2.3. Iterative Process

The iterative process of the MOSOA-based CAR is as follows:

1. At first, the seagulls are initialized with the routing path information, and the seagull
has the information about the x and y coordinates of the next-hop CHs.

2. The best population among the entire seagulls is identified based on the fitness
parameter expressed in Equation (22).

3. Equation (22) is used to avoid collision during the migration process. After accom-
plishing the collision avoidance, the remaining populations are updated based on the
best population (i.e., optimal routing path).

4. Further, the positions of the seagulls are updated according to the exploitation phase.
In this phase, the locations are updated by using the best solution from the MOSOA.

5. Finally, the developed MOSOA provides the optimal routing path from the source
CH to the destination node.

The data packet transmission is initialized once the routing path is identified using the
MOSOA. The queue length is used to generate the collision-free path, which transmits the
data over the network through the node that has less congestion. Next, the link quality is
used to discover the value of the route based on the sent and received packets. The transmis-
sion distance over the WSN-IoT is minimized by considering the communication cost, and
the residual energy to select the node with high remaining energy. Therefore, these fitness
values are used to select the optimal collision-aware route for alert message transmission.

6. Results and Discussion

This section discusses the results of the developed CAR-MOSOA for multicast routing
protocol in WSN-based IoT. The results and discussion of this proposed SOA method are
clearly described in this section. The Network Simulator-2.34 (NS-2.34) was used for the
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implementation of the CAR-MOSOA, in that the system used a 4-GB RAM and Intel Core
processor. The implemented SOA method was used to accomplish secure data transmission
between the source to the BS. The performance of the proposed algorithm was studied
based on the following parameters:

• Energy consumption: It is defined as the overall energy consumed by the system for
the period of data packet transmission.

• End-to-end delay: It is defined as the period between the transmission of the data
packet from the source node and its arrival at the destination node.

• Packet delivery ratio (PDR): It is demarcated as the proportion of the number of packets
delivered to the endpoint to the number of packets transmitted by a base station.

• Life time: It is calculated at each node while passing through the route request.
On the other hand, each node guesses the route lifespan between the actual and
aforementioned nodes.

The design and simulation of the CAR-MOSOA method in NS-2.34 with various
constraints such as network size, traffic type, packet size, and so on are listed in Table 1.

Table 1. Simulation parameters.

Constraints Value

Transmission power (W) 1.4
Traffic type CBR

Simulation time (s) 100
Receiving power (W) 1.0

Packet size (bytes) 512
Number of nodes 400
Network size (m) 500 × 500

MAC protocol IEEE 802.15.4
Initial energy (J) 100

Data transfer rate (Kb/s) 250

To analyze the effect of CBR traffic type, the network size was considered as 500 × 500.
The number of nodes was fixed as 400. The proposed CAR-MOSOA was effectively
executed and compared with customary cluster-based methodologies, for example, the
proposed calculations and their prevalent execution such as energy consumption, end-to-
end delay, PDR, the throughput of the above-mentioned node counts. Here, the existing
approaches such as FDEAM [30], EOMR [31], TSGWO [32], and CoCoA [33] were imple-
mented using the same specifications mentioned in Table 1.

6.1. Performance of Energy Consumption

The performance analysis of the proposed CAR-MOSOA and correlated systems, for
example, FDEAM [30], EOMR [31], TSGWO [32], and CoCoA [33], in the situation for
consumption of energy, is presented in Figure 4. From Figure 4, it is indicated that a smaller
amount of energy is consumed in the proposed CAR-MOSOA than that in the remaining
three conventional methods. In the CAR-MOSOA method, fewer nodes are convoluted in
the packet-promoting progression. Furthermore, a greater amount of energy is kept back
as nodes through the maximum optimality factor that continually acquires significance to
progress the data packets; quite the opposite, in conventional methods, an extra node is
required in dispatching the equivalent data packet; accordingly, more energy is expended
in the existing FDEAM [30], EOMR [31], TSGWO [32], and CoCoA [33] methods.
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Table 2 shows the comparative analysis of the energy consumption performance.
The table shows that the proposed CAR-MOSOA achieves less consumption of energy
when compared with existing techniques. In Figure 4, it witnesses that the CAR-MOSOA
method has an outstanding reduction in the consumption of energy in comparison with
the remaining three methods, as it exhibits consistency and consumes the smallest amount
of energy to establish the ideal route from base to endpoint. Moreover, Figure 4 shows that
consumption of energy rises as soon as node count rises in the setup.

Table 2. Comparative analysis of energy consumption.

Number of
Nodes

Energy Consumption (J)

FDEAM [30] EOMR [31] TSGWO [32] CoCoA [33] Proposed
CAR-MOSOA

100 0.8 1 8 11 0.8
150 7 9 15 15 5
200 10 14 19 24 6
250 14 19 26 29 9
300 26 30 31 32 24
350 29 36 37 41 24
400 41 47 44 49 33

6.2. Performance Based on End-to-End Delay

The performance analysis of end-to-end delay with CAR-MOSOA and existing meth-
ods (FDEAM [30], EOMR [31], TSGWO [32], and CoCoA [33]) is illustrated in Figure 5.
From Figure 5, it can be seen that CAR-MOSOA achieves less delay and continually at-
tempts to transfer the data packet to the finest intermediary node, which gratifies the
optimality feature. Quite the opposite, the conventional FDEAM [30], EOMR [31], TS-
GWO [32], and CoCoA [33] take a considerable period to determine the endpoint node.
Moreover, the reply message of the existing methods returns to the source node, only after
determining the destination node. Therefore, the typical end-to-end delay in the associated
system is longer than that in the CAR-MOSOA method. Table 3 shows the comparative
analysis of end-to-end delay performance. From the table, it can be seen that the proposed
CAR-MOSOA achieves less time delay when compared with existing techniques.
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Table 3. Comparative analysis of end-to-end delay.

Number of
Nodes

End-to-End Delay (s)

FDEAM [30] EOMR [31] TSGWO [32] CoCoA [33] Proposed
CAR-MOSOA

100 8 10 8 12 5
150 14 17 15 18 9
200 15 23 19 27 11
250 23 30 26 31 18
300 28 35 31 38 20
350 32 42 37 45 24
400 40 50 44 54 29

6.3. Performance Based on Packet Delivery Ratio

The performance analysis of packet delivery ratio with CAR-MOSOA and existing
methods (FDEAM [30], EOMR [31], TSGWO [32], and CoCoA [33]) is illustrated in Figure 6.
From Figure 6, it can be seen that CAR-MOSOA achieves better PDR in relation to the
existing methods. Moreover, the ratio of PDR turns out to be high once the correspond-
ing communication contains single and binary values. Table 4 shows the comparative
analysis of the packet delivery ratio performance. From the table, it can be seen that the
proposed CAR-MOSOA delivers more data packets at a specified node when compared
with existing techniques.
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Table 4. Comparative analysis of packet delivery ratio.

Number of
Nodes

Packet Delivery Ratio (%)

FDEAM [30] EOMR [31] TSGWO [32] CoCoA [33] Proposed
CAR-MOSOA

100 80 70 73 67 83
150 86 84 85 80 89
200 86 85 87 82 91
250 90 87 89 81 93
300 92 88 89 84 93
350 92 88 90 87 94
400 94 89 92 88 95

6.4. Performance Based on Network Lifetime

The performance analysis of network lifetime with CAR-MOSOA and existing meth-
ods (FDEAM [30], EOMR [31], TSGWO [32], and CoCoA [33]) is illustrated in Figure 7.
From Figure 7, we can see that CAR-MOSOA achieves better results in relation to the
existing methods. In the existing FDEAM [30], EOMR [31], TSGWO [32], and CoCoA [33]
methods, once node count rises in the network, additional sensor nodes begin to transfer
the data packets indiscriminately. Moreover, the node can expire at a certain time period.
In the CAR-MOSOA method, the ideal node is designated to transfer the packets, which
causes a rise in battery life and network lifetime. Table 5 shows the comparative analy-
sis of the packet delivery ratio performance. From Table 5, it is seen that the proposed
CAR-MOSOA increases the network lifetime at a specified node when compared with
existing techniques.
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From all the analyses, the proposed CAR-MOSOA shows that better QoS in WSN is
attained with a multi-tier framework. The CAR-MOSOA improves the performance of the
network and its QoS by executing a routing procedure to transfer the packets from a base
station to the endpoint by choosing the ideal route. The communication cost considered
in the clustering and routing process is used to minimize the energy consumption of
the network. The packet delivery is improved by generating the collision-aware routing
path using the MOSOA. Since, an optimal collision-aware transmission path is discovered
by considering the queue length, link quality, communication cost, and residual energy
in MOSOA-based routing process. Moreover, the PDR is also improved by avoiding
node failure based on the residual energy considered in the CH selection. Therefore, the
developed CAR-MOSOA obtains a higher PDR while achieving a greater network lifetime
in the WSN-based IoT.

7. Conclusions

Advancements in computer technology have contributed to the growth of WSNs,
which sense the requisite parameters at any time. The WSN-based IoT systems are gaining
huge attention in recent times. During point-to-point transmission, these systems suffer
from restricted bandwidth, low power, and limited resources. Collecting the data is a
familiar method for alleviating the above-mentioned problem, but the key problem in
sensor networks is how to process the collected data efficiently. Therefore, in this paper,
collision-aware routing using a multi-objective SOA (CAR-MOSOA) is proposed to transmit
the alert messages using the IoT devices to the respective destination with a significantly
reduced delay. The proposed works defining the role of IoT in WSN are analyzed and then
the various data aggregation approaches are presented and compared with previous works.
The data aggregation techniques focus on energy conservation, lifetime enhancement, better
QoS, and high-level security of the network. The overall simulation clearly shows that the
proposed CAR-MOSOA achieved better results by minimizing the energy consumption
and end-to-end delay by up to 25% and 34%, respectively. Moreover, the network lifetime
and PDR increased by up to 5.96% and 3.15%, respectively, when compared to the TSGWO
method. In the future, this research will be extended to use hybrid optimization techniques
to improve the performance of the network.
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