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Abstract: Composites of metal-organic frameworks and carbon materials have been suggested to be
effective materials for the decomposition of chemical warfare agents. In this study, we synthesized
UiO-66-NH2/zeolite-templated carbon (ZTC) composites for the adsorption and decomposition
of the nerve agents sarin and soman. UiO-66-NH2/ZTC composites with good dispersion were
prepared via a solvothermal method. Characterization studies showed that the composites had
higher specific surface areas than pristine UiO-66-NH2, with broad pore size distributions centered
at 1–2 nm. Owing to their porous nature, the UiO-66-NH2/ZTC composites could adsorb more
water at 80% relative humidity. Among the UiO-66-NH2/ZTC composites, U0.8Z0.2 showed the
best degradation performance. Characterization and gas adsorption studies revealed that beta-ZTC
in U0.8Z0.2 provided additional adsorption and degradation sites for nerve agents. Among the
investigated materials, including the pristine materials, U0.8Z0.2 also exhibited the best protection
performance against the nerve agents. These results demonstrate that U0.8Z0.2 has the optimal
composition for exploiting the degradation performance of pristine UiO-66-NH2 and the adsorption
performance of pristine beta-ZTC.

Keywords: UiO-66-NH2/ZTC composite; metal-organic framework; zeolite-templated carbon; nerve
agent; soman (GD); sarin (GB)

1. Introduction

Chemical warfare agents (CWAs) such as chlorine, mustard, VX, sarin (O-isopropyl
methylphosphonofluoridate, GB), and soman (O-pinacolyl methylphosphonofluoridate,
GD) were first used in World War I and have continued to be used for chemical attacks [1–3].
For example, nerve agents were stockpiled during the Cold War and were used in the
Iran-Iraq War in the 1980s and attacks in Syria in 2017 [2]. The nerve agents GB and
GD, which are both organophosphates with similar chemical structures, can deactivate
enzymes and disrupt the nervous system [3]. Activated carbon has been commonly used to
provide protection against CWAs. Nowadays, many researchers have synthesized porous
adsorbents such as metal-organic frameworks (MOFs) and Zr(OH)4 to decompose and
adsorb CWAs [4]. MOFs such as NU-1000, UiO-66, UiO-67, MIL-101(Cr), and HKUST-1
have narrow micropores that can enhance intermolecular interactions and thus improve the
adsorption performance [5]. Among MOFs, Zr-based MOFs are known to destroy CWAs
due to their high porosity and chemical stability [6–12]. In particular, UiO-66-NH2 has been
frequently used for the degradation of nerve agents [7,13–15]. However, the narrow mi-
cropores of MOFs may interrupt mass transfer and hinder adsorption [5,16,17]. Therefore,
MOF-carbon composites have recently been studied to circumvent these problems [5,18,19].

Zeolite-templated carbons (ZTCs) are highly ordered microporous carbon materi-
als [20–23] that have been used in many applications, such as hydrogen storage [24,25],
methane storage [26,27], CO2 capture [28], and catalysis [29]. The structures of ZTCs
depend on the synthesis conditions and can be classified into three types by quality. Type-I
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ZTCs consist carbon of zeolite-templated three-dimensionally ordered frameworks only,
which can be fabricated using BEA (beta), EMT, and FAU zeolites as templates [22,30].
Type-II ZTCs contain a mixture of the Type-I and non-templated carbons, and Type-III
ZTCs rarely contain Type-I structure [22]. Among Type-I ZTCs, beta-ZTCs have recently
been shown to have applicability as gas sorption materials, gas separation materials,
and capacitors [30,31].

Herein, we synthesized UiO-66-NH2/ZTC composites for the adsorption and decom-
position of GB and GD. The addition of beta-ZTC to UiO-66-NH2, which contains highly
porous and highly ordered features, provided additional adsorption and degradation
sites for nerve agents (Scheme 1). To the best of our knowledge, the application of ZTCs
and UiO-66-NH2/ZTC composites as reactive adsorbents for nerve agents has not been
previously reported.
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2. Results and Discussion
2.1. Characterization of UiO-66-NH2/ZTC Composites and Pristine Materials

Pristine UiO-66-NH2 and UiO-66-NH2/ZTC composites were prepared by a solvother-
mal method with different ratios of UiO-66-NH2 and beta-ZTC. Materials with UiO-66-
NH2/ZTC ratios of 2:8 and 8:2 were labeled as U0.2Z0.8, and U0.8Z0.2, respectively. Scan-
ning electron microscopy (SEM) images of the UiO-66-NH2/ZTC composites and pristine
materials are presented in Figure 1a–d, and the corresponding energy-dispersive X-ray
spectroscopy (EDS) elemental analysis results are presented in Table S1 (Supplementary
Materials). As shown in Figure 1a, UiO-66-NH2 consists of particles with a size range of
100–300 nm. It has been reported that the particle size of UiO-66-NH2 depends on the ratio
of hydrochloric acid (HCl) to N,N-dimethylformamide (DMF) during synthesis, with small
particles being obtained when a high concentration of HCl is used as a modulator [13].
Irregular round-shaped with the size of around 200 nm of beta-ZTC is shown in Figure 1b,
and transmission electron microscopy (TEM) images of beta-ZTC presented in Figure S1
indicate an ordered carbon structure [32]. As shown in Figure 1c, for U0.2Z0.8, the growth
of small UiO-66-NH2 particles occurred on the surface of beta-ZTC. It has been reported
that MOFs are located in the pores or void spaces of activated carbon in MOF-carbon
composites [33]. However, in U0.2Z0.8, the UiO-66-NH2 nanoparticles were dispersed on
the surface of beta-ZTC, likely because beta-ZTC has micropores with sizes between 0.7
and 1.0 nm. Furthermore, UiO-66-NH2 was densely agglomerated around the beta-ZTC
particles. In contrast, as the ratio of UiO-66-NH2 increased, UiO-66-NH2 particles were
also synthesized between the beta-ZTC particles, and UiO-66-NH2 and beta-ZTC were
uniformly dispersed in U0.8Z0.2 (Figure 1d). The EDS elemental analysis showed the cor-
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relation between the ratio of UiO-66-NH2 in materials and the ratio of Zr, N, and O in
materials (Table S1).
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Figure 1. Scanning electron microscopy (SEM) images of (a) UiO-66-NH2, (b) beta-ZTC, and UiO-66-NH2/ZTC composites
(c) U0.2Z0.8 and (d) U0.8Z0.2.

The attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra of the
materials are presented in Figure 2a, and the powder X-ray diffraction (PXRD) patterns of
the materials are presented in Figure 2b. In the ATR-FTIR spectra (Figure 2a), the bands
at 1400–1767 cm−1 were ascribed to the carboxylic functional groups of UiO-66-NH2. In
particular, the peak at 1658 cm−1 was attributed to C=O stretching, those at 1497 and
1573 cm−1 to OCO asymmetrical stretching, and those at 1385 and 1430 cm−1 to OCO
symmetrical stretching [13,34–36]. The peak observed at 1258 cm−1 was assigned to the
C–N stretching of UiO-66-NH2. The bands at 3367 and 3480 cm−1 were ascribed to the
symmetric and asymmetric vibrations of -NH2 groups, which showed synergistic effects
with the broad stretching vibration bands of -OH groups at 3000–3580 cm−1 [35,36]. The
intensities of these peaks decreased as the ratio of UiO-66-NH2 decreased in the UiO-66-
NH2/ZTC composites. The PXRD patterns of UiO-66-NH2 and beta-ZTC (Figure 2b) were
consistent with reported data [22,34]. Among the UiO-66-NH2/ZTC composites, the PXRD
pattern of U0.2Z0.8 shows that UiO-66-NH2 did not synthesize properly. This result can
be confirmed in another analysis. In Table S1, the EDS elemental analysis data also show
a lower Zr ratio than the theoretical amounts that U0.2Z0.8 should have. The amount of
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Zr should have been 12.48%, theoretically, but only 6.31% of Zr was observed in U0.2Z0.8.
On the other hand, the ATR-FTIR and PXRD patterns of U0.8Z0.2 show that the chemical
and crystallographic properties of both pristine materials were successfully preserved after
synthesis step. Furthermore, the EDS analysis showed that U0.8Z0.2 contains in 51.15% of
Zr, which is similar to the predicted results of 49.91%. From these analytical results, two
different substances were successfully incorporated into the composite U0.8Z0.2.
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The thermogravimetric analysis (TGA) curves and dynamic vapor sorption (DVS)
curves of the materials are presented in Figure 3a,b respectively. As shown in the TGA
curves (Figure 3a), the ZTC, which is mainly carbonaceous, exhibited a weight loss above
500 ◦C. The thermal decomposition of that carbon materials can be expected from the
intrinsic character of the ZTC. Guan et al., reported that Type-II ZTC can be thermally
decomposed at 500 ◦C, even below 250 ◦C, due to their amorphous nature [37]. In contrast,
the materials that included UiO-66-NH2 showed weight losses at 30–100 ◦C owing to
the vaporization of water, at 250–300 ◦C owing to the dihydroxylation of the cluster, and
at ~450 ◦C owing to the decomposition of the organic moieties [34,38,39]. As UiO-66-
NH2 is strongly hydrophilic, the weight loss below 100 ◦C increased as the UiO-66-NH2
ratio increased.
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These effects were also apparent in the DVS curves (Figure 3b). Pristine beta-ZTC
exhibited a typical type V isotherm, whereas UiO-66-NH2 exhibited a typical type IV
isotherm, as defined by the International Union of Pure and Applied Chemistry (IUPAC)
classification [40]. At 50% relative humidity (RH), UiO-66-NH2 showed high water vapor
adsorption, but beta-ZTC contained almost no water vapor. However, at 60% RH, beta-ZTC
adsorbed water vapor rapidly. Although beta-ZTC is highly hydrophobic, it can adsorb
more water vapor when the RH is high because of its numerous pores [41].

The nitrogen adsorption isotherms at 77 K and the pore size distributions of the
UiO-66-NH2/ZTC composites and pristine materials are presented in Figure 4a–c. The
Brunauer-Emmett-Teller (BET) surface areas (SBET) and total pore volumes at a relative
pressure of 0.95 (VT) are summarized in Table 1.
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Table 1. Structural characteristics of UiO-66-NH2/ZTC composites, pristine beta-ZTC, and pristine
UiO-66-NH2.

Sample SBET (m2/g) VT (cm3/g)

beta-ZTC 2560 1.39
U0.2Z0.8 2274 1.22
U0.8Z0.2 1360 0.65

UiO-66-NH2 1105 0.56

The nitrogen adsorption isotherms of all the materials had the characteristics of
typical type II isotherms, indicating the presence of a large number of micropores [42,43].
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The BET specific surface area of pristine UiO-66-NH2 was 1105 m2/g with a total pore
volume of 0.56 cm3/g. The pore size distribution calculated using density functional theory
(DFT), indicated that pristine UiO-66-NH2 had pores with sizes of 0.6, 1.2, and 1.4 nm
(Figure 4b). Based on the characterization results, medium to highly defective UiO-66-NH2
was synthesized, as reported in the literature [13].

The BET specific surface area of pristine beta-ZTC was 2560 m2/g with a total pore
volume of 1.39 cm3/g. Furthermore, the pore size distribution demonstrated that pristine
beta-ZTC mostly contained pores with a size of 1.12 nm as well as several pores with
sizes around 0.8, 1.2, and 1.5 nm (Figure 4b). These characteristics coupled with the PXRD
pattern (Figure 2b) and TEM images of beta-ZTC (Figure S1) demonstrated that beta-ZTC
was between Type-I and Type-II, as reported in the literature [22].

The BET specific surface areas of the UiO-66-NH2/ZTC composites U0.2Z0.8 and
U0.8Z0.2 were 2274 and 1360 m2/g, respectively, with total pore volumes of 1.22 and
0.65 cm3/g, respectively. With the increase in the beta-ZTC content, the specific surface
area and total pore volume increased. The broad pore size distributions showed that the
UiO-66-NH2/ZTC composites had pores with sizes centered around 1.12 nm. The latter
pore, which are not found in the pristine materials, may improve the adsorption ability of
UiO-66-NH2 (Figure 4c) [7,44–46].

2.2. Degradation Rates and Reaction Products of Nerve Agents

To analyze the performance of the UiO-66-NH2/ZTC composites and pristine mate-
rials for nerve agent degradation and the resulting reaction products, the materials were
reacted with GB and GD in pentane. The reacted samples were then extracted with ethyl
acetate and analyzed by gas chromatography–mass spectrometry (GC-MS).

During degradation, GB is first hydrolyzed to isopropyl methylphosphonoic acid
(IMPA) and GD to pinacolyl methylphosphonoic acid (PMPA). IMPA and PMPA are then
further hydrolyzed to methylphosphonoic acid (MPA), as described in Figure 5a [47].
Many researchers have shown that UiO-66-NH2 can degrade GD [7,13–15,45,48]; however,
only the degradation of DMMP, a simulant for GB, has been previously reported [8,46].
Figure 5b,c show the degradation rates of GB and GD with pristine beta-ZTC, pristine UiO-
66-NH2, U0.2Z0.8, and U0.8Z0.2. UiO-66-NH2 decomposed 90% of GB on average in 10 min
(Figure 5b), and this is the first report of the GB degradation performance of UiO-66-NH2.
UiO-66-NH2 also decomposed GD (Figure 5c), as previously reported. In contrast, little
decomposition of GB and GD was observed with beta-ZTC. To detect the reaction products
using GC-MS, the solutions were treated with N,O-bis(trimethylsilyl)trifluoroacetamide,
which resulted in the hydrogen atoms of the hydroxyl groups being replaced with trimethylsi-
lyl (TMS) groups [49,50]. Figure S2a,b show the GC spectra and Figure S3a–c show the MS
spectra of the reaction products from GB and GD degradation. The degradation rates of the
nerve agents were found to increase as the ratio of UiO-66-NH2 in the UiO-66-NH2/ZTC
composites increased. According to the reaction product analysis (Figure 5), U0.8Z0.2 de-
composed GB into IMPA and GD into PMPA, both of which eventually produced MPA,
confirming the ability of the UiO-66-NH2/ZTC composites to degrade nerve agents.

2.3. Adsorption of Nerve Agents

In the previous section, the performance of the UiO-66-NH2/ZTC composites for
nerve agent degradation was revealed. UiO-66-NH2 can provide sites for both adsorption
and decomposition via hydrolysis [13,49]. To clarify the effect of beta-ZTC in the U0.8Z0.2
composites, a gas adsorption test was performed.

Figure 6a,b show the results of the GB and GD gas adsorption tests with pristine
materials and U0.8Z0.2. Pristine beta-ZTC showed the best adsorption performance, with
no nerve agents detected at the outlet. The standard peak of each nerve agent was also
detected by micro-pulsed testing without the materials. The highest peaks for standard
GB and GD were 401.2 and 71.7, respectively. Based on the highest peaks, U0.8Z0.2 can
adsorb 1.5 times more GB and GD than pristine UiO-66-NH2 despite containing only 20%
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beta-ZTC. The adsorption performance and pore size distribution results (Figure 4) reveal
that pristine beta-ZTC and U0.8Z0.2 have excellent adsorption abilities for GB and GD [49].
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2.4. Protection Performance against GD

To investigate the synergic effect of the degradation and adsorption performance of
the materials, a protection performance analysis was performed using the convective-flow
swatch testing method and materials dip-coated in polyurethane foam.

Figure 7 shows the protection performance of the materials against GD. Convective-
flow testing was performed to test the resistance of the materials to convective penetration
by nerve agents [51]. U0.8Z0.2 exhibited greater protection against GD under convective
conditions than the pristine materials and U0.2Z0.8, which indicates that the nerve agent
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was adsorbed and decomposed by UiO-66-NH2 and beta-ZTC. The characterization, degra-
dation, adsorption, and protection performance results indicate that small amounts of
beta-ZTC in the composite with UiO-66-NH2 can promote the formation of suitable pores
and provide additional water-containing sites that can adsorb and decompose GB and
GD more effectively owing to the even dispersion of the components. To the best of our
knowledge, this work is the first to describe GB and GD adsorption and degradation by
beta-ZTC and its composites with UiO-66-NH2.
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UiO-66-NH2 against GD using the convective-flow swatch testing method.

3. Materials and Methods
3.1. Materials

Beta-ZTC was supplied by Prof. Kyoungsoo Kim from Jeonbook University. Zirconyl
chloride octahydrate (ZrOCl2·8H2O, 98%, powder), DMF (≥99.8%), HCl (37%), ethyl
acetate (anhydrous, 99.8%), and N,O-bis(trimethylsilyl)trifluoroacetamide (≥99.0%) were
purchased from Sigma-Aldrich (St. Louis, MO, USA). 2-Aminoterephtalic acid (BDC-NH2,
99%, powder) was purchased from Alfa Aesar (Haverhill, MA, USA). All chemicals were
used as received without further treatment. GB and GD were synthesized at OPCW-
designated laboratories. The purities of GD and GB, as determined by GC-MS and 1H
NMR, exceeded 99%.

3.2. Preparation of UiO-66-NH2/ZTC Composites (UxZ1−x) and UiO-66-NH2

UiO-66-NH2/ZTC composites (UxZ1−x|UiO-66-NH2:ZTC = x:1 − x) and pristine
UiO-66-NH2 were synthesized by a solvothermal method. HCl (35 mL) was added to DMF
(465 mL). Then, 2.80× g of ZrOCl2·8H2O and 1.575× g of BDC-NH2 were dissolved in the
solution by sonication for 1 h. Subsequently, 2.0(1 − x) g of beta-ZTC was dissolved in
the solution by sonication for 1 h. The solution was allowed to react at 120 ◦C for 24 h.
After cooling to room temperature, the resulting product was filtered, washed three times
with DMF and three times with ethanol, and dried at 120 ◦C for 12 h. UiO-66-NH2 was
synthesized similarly without the addition of beta-ZTC.

3.3. Characterization

SEM and EDS analyses were performed on a JSM-IT500HR scanning electron micro-
scope (JEOL, Tokyo, Japan) equipped with an Xplore EDS detector (Oxford Instruments,
Abingdon, UK) with acceleration voltages ranging from 5 to 10 kV. The materials were
coated with platinum prior to SEM observation. PXRD patterns were obtained using a
SmartLab diffractometer (Rigaku, Tokyo, Japan). ATR-FTIR spectra were acquired using a
Nicolet iS50 spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). TGA measure-
ments were performed using a Q500 analyzer (TA Instruments, New Castle, PA, USA)
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by heating the sample from 30 to 800 ◦C at a rate of 10 ◦C/min under nitrogen gas. DVS
measurements were performed at 25 ◦C using a DVS Intrinsic analyzer (Surface Measure-
ment Systems, London, UK). Nitrogen adsorption measurements were performed at 77 K
using an ASAP 2020 system (Micromeritics Instrument Corp., Norcross, GA, USA). Before
analysis, the samples were degassed at 393 K for 2 h under vacuum. The nitrogen isotherm
data were used to calculate the specific surface area using the BET method and the pore
size distribution using a DFT model.

3.4. Degradation of Nerve Agents and Reaction Products Analysis

The as-synthesized materials were exposed to 80% RH at 25 ◦C for 24 h and then
subdivided into 2 mL vials (10 mg each). Subsequently, 0.4 µL of nerve agent in 20 µL of
pentane was added to each vial. After agitation for 10 min on a vortex mixer, the residual
nerve agent was extracted with ethyl acetate (1.5 mL) for 2 h. The solution was deriva-
tized with N,O-bis(trimethylsilyl)trifluoroacetamide at 70 ◦C for 2 h [52]. Both extracted
and derivatized solutions were analyzed by GC-MS (GC 7890A, MSD 5977A, Agilent
Technologies, Madison, WI, USA) [47].

3.5. Analysis of Adsorption Performance against Nerve Agents

A micro-pulsed testing method was used to analyze the adsorption performance of
the materials (Scheme 2). This method is based on the micro-breakthrough testing method
and the liquid challenge/vapor penetration (L/V) swatch testing method [51,53]. A glass
tube with a nominal inner diameter of 4 mm was packed with 20 mg of material, which
was fixed in place with glass fiber at the top and bottom. Then, 8 µL of nerve agent was
injected and the concentration of the nerve agent at the outlet was observed using GC-FID
(GC 7890A, Agilent Technologies, Madison, WI, USA) at a flow rate of 50 mL/min.
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3.6. GD Protection Performance Analysis (Swatch Testing)

To analyze the GD protection performance, the convective-flow-liquid challenge/vapor
penetration (L/V) swatch testing method from TOP-08-2-501A was used [51]. Convective-
flow testing was performed to test the resistance of the materials to convective penetration
by nerve agents. The as-synthesized materials were dip-coated in polyurethane foam
(Testfabrics, West Pittston, PA, USA) and cut into pieces with a diameter of 45 mm. The
cut pieces were treated in a temperature humidity chamber at 32 ◦C and 80% RH for ≥2 h.
After mounting in the test cell, the material was covered with 10 drops (1 µL each) of
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GD and the test cell was assembled. For convective-flow testing, the airflow rate was
controlled to maintain a ∆P value of 24.9 ± 3.7 Pa between the top and bottom of the test
cell (Scheme 3). Air from the underside of the test cell was collected using a Porapak Q
adsorption tube. Compounds were desorbed from the tubes using a thermal desorption
instrument (Ultra-Unity, Markes, Llantrisant, UK) and analyzed using GC-FID (GC 7890A,
Agilent Technologies, Madison, WI, USA).
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4. Conclusions

This study evaluated the performance of UiO-66-NH2/ZTC composites and the corre-
sponding pristine materials for the adsorption and decomposition of nerve agents. The
composites had higher specific surface areas than pristine UiO-66-NH2. Furthermore, the
composites had broad pore size distributions with new larger pores, which can absorb
more water at 80% RH. The degradation rates of GB and GD increased as the ratio of
UiO-66-NH2 in the composite increased. In contrast, the gas adsorption ability increased
as the ratio of beta-ZTC increased. Furthermore, convective-flow swatch testing revealed a
synergistic effect between the degradation and adsorption performance. Among the inves-
tigated materials, U0.8Z0.2 showed the best protection performance against nerve agents.
The improved performance of the U0.8Z0.2 composite was attributed to the presence of the
optimal amount of beta-ZTC, which can provide additional adsorption and degradation
sites for nerve agents.

Supplementary Materials: The following are available online, Table S1: EDS elemental analysis of
pristine materials and UiO-66-NH2/ZTC composites, Figure S1: TEM images of beta-ZTC in (a) low
magnification, and (b) high magnification, Figure S2: GC spectra of the reaction products from the
degradation of nerve agents (a) GB and (b) GD by U0.8Z0.2, Figure S3: MS spectra of reaction products
(a) TMS-IMPA, (b) TMS-PMPA, and (c) TMS-MPA.
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