
 International Journal of 

Molecular Sciences

Article

In Vitro Efficacy of Bacterial Cellulose Dressings Chemisorbed
with Antiseptics against Biofilm Formed by Pathogens Isolated
from Chronic Wounds

Karolina Dydak 1 , Adam Junka 1,* , Agata Dydak 2, Malwina Brożyna 1, Justyna Paleczny 1 ,
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Abstract: Local administration of antiseptics is required to prevent and fight against biofilm-based
infections of chronic wounds. One of the methods used for delivering antiseptics to infected wounds
is the application of dressings chemisorbed with antimicrobials. Dressings made of bacterial cellulose
(BC) display several features, making them suitable for such a purpose. This work aimed to compare
the activity of commonly used antiseptic molecules: octenidine, polyhexanide, povidone-iodine,
chlorhexidine, ethacridine lactate, and hypochlorous solutions and to evaluate their usefulness as
active substances of BC dressings against 48 bacterial strains (8 species) and 6 yeast strains (1 species).
A silver dressing was applied as a control material of proven antimicrobial activity. The methodology
applied included the assessment of minimal inhibitory concentrations (MIC) and minimal biofilm
eradication concentration (MBEC), the modified disc-diffusion method, and the modified antibiofilm
dressing activity measurement (A.D.A.M.) method. While in 96-well plate-based methods (MIC
and MBEC assessment), the highest antimicrobial activity was recorded for chlorhexidine, in the
modified disc-diffusion method and in the modified A.D.A.M test, povidone-iodine performed
the best. In an in vitro setting simulating chronic wound conditions, BC dressings chemisorbed
with polyhexanide, octenidine, or povidone-iodine displayed a similar or even higher antibiofilm
activity than the control dressing containing silver molecules. If translated into clinical conditions, the
obtained results suggest high applicability of BC dressings chemisorbed with antiseptics to eradicate
biofilm from chronic wounds.

Keywords: bacterial cellulose; dressing; antiseptics; chronic wounds

1. Introduction
1.1. Non-Healing Wound Infections—A Current Medical Problem

The disease entity referred to as chronic wound is predominantly a result of patient
comorbidities such as diabetes, obesity, and disorders of the immune and/or cardiovascular
system. Long-term effects of these diseases translate into disturbances of chronic wound
healing. The open cavity of a chronic wound, often filled with an abundant volume
of exudate (wound fluid), which is rich in nutrients, constitutes a perfect environment
for microbial development [1–4]. The presence of microorganisms in open wounds is
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a natural phenomenon and does not always delay the healing process [5,6]. However,
along with microbial multiplication in the wound, the capacity of the immune system
to control it declines together with the wound condition. This phase is referred to as
“critical colonization”, and its symptoms are often difficult to grasp before an obvious
burst of local infection. Critical colonization is a phase when local antisepsis should be
included in the therapeutic algorithm. The established scales, such as wound at-risk score
(WAR) or therapeutic index for local infections score (TILI), are helpful in capturing critical
colonization [7–11].

Wound infections are caused by biofilms–complex structures consisting of a large
bacterial/yeast cell population communicating with each other and producing a hetero-
geneous, protective, extracellular matrix. Biofilm formation within the wound causes
therapeutic issues, mostly due to the high tolerance of this structure to physical and
chemical eradicative agents. A biofilm-based wound infection can also develop into a
life-threatening, systemic infection [2–4]. The process of development of a biofilm-based
infection in a wound and the corresponding clinical symptoms are presented in Figure 1.
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Figure 1. Stages of wound infection and corresponding clinical symptoms [9,10,12]. * antisepsis,
wound debridement, antimicrobial dressings, non-antibiotic local treatment. Local antibiotic therapy
is not recommended. ** systemic empiric antibiotic therapy depends on the clinical condition of
the patient. Empirical treatment should consider the expected pathogens, the site and nature of the
infection, and cover the broadest possible spectrum of microorganisms. Empirical antibiotic therapy
should be turned into targeted antibiotic therapy as soon as possible after obtaining microbiology
test results.

To counteract biofilm-based wound infections, the European Wound Management
Association (EWMA) introduced and recommended the TIME strategy, which in 2019
was extended to TIMERS. The four main pillars of the TIME strategy were: T—tissue
debridement, I—infection and inflammation control, M—moisture balance, E—edges,
epithelization stimulation, and the two new ones added in the TIMERS strategy are R—
Repair of tissue and regeneration and S—Social factors that impact healing [13–16].

Considering the topic at hand, the “I” component is the crucial one. Antiseptics
need to be applied to prevent/fight against wound infection [12,17]. The most ubiquitous
and commonly used antiseptic products are octenidine dihydrochloride (OCT), polyhex-
amethylene biguanide hydrochloride (polyhexanide, PHMB), iodine povidone (PVP-I),
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chlorhexidine (CHX) and ethacridine lactate (EL), although the latter is not recommended
by any acknowledged wound care organization. Recently, a new class of antiseptic agents
(or rather a new formula of already-known type of antiseptics) has been introduced and
become widespread, namely super-oxidized hypochlorite solutions (SOH) [1,2,18].

1.2. Polyhexamethylene Biguanide Hydrochloride (Polyhexanide, PHMB)

PHMB selectively affects the cytoplasm and the cytoplasmic cell membrane and
causes microbial DNA damage [19,20]. PHMB is active against Gram-positive (including
methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus
(VRE)) strains and Gram-negative bacteria, in both planktonic and biofilm forms, spore-
forming bacteria, intracellular bacteria, yeast, and the human immunodeficiency virus
(HIV) [19,21]. The anti-biofilm activity of PHMB was evaluated in numerous in vitro
and in vivo studies (including clinical ones). The results show that PHMB substantially
removes biofilm and can prevent biofilm formation [22–28]. PHMB is reported as an
effective antibacterial agent with prolonged action (minimum 2–3 h after exposure) and
a low potential to induce microbial resistance [17,20,29]. Studies have shown that PHMB
is well-tolerated when administered topically on the skin, mucosa, or the wound has low
toxicity to eukaryotic cells and rarely causes allergies [17,19,30]. The wound’s higher pH
stimulates the antimicrobial and anti-biofilm activity of PHMB. Moreover, PHMB improves
the process of granulation and wound healing [17,31,32].

1.3. Octenidine Dihydrochloride (OCT)

The action of OCT is based on its interaction with the cell wall and membrane struc-
tures, leading to enzymatic systems damage, cellular function disorders, cytoplasm leakage
and, consequently, cell death. Pathogen cell damage causes chemotaxis of granulocytes,
which, in turn, reduces the duration of the infection [17,33]. OTC has a broad spec-
trum of action, including Gram-positive and Gram-negative bacteria, fungi, viruses and
protozoa, MRSA and multi-drug resistant (MDR) strains [33–35]. Also, the anti-biofilm
activity of OCT was proven in in vitro and in vivo studies. The results showed that
OCT not only effectively eradicates fully-grown biofilm but also prevents biofilm from
forming [26,27,36–38]. Similar to PHMB, OCT has high antimicrobial effectiveness and
prolonged action time [17,39]. Until recently, OCT has been considered as not inducing
resistance. However, in 2018 there was observed a reduced susceptibility to OCT in Pseu-
domonas and Burkholderia strains [40,41]. OCT has low cytotoxicity to eukaryotic cells and
is biocompatible. Allergies are reported rarely [17,30,42].

1.4. Chlorhexidine (CHX)

CHX binds to the microbial cytoplasmic membrane and leads to its disruption. A low
concentration of CHX (causing destruction of cell membrane components and dehydro-
genase stimulation) is bacteriostatic, while high concentrations of CHX are bactericidal.
In such a high concentration, CHX inhibits enzymes and coagulates proteins and cyto-
plasm components. Higher wound pH enhances CHX activity [43]. CHX has a broad
spectrum of action, which includes Gram-positive and Gram-negative bacteria, fungi,
enveloped viruses, and protozoa [44–46]. Studies have proved that CHX has a bactericidal
effect against biofilm, but it does not effectively remove biofilm from surfaces [45,47,48].
Anti-biofilm effectiveness of CHX against dental plaque was also proved [49–51]. CHX
applied to the skin or to an abiotic surface has prolonged activity [44–46]. Noteworthy,
CHX induces bacterial resistance and leads to cross-resistance to antibiotics. Despite that,
CHX is still widely used in wound treatment all over the world [17,52]. Unfortunately,
there are numerous side effects related to its application, such as cytotoxicity, anaphylactic
reaction, and risk of hydrolysis to cancerogenic 2-chloroaniline [42,53].
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1.5. Povidone-Iodine (PVP-I)

PVP-I irreversibly binds to proteins, lipids and nucleic acids of bacterial cells and
induces pores in their cell walls. Changes in phospholipids’ unsaturated fatty acids
structure lead to cell membrane damage. Because of protein oxidation, microbial enzymes
are inactivated; moreover, the iodization of the derivatives of pyrimidine bases and amino
acids leads to DNA structure damage [54–56]. PVP-I is active against Gram-positive, and
Gram-negative bacteria, fungi, viruses, protozoa, bacterial spores and can also inactivate
bacterial toxins [17,55,56]. Strong anti-biofilm activity of PVP-I has been reported in in vitro
and in vivo studies [55,57–64]. PVP-I does not have a prolonged mode of action [17]. There
is no evidence of induction of bacterial resistance resulting from PVP-I use [55,56,65]. PVP-I
cytotoxicity is low, but there is a risk of penetration of free iodine into the blood. Therefore,
PVP-I should not be used longer than seven days, and it is not recommended for patients
with thyroid problems. Povidone-iodine has a brown color that fades with the loss of
povidone antimicrobial activity [17,29,55].

1.6. Ethacridine Lactate (EL)

The action of EL involves inhibition of bacterial nucleic acid synthesis. EL acts
against vegetative forms of Gram-positive and Gram-negative bacteria and fungi [66]. The
anti-biofilm activity of EL is very slight, especially against the biofilm formed by Gram-
negative rods [10,35,67]. There is no evidence of EL’s prolonged time of action. Reports
show that the nosocomial pathogen Pseudomonas aeruginosa can survive and multiply
in EL solutions [68,69]. Studies have shown that EL has average antimicrobial activity
compared to other antiseptics and may delay the healing process, causes allergies as well
as cytotoxic, genotoxic, and mutagenic effects. [35,70]. EL is presently considered an
obsolete antimicrobial compound, and its usefulness is questionable due to many side
effects. However, EL is still in use in hospitals and for outpatients because of its low price,
easy access, and force of habit [17].

1.7. Super-Oxidized Hypochlorite Solutions (SOH)

Hypochlorites have been used as antimicrobial agents for a long time. Modern super-
oxidized solutions of hypochlorites include a combination of NaOCl and HOCl, and a have
stable formula [17]. After SOH application, reactive oxygen species are formed. HOCl
denatures and increases the permeability of the microbial cell wall, which leads to the
inflow of water into the cell and to its destruction as a result of osmotic pressure [17,71].
The purported spectrum of SOH activity includes Gram-positive and Gram-negative
bacteria, MRSA and VRE strains, fungi, and viruses [17,71–73]. Noteworthy, there are some
inconsistencies in research results regarding SOH’s antimicrobial and anti-biofilm activity.
In some studies, strong efficacy of SOH against biofilm was shown [74–78], whereas other
studies described SOH as poorly working or not working at all. These discrepancies can be
due to using various methods and different concentrations of NaOCl and HOCl. While the
antimicrobial activity of high chlorine concentrations is undisputable, the extrapolation of
favorable results to all SOH-containing products (regardless of the chlorine content) seems
to be inappropriate [27,79–83]. There is a lack of evidence for a prolonged time of action
of SOH. In low concentrations, SOH is considered safe in use (towards eukaryotic cells)
and not causing cytotoxic effects. The use of SOH can support autolytic wound cleansing
processes and can have anti-inflammatory effects [17,71,80].

1.8. Modern Multifunctional Dressings for Non-Healing Wounds

The novel active dressings for non-healing wounds are medical products, which
support all of the above-mentioned pillars of the TIMERS wound care strategy. The wide
range of commercially available active dressings allows choosing the optimum product for
the treatment of a specific wound type at any stage. There are dressings supporting wound
debridement, a number of dressings keeping the wound environment moist and certain
types improving the epithelization process. The addition of antimicrobial compounds
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allows limiting wound colonization, prevent infection and support local treatment [84,85].
Examples of antimicrobial dressings are shown in Figure 2.
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PHMB—polyhexanide; PVP-I—povidone-iodine; CHX—chlorhexidine; OCT—octenidine.

1.9. Bacterial Cellulose as an Excellent Base Material for Non-Healing Wound Dressings

Bacterial cellulose (BC) is a biopolymer produced by specific bacterial species, among
which Komagataeibacter xylinus is considered the most effective one [97,98]. BC purified
from bacteria is a structure composed of glucose chains, organized into parallel structures,
which form nanofibers. The crosslinked structure of BC affects its mechanical strength
and, thanks to its hydrophilic nature, provides BC with a high ability to absorb fluids.
Thanks to its high purity (no hemicellulose, pectins, waxes typically for plant cellulose),
nanofiber and polysaccharide structure, BC is highly biocompatible and does not induce
any immunological response [99–101]. Several studies have proved that BC also displays
very low cytotoxic and genotoxic effects [97,102–106]. Moreover, human enzymes are
basically incapable of digesting BC, which is a desirable feature in implantation medicine.
BC material can be subjected to autoclaving (to gain sterility) and to a number of in situ
and ex situ modifications [99,107,108]. Therefore, BC is of high interest to the medical
and pharmaceutical industry and may be applied in wound dressings, bone and cartilage
implants, as a material for tissue reinforcements, contact lenses, biosensors, drug delivery
systems, hernia meshes or artificial skin [99,100,109].

Regarding dressings for wound healing, it should be stressed that BC can absorb high
amounts of exudate and keep the wound environment moist. Owing to BC’s highly adhe-
sive properties, application and removal are painless and do not damage the newly healed
tissue. Native BC is transparent, which allows controlling of wound conditions without
removing the dressing. As mentioned above, BC is non-cytotoxic and non-genotoxic, has
high biocompatibility and does not cause allergies [97,99,100,109]. Studies have proved
that the application of BC dressings can reduce wound pain, accelerate and facilitate
re-epithelization, reduce total healing time and visibility of scars [110–112].

The studies listed above have shown that bacterial cellulose is safe for use as a dress-
ing for non-healing wounds. Native BC has no antimicrobial activity. However, BC’s
ability to absorb high amounts of fluids and wide possibilities of its modification enable
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enrichment of BC with antimicrobial substances. There are some commercially avail-
able BC dressings—some of them made of native cellulose—But there are also dressings
containing such substances as sodium hyaluronate or antimicrobial polyhexanide, or
chlorhexidine. The interest in BC functionalization with various antimicrobial compounds
is constantly growing. The examples of compounds, substances and molecules that are
the subject of research (as additives to BC affecting its bactericidal activity) are presented
in Figure 3 [92,99,100,113–173].
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Figure 3. Examples of compounds/substances/molecules introduced to bacterial cellulose (BC) as an antimicrobial
additive. MgO—magnesium oxide; CuO—copper oxide; TiO2—titanium dioxide; ZnO—zinc oxide; Na-MMT—sodium
montmorillonite; Ca-MMT—calcium montmorillonite; Cu-MMT—copper montmorillonite [92,99,100,113–173].

To the authors’ best knowledge, there is presently only one commercially available BC
dressing displaying antimicrobial activity (thanks to chemisorption with PHMB).

Therefore, in this research, we have evaluated the antimicrobial and antibiofilm activity
of bacterial cellulose dressings enriched ex situ with other commonly used antimicrobial
compounds (OCT, PVP-I, CHX, EL and SOH) against biofilm-forming nosocomial pathogens.
Moreover, we have provided a rich set of control settings (BC chemisorbed with PHMB;
dressing chemisorbed with active silver) to get a broad picture of the phenomena observed.

2. Results
2.1. Evaluation of Test Strain Resistance Mechanisms

Out of 57 strains, 29 (50.8%) had one or more resistance mechanisms. All 6 S. aureus
strains were methicillin-resistant, and all clinical strains of S. aureus were MLSB (+). None
of the S. aureus strains were vancomycin-resistant. Only one clinical strain of S. epidermidis
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was MLSB (+). All clinical strains of E. faecium were vancomycin-resistant and HLAR (+).
Among K. pneumoniae, one clinical strain was KPC (+), two clinical strains were MBL (+)
and OXA-48 (+) and all clinical strains were ESBL (+). One of the clinical K. pneumoniae
strains showed all the investigated resistance mechanisms. Two clinical strains of E. coli
were ESBL (+). The reference strain and four clinical strains of P. aeruginosa were MBL
(+). Three clinical strains of E. cloacae were MBL (+), four were ESBL (+), and two were
OXA-48 (+). None of the A. baumannii strains had resistance mechanisms. Detailed data
are summarized in Table S1 of the Supplementary Materials.

2.2. Comparison of the Amount of Formed Biofilm and Metabolic Activity of Bacteria/Yeast Cells in
Biofilm Structure

The strains, which produced the highest amount of biofilm biomass were: ECL1 > KP1
> ECL2 > ECL5 > PA2. The weakest biofilm production was shown by strains: EC3, EC1,
AB3, EC5 and EC2. Biofilm formed by strains: SE1, SA5, SA2 and SA1 showed the highest
metabolic activity, while the lowest metabolic activity was displayed by AB3, AB5, AB2
and by the reference strain E. faecium ATCC 19434. C. albicans ATCC 10231 was the most
metabolically active among the tested yeast strains, followed by (in descending order):
CA2, CA4, CA3. CA1 and CA5. The results of both experiments are shown in Figure 4.
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of formed biofilm was measured using crystal violet (λ = 550 nm), and biofilm metabolic activity was measured with 2, 3, 5-
triphenyl tetrazolium chloride (TTC, λ = 490 nm), and with resazurin (λ = 570 nm, only Candida spp.). Tested strains: SA—
Staphylococcus aureus, SE—Staphylococcus epidermidis, EF—Enterococcus faecium, KP—Klebsiella pneumoniae, EC—Escherichia
coli, PA—Pseudomonas aeruginosa, ECL—Enterobacter cloacae, AB—Acinetobacter baumannii, CA—Candida albicans.

Noteworthy, the pooled amount of biofilm biomass (Figure 4, upper part) of Gram-
negative species was statistically higher (Mann-Whitney (M-W) test, p < 0.001) than the
analogical parameter recorded for Gram-positive species. The opposite trend was ob-
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served concerning metabolic activity; the biofilms of Gram-negative species were in total
significantly less active than the biofilms of Gram-positive species (M-W test, p < 0.001).

2.3. Evaluation of Minimal Inhibitory Concentration (MIC) and Minimal Biofilm Eradication
Concentration (MBEC) of Tested Substances
2.3.1. MIC

All substances were tested in the range of 50–0.098% of working solution (concentra-
tion provided by the manufacturer). If MIC was not observed, the concentration range
was extended to 0.0015%. OCT inhibited the growth of all tested microorganisms within
the tested concentration range. MIC values were observed between 0.049% and 3.13%
of OCT working solution (0.5% of OCT). The strongest effects (the lowest MIC) were
observed for A. baumannii PMC 2740 strain (0.049%), C. albicans, S. aureus, S. epidermidis
and E. faecium strains (0.098–0.195%, except for two strains: SE3 and EF3). The weakest
effects were observed for PA2 (3.13%), PA3, KP2 and SE3 (1.56%), and intermediate effects
for EF3, K. pneumoniae ATCC 4352, EC2, EC4, AB1, AB2 and AB4 (0.39%) and for the rest of
the tested strains (n = 20, 0.78%). OCT acted stronger on Gram-positive cocci and yeast
than on Gram-negative rods. PHMB was effective against all tested strains. The range of
product working solution for MIC was 0.024–6.25%. The strongest effects were observed
for AB2 (0.024%), AB1, AB3, S. epidermidis PCM 2118 and SE4 (0.049%) and for SE1, SE2
and SE3 (0.098%). The weakest effects were observed for PA2, PA3, PA4 (6.25%), KP1, PA1,
PA5, P. aeruginosa ATCC 27853 (3.13%) and for KP2, ELC4, E. cloacae ATCC 13047 (1.56%).
Intermediate effects were observed for KP3, EC2, C. albicans ATCC 10231 (0.78%), K. pneu-
moniae ATCC 4352, KP4, KP5, E. coli ATCC 25922, EC1, EC3, EC5, ECL1. ECL3, ECL5, AB4,
CA1–5, (0.39%) and 0.195% for the remaining strains (n = 17). PHMB acted better against
Gram-positive cocci and A. baumannii strains than against the rest of Gram-negative rods
and yeast. PVP-I also was effective against all tested strains. MIC values were observed
between 0.78% and 6.25% of product working solution. The strongest effects were observed
for SE2 and SE3 (0.78%), the weakest for E. faecium ATC 19434, EF3, EF4, KP1, KP2, KP4,
KP5, P. aeruginosa ATCC 27853, PA1–PA5 and AB5 (6.25%) and intermediate for SA3, SA4,
S. epidermidis PCM 2118, SE4, SE5, ELC2, CA1, CA3, CA5 (1.56%) and for the rest of tested
strains (29, strains, 3.13%). The best action of PVP-I was observed against S. epidermidis
and C. albicans strains and the weakest against P. aeruginosa and K. pneumoniae. The results
for OCT, PHMB and PVP-I, are presented in Figure 5.

CHX was effective against all tested strains. The range of product working solutions
for MIC was 0.0031–0.78%. The strongest effects were observed for S. epidermidis PCM
2118, SE2, EF5 (0.0031%), S. aureus ATCC 33591, SA3, SA4, SE4, E. coli ATCC 25922 and
EC2 (0.012%). The weakest effects were observed for: KP1, E. cloacae ATCC 13047, ECL2,
ECL4 (0.78%), KP3, KP4, EC5, PA2, PA4, ECL1, ECL3, ECL5 and AB1–AB5 (0.39%), and
intermediate for: K. pneumoniae ATCC 4352, KP2, KP5, PA3 (0.195%), EF1, EF3, EC3,
P. aeruginosa ATCC 27853, A. baumannii PCM 2740, C. albicans ATCC 10231, CA3, CA4
(0.098%) and the rest of the tested strains (n = 16, 0.049%). The highest activity of CHX was
observed for Staphylococci and the weakest for E. cloacae, A. baumannii and K. pneumoniae.
EL was effective for 49/54 strains in the tested concentration range. Strains KP1, KP4, KP5,
E. cloacae ATCC 13047 and ECL2 were resistant to EL in 50% concentration. Against the
rest of the tested strains, EL was effective in a concentration range from 0.78% to 50%. The
strongest effects were observed for: SE1, SE2, SE3 (0.78%), S. epidermidis PCM 2118, SE4,
EF2 and EF5 (1.56%). The weakest effects were observed for KP2, KP3, EC5, ECL1, ECL3,
ECL4, ECL5 (50%), K. pneumoniae ATCC 4352, A. baumannii PCM 2740 and AB1–AB5 (25%)
and intermediate for SE5, EC2, EC3, EC4, PA3, PA4 (12.5%), SA4, SA5, E. faecium ATCC
19434, EF1, EF4, PA5, CA2 (3.13%) and for the rest of the tested strains (15 strains, 6.25%).
The best activity of EL was observed for S. epidermidis and E. faecium and the weakest for
E. cloacae, A. baumannii and K. pneumoniae. SOH was not effective against any of the tested
strains in the concentration range from 50 to 0.098%. The results for CHX, EL and SOH, are
presented in Figure 6.
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Figure 5. Minimal inhibitory concentrations of OCT, PHMB and PVP-I, presented as a percentage of
working solutions (concentration provided by the manufacturer). Tested compounds: OCT—octenidine
dihydrochloride, PHMB—polyhexanide, PVP-I—povidone-iodine (Octenilin® 0.05% of OCT, Prontosan®

0.1% of PHMB and Braunol® 7.5% of PVP-I). Tested strains: SA—Staphylococcus aureus, SE—Staphylococcus
epidermidis, EF—Enterococcus faecium, KP—Klebsiella pneumoniae, EC—Escherichia coli, PA—Pseudomonas
aeruginosa, ECL—Enterobacter cloacae, AB—Acinetobacter baumannii, CA—Candida albicans.
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Figure 6. Minimal inhibitory concentrations of CHX, EL and SOH, presented as a percentage
of working solutions (concentration provided by the manufacturer). Tested compounds: CHX—
chlorhexidine, EL—ethacridine lactate, SOH—super-oxidized hypochlorites solution (water solution
of chlorhexidine diluted to 0.5% of CHX, Rivanol® 0.1% of EL and Microdacyn® 0.004% + 0.004% of
NaOCl and HOCl). Tested strains: SA—Staphylococcus aureus, SE—Staphylococcus epidermidis, EF—
Enterococcus faecium, KP—Klebsiella pneumoniae, EC—Escherichia coli, PA—Pseudomonas aeruginosa,
ECL—Enterobacter cloacae, AB—Acinetobacter baumannii, CA—Candida albicans. IE *—tested compound
was ineffective in the concentration range 50–0.098%.
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The distribution of results for all tested compounds is shown in Figure 7. The lowest
MIC values were observed for CHX, with an average MIC of 0.2% (n = 54). OCT and PHMB
demonstrated lower activity, with an average MIC of 0.55% (n = 54) and 0.90% (n = 54),
respectively. Average MIC for PVP-I was 3.59% (n = 54). The weakest compounds were
EL and SOH. The average MIC for EL was 23.60% (n = 49, no antimicrobial effect against
5 strains), and no antimicrobial effect was observed for SOH. PHMB and EL gave the most
scattered results. Generally, Gram-positive cocci were more susceptible to the applied
solutions than Gram-negative rods. Yeast showed a varied distribution of susceptibility
concerning the analyzed compounds.
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Figure 7. Distribution of MIC values of the tested substances in the pool of strains. OCT—octenidine dihydrochloride,
PHMB—polyhexanide, PVP-I—povidone-iodine, CHX—chlorhexidine, EL—ethacridine lactate, SOH—super-oxidized
hypochlorites solution. AA—arithmetic average of MIC values for all strains, n—number of strains included in AA, IE
*—compound ineffective in tested concentration range.

The results presented in Figure 7 show that EL and SOH were statistically less effective
(against all pathogens tested) than OCT, PHMB, PVP-I, CHX (Kruskal-Wallis (K-W) test,
p < 0.0001). No significant difference was recorded between OCT, PHMB and CHX; in turn,
all three of the aforementioned antiseptics displayed significantly higher activity (in this
type of experimental setting) than PVP-I (K-W test, p < 0.0001).

2.3.2. MBEC

All the substances were tested in the range of 100–0.195% of working solutions. The
application of OCT led to biofilm eradication in 53 out of 54 cases; the single exception
was the biofilm of the pseudomonal PA2 strain. The range of effective concentrations was
broad, starting from 1.56% and ending at 100% of the product working solution. The best
results were observed against AB3 (1.56%), SE2, SE4, E. faecium ATCC 19434, EF1, EF4, AB5,
CA2, CA3, CA5 (3.13%), S. epidermidis PCM 2118, SE5, EF2, EF3, EF5, C. albicans ATCC
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10231, CA1 and CA4 (6.25%). The weakest results were observed against KP4, KP5, E. coli
ATCC 25922, EC4, EC5, P. aeruginosa ATCC 27853, PA1, PA3, PA4, E. cloacae ATCC 13047,
ECL1, ECL2, ECL3, ECL5 (100%), KP1, KP2, KP3, EC2, PA5, ECL4, A. baumannii PCM 2740,
AB4 (50%), and intermediate results were recorded against SA1, EC1, EC3, AB1, AB2 (25%)
and for the remaining strains (8 strains, 12.5%). The strongest eradication was observed for
S. epidermidis, E. faecium and C. albicans strains and the weakest for Gram-negative rods.
PHMB eradicated the biofilm of all tested pathogens. The effective concentration range
was 1.56–100%. The best results were observed for AB3 (1.56%), CA2, CA5 (6.25%) and
the weakest for S. aureus ATCC 6538, SA1, PA1, PA2, PA3, PA4 (100%), SA2–SA5, SE3,
KP3, KP4, EC3, EC4, P. aeruginosa ATCC 27853, PA4, E. cloacae ATCC 13047, ECL1 and
ECL5 (50%). Intermediate results were observed for SA2, SE4, E. faecium ATCC 19434, EF4,
K. pneumoniae ATCC 4352, AB5, C. albicans ATCC 10231, CA1, CA3, CA4 (12.5%) and for
the rest of the tested strains (21 strains, 25%). A slightly stronger activity was observed for
S. epidermidis, E. faecium and C. albicans than for the rest of the species. The worst results
were observed for P. aeruginosa and S. aureus strains.

PVP-I was ineffective in three cases: KP1, KP4 and EC2. For the rest of the strains,
MBEC values were in the range of 3.13–100%. The strongest effects were observed for
E. faecalis strains (3.13%, except for EF3) and for AB5 (6.25%). The working solution of
PVP-I (100%) was effective against KP2, KP3, KP5 and E. coli strains (except for EC2).
For strains PA1 and PA2, PVP-I was effective at the concentration of 50%, and for SA2,
S. epidermidis PCM 2118, SE2, EF3, ECL5, AB1, AB3, AB4 at the concentration of 12.5%.
For the remaining strains (27 strains), PVP-I was effective at a concentration of 25%. The
strongest action of PVP-I was observed against E. faecium strains and the weakest against
K. pneumoniae and E. coli. The results of minimal biofilm eradication concentrations assay
for OCT, PHMB and PVP-I are presented in Figure 8.

CHX eradicated the biofilm of all tested strains. The effective concentration range
was 0.39–50%. The best results were observed for SE3, SE4, SE5, E. faecium ATCC 19434,
EF2, EF4, EF5 (0.39%), S. aureus ATCC 6538, SA1, SA3, SA5, S. epidermidis PCM 2118, SE1,
SE2, EF1, EF3, A. baumannii PCM 2740, AB3, AB5, C. albicans ATCC 10231, CA1–CA5
(0.78%), SA2 and SA4 (1.56%). Effectiveness of a high concentration of CHX was observed
against ECL2, ECL5 (50%), EC4, PA2, ECL1, ECL3 (25%) and against KP1, EC2, PA1, PA4,
E. cloacae ATCC 13047, ECL4 (12.5%). Intermediate results were observed for KP2, KP4,
KP5. E. coli ATCC 25922, EC5, P. aeruginosa ATCC 27853, PA3 (6.25%) and for the rest of
the tested strains (8 strains, 3.13%). CHX showed stronger activity against Gram-positive
bacteria and yeast than against Gram-negative bacteria. The best results were observed
for E. faecium, S. epidermidis and C. albicans, while the worst for E. cloacae and P. aeruginosa.
EL eradicated biofilm in all cases in the concentration range 12.5–100%. The lowest active
concentration was observed for SE2, E. faecium ATCC 19434 and CA1–CA5 (12.5%), while
the highest concentrations were needed for S. epidermidis PCM 2118, SE1, SE3, SE4, EF1–EF5,
AB5, C. albicans ATCC 10231 (25%), SA3, PA4 (50%) and for the rest of the tested strains
(34 strains, 100%). The best activity of EL was observed against C. albicans, S. epidermidis
and E. faecium and the worst against Gram-negative rods and S. aureus. SOH was effective
against eight strains only. The effective SOH concentration for E. faecium ATCC 19434 was
50% and 100% for EF1–EF5, PA1, PA4. The biofilms formed by the rest of the tested strains
(46 strains) were not eradicated by SOH, even at a working solution. The results of minimal
biofilm eradication concentrations assay for CHX, EL and SOH are presented in Figure 9.
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Figure 8. Minimal biofilm eradication concentrations of OCT, PHMB and PVP-I, presented
as a percentage of working solutions (concentration provided by the manufacturer). Tested
compounds: OCT—octenidine dihydrochloride, PHMB—polyhexanide, PVP-I—povidone-iodine
(Octenilin® 0.05% of OCT, Prontosan® 0.1% of PHMB and Braunol® 7.5% of PVP-I). Tested
strains: SA—Staphylococcus aureus, SE—Staphylococcus epidermidis, EF—Enterococcus faecium, KP—
Klebsiella pneumoniae, EC—Escherichia coli, PA—Pseudomonas aeruginosa, ECL—Enterobacter cloacae,
AB—Acinetobacter baumannii, CA—Candida albicans. IE—compound was ineffective.
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Figure 9. Minimal biofilm eradication concentrations of OCT, PHMB and PVP-I, presented as a
percentage of working solutions (concentration provided by the manufacturer). Tested compounds:
CHX—chlorhexidine, EL—ethacridine lactate, SOH—super-oxidized hypochlorites solution (water
solution of chlorhexidine diluted to 0.5% of CHX, Rivanol® 0.1% of EL and Microdacyn® 0.004% + 0.004%
of NaOCl and HOCl). Tested strains: SA—Staphylococcus aureus, SE—Staphylococcus epidermidis, EF—
Enterococcus faecium, KP—Klebsiella pneumoniae, EC—Escherichia coli, PA—Pseudomonas aeruginosa, ECL—
Enterobacter cloacae, AB—Acinetobacter baumannii, CA—Candida albicans. IE—compound was ineffective.
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The distribution of MBEC values for all strains is presented in Figure 10. The lowest
MBEC values were observed for CHX, with an average MBEC of 6.73% (n = 54). PHMB
and PVP-I demonstrated lower activity with an average MBEC of 36.37% (n = 54) and
33.27% (n = 51, no antimicrobial activity against 3 strains), respectively. The average MBEC
for OCT was 39.71% (n = 53, no antimicrobial activity against 1 strain). The weakest
compounds were EL and SOH. The average MBEC for EL was 71.53% (n = 54) and for SOH
93.75% (n = 8, no antimicrobial activity against 46 strains). For all compounds, the scatter
of results was significant. Generally, biofilms formed by Enterococcus faecium and Staphy-
lococcus epidermidis were more susceptible to the applied solutions than biofilms formed
by Staphylococcus aureus, Gram-negative rods, or yeast. Regarding statistical significance,
SOH and EL displayed significantly lower activity than the rest of the analyzed antiseptics
(M-W test, p < 0.001), while CHX displayed significantly higher activity than OCT, PHMB
and PVP-I. In turn, the activities of OCT, PHMB and PVP-I were comparable.
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2.4. Evaluation of Antimicrobials’ Activity by Modified Disk-Diffusion Method

Exemplary results of the modified disc-diffusion method (applying BC as an antiseptic
carrier) are shown in Figure 11.

The BC dressings chemisorbed with PVP-I and CHX were the most effective against
S. aureus (the growth inhibition zone was 2382.16 mm2 vs. 660.37 mm2, respectively).
Intermediate results were observed for BC chemisorbed with PHMB and OCT (the growth
inhibition zone was 189.30 mm2 vs. 137.77 mm2, respectively) and the weakest for BC
chemisorbed with EL and SOH (the growth inhibition zone was 74.94 mm2 vs. 20.20 mm2,
respectively). BC dressing with EL was ineffective against one strain (SA1) and BC dressing
with SOH against three strains (SA1, SA3 and SA5). BC dressings chemisorbed with
PVP-I and CHX were the most effective against S. epidermidis (growth inhibition zone
was 2038.13 mm2 vs. 920.60 mm2, respectively). Intermediate results were observed for
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BC chemisorbed with PHMB and EL (the growth inhibition zone was 311.02 mm2 vs.
168.23 mm2, respectively) and the weakest for BC chemisorbed with OCT (the growth
inhibition zone was 103.11 mm2). BC chemisorbed with SOH was not effective against
any S. epidermidis strain. BC dressings chemisorbed with PVP-I and CHX were the most
effective against E. faecium (the growth inhibition zone was 1511.67 mm2 vs. 807.87 mm2,
respectively). Intermediate results were observed for BC chemisorbed with PHMB and
EL (the growth inhibition zone was 129.22 mm2 vs. 118.33 mm2, respectively) and the
weakest for BC chemisorbed with OCT (the growth inhibition zone was 74.79 mm2). BC
chemisorbed with SOH was not effective against any E. faecium strain. BC dressings
chemisorbed with PVP-I and CHX were the most effective against K. pneumoniae (the
growth inhibition zone was 918.70 mm2 vs. 393.81 mm2, respectively). Intermediate results
were observed for BC chemisorbed with PHMB and OCT (the growth inhibition zone was
144.54 mm2 vs. 47.04 mm2, respectively) and the weakest for BC chemisorbed with EL
(the growth inhibition zone was 1.79 mm2). BC chemisorbed with SOH was not effective
against any K. pneumoniae strain. BC dressing chemisorbed with EL was ineffective against
three strains (K. pneumoniae ATCC 4352, KP3 and KP4).
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Figure 11. Growth inhibition zones around bacterial cellulose dressing are chemisorbed with the tested compounds.
OCT—octenidine dihydrochloride, PHMB—polyhexanide, PVP-I—povidone-iodine, CHX—chlorhexidine, EL—ethacridine
lactate, SOH—super-oxidized hypochlorites solution, NaCl—Sterile saline as a negative control. The picture shows results
for the Staphylococcus aureus ATCC 33591 reference strain.

BC dressings chemisorbed with PVP-I and CHX were the most effective against E. coli
(the growth inhibition zone was 720.76 mm2 vs. 480.38 mm2, respectively). Intermediate
results were observed for BC chemisorbed with PHMB and OCT (the growth inhibition
zone was 186.41 mm2 vs. 76.93 mm2, respectively) and the weakest for BC chemisorbed
with EL (the growth inhibition zone was 16.63 mm2). BC chemisorbed with SOH was not
effective against any E. coli strain. BC chemisorbed with EL was not effective against two
strains (EC1 and EC5). BC dressings chemisorbed with CHX and PVP-I were the most
effective against P. aeruginosa (the growth inhibition zone was 381.68 mm2 vs. 278.79 mm2,
respectively). Intermediate results were observed for BC chemisorbed with OCT and
PHMB (the growth inhibition zone was 36.32 mm2 vs. 26.27 mm2, respectively) and the
weakest for BC chemisorbed with EL (the growth inhibition zone was 6.52 mm2). BC
chemisorbed with SOH was not effective against any P. aeruginosa strain. BC chemisorbed
with EL was ineffective against two strains (PA3 and PA5). BC dressings chemisorbed
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with PVP-I and CHX were the most effective against E. cloacae (the growth inhibition
zone was 661.85 mm2 vs. 458.76 mm2, respectively). Intermediate results were observed
for BC chemisorbed with PHMB and OCT (the growth inhibition zone was 145.17 mm2

vs. 21.23 mm2, respectively) and the weakest for BC chemisorbed with EL (the growth
inhibition zone was 2.20 mm2). BC chemisorbed with SOH was not effective against any
E. cloacae strain. BC chemisorbed with EL was effective against only one strain (ECL1). BC
dressings chemisorbed with PVP-I and CHX were the most effective against A. baumannii
(the growth inhibition zone was 1320.36 mm2 vs. 382.12 mm2, respectively). Intermediate
results were observed for BC chemisorbed with PHMB and OCT (the growth inhibition
zone was 107.64 mm2 vs. 75.14 mm2, respectively) and the weakest for BC chemisorbed
with EL (the growth inhibition zone was 8.22 mm2). BC chemisorbed with SOH was
not effective against any A. baumannii strain. BC chemisorbed with EL was ineffective
against three strains (AB3, AB4 and AB5). BC dressings chemisorbed with PVP-I, CHX
and PHMB were the most effective against C. albicans (the growth inhibition zone was
2817.70 mm2 vs. 1025.84 mm2 vs. 1021.89 mm2, respectively). Intermediate results were ob-
served for BC chemisorbed with OCT and EL (the growth inhibition zone was 243.91 mm2

vs. 156.56 mm2, respectively). BC chemisorbed with SOH was not effective against any
C. albicans strain.

Graphic representations of results for every group of strains are presented in Figure S1–S9
in the Supplementary Materials.

Figure 12 presents a comparison of the area of growth inhibition zones of all tested strains.
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Figure 12. Comparison of surface areas of growth inhibition zones (mm2). SA—Staphylococcus aureus, SE—Staphylococcus
epidermidis, EF—Enterococcus faecium, KP—Klebsiella pneumoniae, EC—Escherichia coli, PA—Pseudomonas aeruginosa,
ECL—Enterobacter cloacae, AB—Acinetobacter baumannii, CA—Candida albicans. Tested substances: OCT—octenidine
dihydrochloride, PHMB—polyhexanide, PVP-I—povidone-iodine, CHX—chlorhexidine, EL—ethacridine lactate, SOH—
super-oxidized hypochlorites solution. Bar size represents the average surface area (mm2) of growth inhibition zones. Dots
indicate ineffective compounds, color of dot corresponds to the tested compounds.
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The most effective (concerning antimicrobial effect) compound released from BC was
PVP-I and the difference between this and other antiseptics was statistically significant
(K-W test, p < 0.001). Noteworthy, SOH antiseptic was effective against only three strains
(S. aureus ATCC 6538, SA 2 and SA 4), while for other tested strains, no growth inhibition
zones were observed.

OCT showed the strongest effect against C. albicans (average growth inhibition zone
(AZ) = 243.91 mm2), S. aureus (AZ = 137.77 mm2) and S. epidermidis (AZ = 103.11 mm2).
Intermediate, comparable activity was observed for E. coli (AZ = 76.93 mm2), A. baumannii
(AZ = 75.14 mm2) and E. faecium (AZ = 74.79 mm2). The weakest activity was observed
against K. pneumoniae (AZ = 47.04 mm2), P. aeruginosa (AZ = 36.32 mm2) and E. cloacae
(AZ = 21.23 mm2).

PHMB showed the strongest effect against C. albicans (AZ = 1021.89 mm2) and S. epider-
midis (AZ = 311.02 mm2). Intermediate activity was observed for S. aureus (AZ = 189.30 mm2),
E. coli (AZ = 186.41 mm2), E. cloacae (AZ = 145.17 mm2), K. pneumoniae (AZ = 144.54 mm2)
and E. faecium (AZ = 129.22 mm2). The weakest activity was observed for A. baumannii
(AZ = 107.64 mm2) and P. aeruginosa (AZ = 26.27 mm2).

PVP-I showed the strongest effect against C. albicans (AZ = 2817.70 mm2), S. aureus
(AZ = 2382.16 mm2) and S. epidermidis (AZ = 2038.13 mm2). Intermediate activity was
observed against E. faecium (AZ = 1511.67 mm2), A. baumannii (AZ = 1320.36 mm2),
K. pneumoniae (AZ = 918.70 mm2), E. coli (AZ = 720.76 mm2) and E. cloacae (AZ = 661.85 mm2).
The weakest activity was observed against P. aeruginosa (AZ = 278.79 mm2).

CHX showed the strongest effect against C. albicans (AZ = 1025.84 mm2), S. epi-
dermidis (AZ = 920.60 mm2) and E. faecium (AZ = 807.87 mm2). Intermediate activ-
ity was observed against S. aureus (AZ = 660.37 mm2), E. coli (AZ = 480.38 mm2) and
E. cloacae (AZ = 458.76 mm2). The weakest activity was observed against K. pneumoniae
(AZ = 393.81 mm2), A. baumannii (AZ = 382.12 mm2) and P. aeruginosa (AZ = 381.68 mm2).

EL showed the strongest effect against S. epidermidis (AZ = 168.23 mm2), C. albicans
(AZ = 156.56 mm2) and E. faecium (AZ = 118.33 mm2). Intermediate activity was observed
against S. aureus (AZ = 74.94 mm2) and E. coli (AZ = 16.36 mm2). The weakest activity was
observed against A. baumannii (AZ = 8.22 mm2), P. aeruginosa (AZ = 6.52 mm2), E. cloacae
(AZ = 2.20 mm2). and K. pneumoniae (AZ = 1.79 mm2).

SOH was effective only against S. aureus (AZ = 20.20 mm2). There were no growth
inhibition zones observed in the case of other bacterial species and yeast.

The highest growth inhibition zones were observed for PVP-I (the average growth inhi-
bition zone for all strains (AZ) = 1405.57 mm2) and CHX (AZ = 612.38 mm2). Smaller zones
were obtained for PHMB (AZ = 6.52 mm2) and OCT (AZ = 6.52 mm2). EL and SOH did not
act against every strain. EL was ineffective against 16/54, while SOH against 51/54 strains.
These compounds caused the smallest average growth inhibition zones: EL = 61.46 mm2

and SOH = 2.24 mm2. PVP-I, PHMB and CHX demonstrate the largest dispersion of results.
In turn, the standard deviations of mean in the case of OCT, EL and SOH were low. The
distribution of average areas of growth inhibition zone is presented in Figure 13. Among
the tested species, the most susceptible to the antiseptics were C. albicans, S. epidermidis and
S. aureus (AZ = 877.65 mm2 vs. 590.18 mm2 vs. 577.46 mm2, respectively). E. faecium and
A. baumannii showed the weakest susceptibility (AZ = 440.31 mm2 vs. 315.58 mm2, respec-
tively), along with K. pneumoniae, E. coli and E. cloacae (AZ = 250.98 mm2 vs. 246.81 mm2 vs.
214.87 mm2, respectively). P. aeruginosa was the most resistant to all tested antimicrobial
compounds (AZ = 121.60 mm2). Comprehensive data for all tested strains are summarized
in Table S2 and are available in the Supplementary Materials.
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Figure 13. Distribution of average areas of growth inhibition zones (mm2). For every compound, there are 2 kinds of
probes: chemisorbed BC dressings (OCT—octenidine dihydrochloride, PHMB—polyhexanide, PVP-I—povidone-iodine,
CHX—chlorhexidine, EL—ethacridine lactate, SOH—super-oxidized hypochlorites solution) and soaked blotting paper
discs compounds as a compound activity control (OCT c—control of OCT activity, PHMB c—control of PHMB activity,
PVP-I c—control of PVP-I activity, CHX c—control of CHX activity, EL c—control of EL activity, SOH c—control of SOH
activity). AA—arithmetic average of growth inhibition zones areas (black lines), n—number of tested strains (54).

2.5. Evaluation of Silver Dressings’ Activity Using the Modified Disk Diffusion Method

A silver dressing was used to compare the antimicrobial activity of BC dressings
chemisorbed with a clinical material of proven antimicrobial activity. Silver dressing was
effective against 52/54 strains (96% of the tested strains). No growth inhibition zones were
observed for EC4 and E. cloacae ATCC 13047. The highest activity of the silver dressing was
observed against P. aeruginosa, C. albicans and S. epidermidis strains (average zones of growth
inhibition: 347.08 mm2, 340.67 mm2 and 285.14 mm2, respectively). Moderate activity
was observed against S. aureus (232.28 mm2), E. faecium (191.86 mm2) and A. baumannii
(166.69 mm2) and weak activity against K. pneumoniae (133.19 mm2), E. coli (50.81 mm2)
and E. cloacae (34.86 mm2). Average growth inhibition zones being a result of antimicrobial
activity of silver dressing are presented in Figure 14.

Contrary to the results obtained using the modified disc-diffusion method, the applica-
tion of BC dressing chemisorbed with OCT led to the formation of larger growth inhibition
zones for 12/54 strains compared to silver dressing (E. faecium ATCC 19434, E. coli ATCC
25922, EC1, EC2, EC4, EC5, E. cloacae ATCC 13047, ECL3, ECL4, A. baumannii PCM 2740,
CA1 and CA3). The rest of the strains were more susceptible to silver activity. BC/OCT
inhibited the growth of all tested strains, while the silver dressing was ineffective against
two strains. The analysis of the results concerning species has shown that the BC/OCT
dressing had a stronger activity only against E. coli.
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Figure 14. Average growth inhibition zones caused by silver dressing (mm2). The antimicrobial agent was silver dressing
(Aquacel® Ag, ConvaTec, Berkshire, England). Dots indicate strains against which the silver dressing was ineffective. Tested
strains: SA—Staphylococcus aureus, SE—Staphylococcus epidermidis, EF—Enterococcus faecium, KP—Klebsiella pneumoniae, EC—
Escherichia coli, PA—Pseudomonas aeruginosa, ECL—Enterobacter cloacae, AB—Acinetobacter baumannii, CA—Candida albicans.

BC dressing chemisorbed with PHMB acted stronger than silver dressing against
27/54 (50%) strains (S. aureus ATCC 33591, S. epidermidis PCM 2118, SE1, SE4, E. faecium
ATCC 19434, KP1, KP4, KP5, E. coli ATCC 25922, EC1–EC5, E. cloacae ATCC 13047, ECL1–
ECL5, A. baumannii PCM 2740, C. albicans ATCC 10321, CA1–CA5). The rest of the strains
were more susceptible to silver ions. BC/PHMB inhibited all tested strains’ growth,
while the silver dressing was ineffective against two strains. The analysis of the results
concerning species has shown that the BC/PHMB dressing displayed a stronger activity
against 5 species: C. albicans, E. coli, E. cloacae, S. epidermidis and K. pneumoniae.

BC dressing chemisorbed with PVP-I acted stronger than the silver dressing against
every strain, except P. aeruginosa reference and clinical strains (larger growth inhibition
zones for 49/54 strains). BC/PVP-I inhibited the growth of all tested strains, while the
silver dressing was ineffective against two strains. The analysis of the results concerning
species has shown that BC/PHMB dressing had a stronger activity against every tested
species except for P. aeruginosa.

BC dressing chemisorbed with CHX acted stronger than the silver dressing against
every strain, except PA3 and PA4 clinical strains (larger growth inhibition zones for
52/54 strains). BC/CHX inhibited the growth of all tested strains, while the silver dressing
was ineffective against two strains. The analysis of the results concerning species has
shown that BC/CHX dressing had a stronger activity against every tested species.

BC dressing chemisorbed with EL acted stronger than the silver dressing only against
3/54 strains (SE1, E. faecium ATCC 19434, and EC4). BC/EL inhibited the growth of
38/54 strains, while the silver dressing was effective against 52/54 strains. The analysis of
the results concerning species has shown that the silver dressing had a stronger activity
against every tested species than the BC/EL dressing.
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BC/SOH inhibited the growth of only 3/54 strains, while the silver dressing was
effective against 52/54 strains. BC dressing chemisorbed with SOH acted weaker than the
silver dressing for every tested strain. Analyzing the species’ results, the silver dressing
had a stronger activity against every tested species than BC/SOH dressing.

A graphic representation of growth inhibition zone areas caused by the silver dressing
compared to BC dressing chemisorbed with antiseptics is presented in Figures S10–S15
of Supplementary Materials. In turn, Table S3 of Supplementary Materials contains all
data from the modified disc-diffusion method using the silver dressing. Sample results are
shown in Figure 15.
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area c.a. 196 mm2. A—Staphylococcus aureus ATCC 33591, B—Staphylococcus epidermidis PCM 2118, C—Enterococcus faecium
ATCC 19434, D—Klebsiella pneumoniae ATCC 4352, E—Escherichia coli ATCC 25922, F—Pseudomonas aeruginosa ATCC 27853,
G—Enterobacter cloacae ATCC 13047, H—Acinetobacter baumannii PCM 2740, I—Candida albicans ATCC 10321.
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2.6. Evaluation of Anti-Biofilm Activity of Chemisorbed Bacterial Cellulose Dressings and Silver
Dressing Using the Modified Antibiofilm Dressing’s Activity Measurement (ADAM) Test

The ADAM test was performed for reference strains. The tested dressings consisted of
BC chemisorbed with OCT, PHMB and PVP-I and a silver dressing. Two kinds of culture
media were used—TSB and an artificial exudate (AE). For every strain, negative control
with BC chemisorbed with normal saline was performed; biofilm grown in such conditions
served as biofilm growth control. Figure 16 presents the percentage of eradication of living
cells in biofilm grown in both culture media.
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The BC dressing chemisorbed with OCT reduced the number of living cells in the
biofilm formed by every tested strain in both culture media. The highest reduction in
TSB was obtained for E. faecium ATCC 19434 (72.31%), S. aureus ATCC 33591 (68.45%)
and K. pneumoniae ATCC 4352 (59.82%). The weakest activity of BC/OCT was observed
for S. epidermidis PCM 2118 (15.09%) and C. albicans ATCC 10231 (21.47%). In AE, the
strongest activity of BC/OCT was observed against E. faecium ATCC 19434 (74.11%),
E. cloacae ATCC 13047 (71.84%), P. aeruginosa ATCC 27853 (66.50%) and K. pneumoniae
ATCC 4352 (65.63%). The weakest activity, similar to the results obtained using the TSB
culture medium, was observed for C. albicans ATCC 10231 (16.20%) and S. epidermidis PCM
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2118 (15.64%). BC/OCT reduced more metabolically active microbial cells in biofilm in AE
than in TSB (50.20% and 44.46% of reduction, respectively).

The BC dressing chemisorbed with PHMB reduced the number of living cells in the
biofilm formed by every tested strain in AE and for 8/9 strains in TSB (all strains except
S. epidermidis PCM 2118). The highest TSB reduction was obtained for E. coli ATCC 25922
(53.85%) and P. aeruginosa ATCC 33591 (40.02%). The weakest activity of BC with PHMB
was observed against S. aureus ATCC 33591 (1.08%) and E. faecium ATCC 19434 (15.47%).
A very slight increase in cell activity was observed for S. epidermidis PCM 2118 (0.51% of
the increase), but due to its insignificance, the result was interpreted as no antimicrobial
activity. In AE, the strongest activity of BC with PHMB was observed for E. coli ATCC
25922 (71.06%), P. aeruginosa ATCC 33591 (69.16%), K. pneumoniae ATCC 4352 (64.17%) and
E. faecium ATCC 19434 (64.06%). The weakest activity was observed against C. albicans
ATCC 10231 (18.77%) and S. epidermidis PCM 2118 (17.59%). BC with PHMB had about
2-times stronger activity in AE than in TSB (50.47% and 24.42%, respectively). BC dressing
chemisorbed with PVP-I reduced the amount of metabolically active cells in biofilm formed
by every tested strain in both culture media. The highest reduction in TSB was obtained
for E. faecium ATCC 19434 (76.73%), S. aureus ATCC 33591 (69.32%) and E. cloacae ATCC
13047 (67.18%). The weakest activity of BC with PVP-I was observed against C. albicans
ATCC 10231 (20.61%) and S. epidermidis PCM 2118 (18.37%). In AE, the strongest activity
of BC with PVP-I was observed against E. cloacae ATCC 13047 (91.88%), P. aeruginosa
ATCC 27853 (84.87%), E. faecium ATCC 19434 (81.94%), and E. coli ATCC 25922 (78.68%).
The weakest activity, similar to the results obtained using the TSB culture medium, was
observed against C. albicans ATCC 10231 (29.75%) and S. epidermidis PCM 2118 (24.64%).
A bigger number of metabolically active microbial cells in biofilm was reduced by BC
with PVP-I in AE than in TSB (62.48% and 51.01% of reduction, respectively). The silver
dressing reduced the amount of metabolically active cells in biofilm formed by 4/9 tested
strains in TSB (S. aureus ATCC 33591 S. epidermidis PCM 2118, E. faecium ATCC 19434
and A. baumannii PCM 2740) and 1/9 in AE (A. baumannii PCM 2740 only). The highest
reduction in TSB was obtained for A. baumannii PCM 2740 (72.34%) and S. aureus ATCC
33591 (57.01%). The weakest activity of the silver dressing was observed against E. faecium
ATCC 19434 (36.45%) and S. epidermidis PCM 2118 (33.60%). For E. cloacae ATCC 13047, a
very slight reduction was observed (0.184%), but due to its insignificance, the result was
interpreted as no antimicrobial activity. For C. albicans ATCC 10231 K. pneumoniae ATCC
4352 P. aeruginosa ATCC 27853 and E. coli ATCC 25922, an increase in microbial cell activity
was observed (4.48%, 15.04%, 18.31% and 46.42% of active cell increase, respectively). In AE,
the activity of the silver dressing was observed against A. baumannii PCM 2740 only (73.42%
of active cells reduction). For the rest of the strains, there was an increase in the amount
of metabolically active cells observed. The highest increase, over 100%, was observed for
E. cloacae ATCC 13047 (227.27%) and P. aeruginosa ATCC 27853 (124.43%) and the lowest for
C. albicans ATCC 10231 (17.65%). Opposite to BC dressings, the silver dressing had higher
antimicrobial activity in TSB (12.82% of metabolically active cells reduction) than in AE
(68.67% of metabolically active cells increase).

In TSB, BC dressing with PVP-I had the highest antimicrobial activity against 6/9 species
(S. aureus ATCC 33591 E. faecium ATCC 19434 P. aeruginosa ATCC 27853 K. pneumoniae ATCC
4352 E. coli ATCC 25922 and E. cloacae ATCC 13047). Two species were more susceptible
to silver dressing (A. baumannii PCM 2740 and S. epidermidis PCM 2118) and 1 to BC with
OCT (C. albicans ATCC 10231) than to BC with PVP-I. In AE, BC dressing with PVP-I had
the highest antimicrobial activity against 8/9 species (every species except A. baumannii
PCM 2740). The silver dressing had the highest activity against A. baumannii PCM 2740. In
both cultural media, the silver dressing results were the most scattered. The results in both
media are presented in Figures S16 and S17, and individual stages of the modified ADAM
test are presented in Figure S18 of Supplementary Materials.
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3. Discussion

Chronic wounds are among the most persistent and serious health issues related to
the so-called “lifestyle” changes affecting western societies. Chronic wounds, which do not
follow the natural healing trajectory, are also at high risk of infection caused by microbial
biofilms—settled cellular communities embedded within an external matrix and highly
tolerant to therapeutic counter-measures. The complications resulting from microbial
biofilm’s presence within chronic wounds often require aggressive treatment (including
limb amputation). Moreover, a transition of wound local infection into a systemic one may
pose a threat to the patient’s life.

Therefore, a number of approaches designed for chronic wound care have been pro-
posed, including TIME(RS) [15,16,174], biofilm-based wound care strategy (BBWC) [175,176],
and WAR [11]. All these strategies emphasize the need for local application of antiseptic
substances and dressings chemisorbed with antimicrobials if a local infection appears in
the wound.

Bacterial cellulose, which in this research served as a dressing material, is recognized
as safe for use in wounds, thanks to its biocompatibility, absence of toxic effects and lack of
inflammatory response stimulation [97,177–180]. Also, BC’s high water capacity, porosity
and susceptibility to in situ and ex situ modifications are desirable features in the context
of the matter at hand [99,179,181]. An additional advantage of BC, which distinguishes
it from other biomaterials, is its chemical purity. No need to remove waxes, pectins and
hemicellulose translates into facilitating the production process. Preparing cellulose sheets
is easy, and there is no need for highly advanced equipment, which allows reducing
production costs. What important, BC can be sterilized at a high temperature without
the loss of structure and functionality. Native BC is transparent, does not leave fibers
or lint in the wound bed, and adheres to the tissue without the need for any adhesives.
These features allow to change dressing painlessly and to control the wound status without
removing BC dressing [177,179]. Presently, the vast majority of modern dressings are
chemisorbed with various forms of ionic silver. Despite its indisputable effectiveness,
the application of the above element also has certain disadvantages, including the risk of
material incompatibility (between silver and iodine povidone or chlorine) or such adverse
effects as contact dermatitis or allergy [4,17,182,183].

In this line of investigation, we analyzed whether antimicrobials other than silver,
specifically antiseptics, applied in the management of biofilm-based wound infections, may
also be used as an antimicrobial additive to BC dressings. By making this, we aimed to
provide proof of concept for new wound dressings featuring an innovative BC base and
antimicrobials of high antibiofilm properties. Therefore, the specific aim of this investi-
gation was to compare the activity of commonly used antiseptic molecules: Octenidine,
polyhexanide, povidone-iodine, chlorhexidine, ethacridine lactate, hypochlorous solutions
and to evaluate their usefulness as active substances of BC dressings against 54 microbial
species, which are frequent etiological agents of wound infections.

Firstly, we have scrutinized the selected microbial strains concerning their ability to
form biofilm in vitro. Therefore, we have assessed the metabolic activity of adhered cells
and their total biomass. As can be observed in Figure 4, all strains displayed the above
ability. Of note, the ratio of biomass to cell number was higher in the case of Gram-negative
compared to Gram-positive pathogens, indicating a high share of extracellular slime in the
biofilm structure of the former type of microorganisms. It not only stays in line with the
results of other research teams [184–186] but is also crucial concerning the potential efficacy
of antiseptics, bearing in mind the highly protective function of biofilm matrix [187]. In turn,
the analyzed yeast strains displayed a ratio of biomass to cell number more resembling
that of the analyzed Gram-positive cocci than of the Gram-negative rods.

In the next experimental setting, we have established minimal inhibitory concentra-
tions of antiseptic solutions against the cells of the tested strains (Figures 5–7) The rationale
behind this analysis was the fact that such antiseptics as OCT, PHMB, CHX and EL act
against microbial cells and membranes, while their activity against biofilm matrix is still
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unrecognized. In turn, the molecules of iodine (released from PVP-I) and chlorine ions
(released from NaOCl) are known for their unspecific mode of action against a vast spec-
trum of organic compounds [188,189]. A correlation can be observed between the results
presented in Figure 4 concerning a high share of extracellular slime in Gram-negative
pathogens and MIC results (Figures 5 and 6); the aforementioned microorganisms were
more resistant to the applied antiseptics than Gram-positive pathogens. On the one hand,
the laboratory setting for MIC analysis should prevent biofilm formation (and keep the
cells in an un-adhered, planktonic state). Thus, it may be hypothesized that the tested
antiseptics simply act better against the peptidoglycan structure of Gram-positive cell
walls than against a double membrane of Gram-negative cell walls [33,190]. On the other
hand, those familiar with the culturing of Gram-negative bacteria of Pseudomonadaceae or
Enterobacterales group may notice that even the application of extensive shaking may not
prevent cells from forming un-adhered aggregates of high-density, suggesting the presence
of extracellular slime (which protects the bacteria from antiseptics’ activity). Although
such a phenomenon would satisfactorily explain the discussed correlation, it requires an
additional line of investigation.

Because wound biofilms may be poly-microbial in nature and are frequently formed
by consortia of microorganisms originated from the patient’s skin or alimentary tract,
Figure 7 presents the total susceptibility of all analyzed species to individual antiseptics. It
should be noted that SOH antiseptic displays no antimicrobial activity within the tested
range of concentrations, which stays in line with our earlier results [27] and with the results
of other research teams [80,191].

The data presented in Figures 8–10 show that the transition of planktonic, sessile
cells into adhered biofilm community translates into significantly increased tolerability
against antiseptics (cf. Figure 10 vs. Figure 7 and the data provided by [192]). Of note, the
MBEC value of PVP-I in this experimental setting was comparable to the MBEC values
of PHMB and OCT, while MIC of PVP-I was higher (less favorable) than MIC values of
PHMB and OCT). It may be explained by the already-mentioned non-specific mechanism
of PVP-I action, which in this particular experimental setting could lead to the destruction
of the biofilm matrix in the first step, followed by exposure and death of microbial cells
in consequence. In turn, the activity of SOH remained basically beyond the tested range
of concentrations. Taking into consideration the lack of SOH’s significant activity against
planktonic cells (Figure 7), the increased tolerance of biofilm formed by the cells of the
same strains against SOH (Figure 10) is logical and stays in line with the acknowledged
protective function of biofilm structure [193]. Importantly, except for the already-mentioned
SOH (and EL to a major extent), average MBEC values of OCT, PHMB and PVP-I were
approximately at 33% concentration of working solutions of these antiseptics, showing
their high antibiofilm properties. Chlorhexidine was the most potent among the tested
agents and performed particularly well against S. aureus biofilm.

In a subsequent analysis, we have chemisorbed BC with the aforementioned antisep-
tics (Figure 11). This approach, based on the functionalization of BC and improvement
of its applicability concerning the fight against microbial biofilm, has been consistently
developed by our team and has been presented in our earlier research [142,150,194,195].
Nevertheless, it is for the first time that we have tested such a high number of species and
strains to get, besides other data, an idea concerning inter- and intraspecies variability in
the tolerance against antimicrobials released from BC.

The results presented in Figure 12 show that the release of PVP-I from BC translated
into the most favorable results concerning the zone of growth inhibition, regardless of
the microbial species tested (K-W test, p < 0.001) (Figure 12). Such a result explicitly
shows the need to apply various experimental settings; one should note that in MIC
analysis, PVP-I displayed weak antimicrobial activity (comparing to CHX, PHMB, OCT)
and comparable activity to CHX PHMB, OCT in MBEC analysis. In the experimental setting
presented in Figure 11, the cells are seeded on a porous, moist structure of an agar polymer.
Although the application of this microbiological technique of culturing dates back to the



Int. J. Mol. Sci. 2021, 22, 3996 26 of 43

year 1887 [196], one may easily notice that this experimental setting reflects, to some extent,
a situation when a wound surface (imitated here by agar polymer) becomes contaminated
with microorganisms from the patient’s skin or from the environment. The extrapolation of
the results obtained in this experimental setting into clinical practice leads to a conclusion
that a BC dressing chemisorbed with PVP-I would protect a wound from microorganisms
significantly better than other antiseptics tested in this setting, and conversely, coupling
of BC with SOH or EL would not translate into inhibition of microorganisms’ growth
within the wound (Figures 12 and 13). In the next stage of our investigation, we have
measured the antimicrobial activity of silver released from a commercial, broadly-applied
silver dressing (Figures 14 and 15). The silver dressing acted least effective against the
E. coli and E. cloacae strains. It may be due to the widespread use of silver-containing
compounds, which led to the emergence of silver-resistant strains of these species, as was
observed by Hosny et al. [197]. Interestingly, staphylococcal strains displayed relatively
high sensitivity (compared to other species analyzed) to silver cations, although these
microbes are also ubiquitous opportunistic pathogens, constantly exposed to silver in a
nosocomial environment. Such a phenomenon may be explained by the results presented
by Loh et al. [198], who showed that MRSA strains displayed phenotypic sensitivity to
silver dressings regardless of the presence of the sil gene cluster responsible for resistance
to this element.

A comparison of results presented in Figures 12 and 13 vs. Figure 14 shows that
the activity of PVP-I or CHX released from BC was significantly higher than the activity
of silver cations used in the commercial silver dressing (K-W test, p < 0.001). In turn,
the antimicrobial activity of the silver dressing was comparable to the activity being a
result of PHMB or OCT release from BC. Taking into account the increasing tolerability
and resistance of nosocomial pathogens to silver [199], together with the lack of detected
resistance mechanism to PVP-I, the results presented in this research indicate that the
aforementioned antiseptic can be a promising alternative to be applied either alone or as
an antimicrobial additive to BC dressings.

Finally, the results presented in Figure 16 indicate our approach’s validity, including
an investigation of a high number of clinical strains. Although the results presented in the
aforementioned figure are largely coherent with the results presented in Figures 12–15, one
may note that the susceptibility of two reference strains of P. aeruginosa and E. cloacae to
silver (Figure 16) is distinctively higher than to PVP-I released from BC (Figures 12–15). In
fact, the intraspecies deviations in outcomes, recorded between clinical strains, reach a few
hundred percent; it explicitly shows how important it is from the point of view of results
to screen as big a number of strains as possible to avoid obtaining biased outcomes.

As far as the clinical application of antiseptics chemisorbed in BC or alone is concerned,
also criteria other than antimicrobial activity should be carefully considered. The first one
is the safety of use. Among the tested antimicrobials, PHMB and OCT are considered
safe. There have been rare local skin inflammation incidents, and allergic reactions to OCT
were reported. OCT is considered a compound of very low cytotoxicity [42,200–203]. In
addition, PHMB is associated only with rare slight allergic reactions, and it is considered an
uncommon allergen. Although there have been a few cases of severe anaphylactic reactions
reported, there is no evidence of cytotoxicity, mutagenicity, carcinogenicity, teratogenicity,
embryotoxicity or genotoxicity of PHMB [19,42,204–206]. Similarly, PVP-I is a rare cause
of allergies, and there have only been a few cases of anaphylactic reactions reported
worldwide. Nevertheless, the application of PVP-I has some limitations related to the risk
of iodine accumulation in the organism. Therefore, PVP-I should not be used longer than
seven days, and it should not be used in the elderly, premature babies, pregnant women,
and people with thyroid diseases [42,55,206–208].

Unlike the aforementioned antiseptics, CHX is relatively often a trigger of allergic
and anaphylactic reactions. In high concentrations, CHX is irritating to the skin and
eyes. Chlorhexidine toxicity is considered high. In clinical practice, CHX is mostly used
in the concentration range from 0.1% to 1%. A big number of research papers have
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already reported CHX cytotoxicity against eucaryotic cells, even in concentrations below
these used in clinical practice [42,201,209–212]. Ethacridine lactate is considered to be a
cytotoxic, genotoxic, cancerogenic and mutagenic compound [17,70,213]. Super-oxidized
hypochlorous solutions of low chlorine concentration are considered safe, well-tolerated
by tissues and do not delay the wound healing process [80,214–217].

The third important aspect, which needs to be considered, is the risk of induction
of microbial resistance as a result of exposure to the antimicrobial agent. Out of six
antimicrobial compounds analyzed in our research, the application of only two of them
(PVP-I and SOH) was not related to the risk of resistance emergence. Until recently,
also PHMB and OCT have been considered to have no potential to induce microbial
resistance [52,218]. However, recent research suggests that long-term use of PHMB can lead
to the development of reduced susceptibility displayed by the exposed strains. Renzoni
et al. [219] and Landelle et al. [220] observed that single decolonization with PHMB was
not sufficient to eradicate the specific MRSA strains. They found a mutation in mprF genes,
which can be associated with reduced susceptibility to PHMB. In adition, there is a risk
of cross-resistance between PHMB and such cell wall-active antibiotics as daptomycin,
vancomycin and teicoplanin [219,220]. In 2018 Shepherd et al. observed that the exposure of
Pseudomonas aeruginosa strains to 0.1% OCT led to increased tolerance to this antiseptic [40].
Also, in 2018 in Germany, Burkholderia cepacia growth in aqueous solutions of OCT was
observed [41]. The studies mentioned above are just isolated reports and concern only
single strains, but in the face of increasing microbial resistance, even slight evidence of
resistance emergence should be carefully examined. Resistance to CHX, especially of Gram-
negative rods, has been reported for a long time [221–225]. Abundant, worldwide use of
CHX has led to a positive selection of resistant strains and to cross-resistance between
CHX and other antiseptics or antibiotics, including last-chance drugs [52,224,226–229]. In
turn, Gram-negative rods often develop resistance to EL to such an extent that they can
incorporate this compound into their metabolism as nourishment. There have also been
reports of resistance to EL developed by S. aureus [68,69,230].

The translation of the results of our in vitro study to clinical outcomes should be done
carefully. Nevertheless, the data presented here show explicitly that BC’s chemisorption
with antimicrobials may be considered a measure to prevent and fight biofilm-based in-
fections of wounds. Another important conclusion is the statement that EL and SOH
antiseptics display a very low antimicrobial and antibiofilm activity, regardless of whether
released from BC or applied alone. In the era of the renaissance of new hypochlorite
formulas, our data, coupled with analogical data provided by Severing et al. [80] and
Rembe et al. [191], constitute an important voice in the ongoing discussion on the advis-
ability of the application of SOH antiseptics in highly contaminated wounds. Furthermore,
CHX, although in our analysis it displayed high efficiency, should be applied with full
awareness of the increasing cross-resistance emergence due to the use of this antimicrobial.

In our study, we have tried to get a glimpse of complex phenomena occurring within
various experimental settings and between biomaterial (BC), antiseptic and microbial
biofilm. We are aware of the fact that all in vitro biofilm models are not devoid of cer-
tain methodological flaws, and we have tried to overcome this disadvantage by using a
high number of species, strains and analytical techniques. Among the recurring observa-
tions from our study was the high antimicrobial efficacy of PVP-I released from BC; the
results obtained for this antiseptic were also more favorable comparing to commercial
silver dressing.

Bearing all the above-mentioned limitations of our study in mind, we believe that the
data presented in this manuscript will pave the way for other research teams aiming to
introduce BC dressings chemisorbed with efficient antiseptics to clinical practice.
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4. Materials and Methods
4.1. Materials
4.1.1. Tested Substances

1. Octenidine dihydrochloride (OCT)—Octenilin® wound irrigation solution (Schülke,
Norderstedt, Germany) contains 0.05% of OCT;

2. Polyhexamethylene biguanide hydrochloride (polyhexanide, PHMB)—Prontosan®

wound irrigation solution (B. Braun, Melsungen, Hessen, Germany), contains 0.1%
of PHMB;

3. Iodine povidone (PVP-I)—Braunol® skin solution liquid (B. Braun, Melsungen, Hes-
sen, Germany), contains 7.5% of PVP-I;

4. Chlorhexidine (CHX)—20% water solution of CHX (Fagron Pharma Cosmetics, Rotter-
dam, The Netherlands), diluted in water to 0.5% of CHX (concentration recommended
for wound irrigation);

5. Ethacridine lactate (EL)—Rivanol® liquid (Prolab, Paterek, Poland), contains 0.1%
of EL;

6. Super-oxidized solution with hypochlorites (SOH)—Microdacyn (Kikgel, Ujazd,
Poland) contains 0.004% of sodium hypochlorite (NaOCl) and 0.004% of hypochlorous
acid (HOCl).

4.1.2. Test Strains

The research was performed on eight species of bacteria and one yeast species, which
are common etiological factors of non-healing wound infections and/or cause significant
damage within the wound. A total of 54 strains were used for the study, 6 of each species;
each group consisting of 1 reference strain and 5 clinical strains:

1. Staphylococcus aureus ATCC 33591 and five clinical strains marked as SA1–SA5, (n = 6);
2. Staphylococcus epidermidis PCM 2118 and five clinical strains marked as SE1–SE5, (n = 6);
3. Enterococcus faecium ATCC 19434 and five clinical strains marked as EF1–EF5, (n = 6);
4. Escherichia coli ATCC 25922 and five clinical strains marked as EC1–EC5, (n = 6);
5. Klebsiella pneumoniae ATCC 4352 and five clinical strains marked as KP1–KP5, (n = 6);
6. Enterobacter cloacae ATCC 13047 and five clinical strains marked as ECL1–ECL5, (n = 6);
7. Pseudomonas aeruginosa ATCC 27853 and five clinical strains marked as PA1–PA5, (n = 6);
8. Acinetobacter baumannii PCM 2740 and five clinical strains marked as AB1–AB5, (n = 6);
9. Candida albicans ATCC 10231 and five clinical strains marked as CA1–CA5, (n = 6).

Three of the tested species were Gram-positive cocci (S. aureus, S. epidermidis, E. faecium),
five were Gram-negative rods (E. coli, K. pneumoniae, E. cloacae, P. aeruginosa, A. baumannii),
and one was Gram-positive yeast (C. albicans).

All used strains are a part of the Strains Collection of the Department of Pharmaceutical
Microbiology and Parasitology, Medical University of Wroclaw, Poland.

4.1.3. Control Materials

0.9% saline solution (Stanlab, Lublin, Poland) was used as a control substance of
non-antimicrobial activity. The antimicrobial activity of chemisorbed bacterial cellulose
dressings was compared with a silver dressing (Aquacel® Ag, ConvaTec, Berkshire, Eng-
land) or sterile blotting paper discs (Whatman, Maidstone, England). The Aquacel® Ag
silver dressing is a common silver dressing used worldwide, so it represents an appropriate
usability control. In turn, sterile 0.9% saline solution and sterile blotting paper are a neutral
substance and material, respectively, with no antibacterial/antifungal effect, and they do
not affect the growth and reproduction of the tested bacterial and yeast strains.

4.2. Methods
4.2.1. Production of Bacterial Cellulose Discs and Chemisorption with
Antimicrobial Substances

Komagataeibacter xylinus ATCC 53524 culture in Hestrin-Schramm medium (2% glucose
(w/v; Chempur, Piekary Slaskie, Poland), 0.5% yeast extract (w/v; VWR Chemicals, Radnor,
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PA, USA), 0.5% bactopeptone (w/v; VWR Chemicals, Radnor, PA, USA), 0.115% citric
acid (w/v; POCH, Gliwice, Poland), 0.27% Na2HPO4 (w/v; POCH, Gliwice, Poland), 0.05%
MgSO4·7H2O (w/v; POCH, Gliwice, Poland), and 1% ethanol (v/v; Stanlab, Lublin Poland)
was carried out for 7 days at 28 ◦C in 24-well microtiter plates (F type, Nest Scientific
Biotechnology, Wuxi, China). After incubation time, bacterial cellulose was removed from
the medium surface and washed in 0.1 M NaOH (Chempur, Piekary Slaskie, Poland)
solution at 80 ◦C until the BC became white. Then, the BC discs were purified with water to
obtain pH = 7 (checked using pH measurement strips, Macherey–Nagel, Düren, Germany)
and sterilized in a steam autoclave. The discs ready for further research had a diameter
of 16 mm. BC discs were placed into 24-well plates (F type, Nest Scientific Biotechnology,
Wuxi, China), and 1 mL of antimicrobial substances were added. The samples were
incubated overnight at 4 ◦C.

4.2.2. Evaluation of Test Strains Resistance Mechanisms

All strains (n = 54) were used in this test.
The methodology for determining resistance mechanisms is derived from The Euro-

pean Committee on Antimicrobial Susceptibility Testing (EUCAST) 2020/2021 guidelines.
In the disc-diffusion method, the antibiotic discs (Oxoid Thermo Fisher Scientific, Hamp-
shire, United Kingdom), 0.5 M ethylenediaminetetraacetic acid solution (EDTA, Merck,
Darmstadt, Germany), 15 mg/mL solution of phenylboronic acid (Merck, Darmstadt,
Germany) and Mueller–Hinton agar (Biomaxima, Lublin, Poland) were used. In the MIC
method, the Mueller–Hinton broth (Biomaxima, Lublin, Poland) and vancomycin (Van-
comycin MIP-500, MIP Pharma, Gdansk, Poland) were used [127,128].

To determine whether the test strains have developed resistance mechanisms, the
disc-diffusion method and minimal inhibitory concentration test were performed; for
all Gram-negative rods, the presence of β-lactamases (Klebsiella pneumoniae carbapene-
mase, KPC; metallo-β-lactamase, MBL; extended-spectrum β-lactamases, ESBL) was also
checked. Moreover, for E. coli, K. pneumoniae and E. cloacae, the presence of D-class car-
bapenemase OXA-48 was checked. S. aureus and S. epidermidis strains were tested for the
presence of methicillin resistance (methicillin-resistant S. aureus, MRSA and methicillin-
resistant coagulase-negative Staphylococci, MRCNS) and macrolides, lincosamides and
streptogramins B resistance (MLSB). S. aureus and E. faecium strains were tested for van-
comycin resistance (vancomycin-resistant S. aureus, VRSA and vancomycin-resistant Ente-
rococci, VRE). Additionally, E. faecium strains were also tested for the presence of high-level
aminoglycoside resistance (HLAR). All the investigated resistance mechanisms are com-
monly determined during routine microbiological diagnostics. There were no resistance
mechanisms checked for C. albicans strains because, in routine microbiological diagnostics,
there are no guidelines for their determination.

4.2.3. Comparison of the Amount of Formed Biofilm and Metabolic Activity of
Bacteria/Yeast Cells in Biofilm Structure

All strains (n = 54) were used in this test.
To determine the amount of biofilm formed by different species and strains, crystal

violet staining was performed. The metabolic activity of bacteria/yeast cells was deter-
mined by using 2,3,5-triphenyl tetrazolium chloride (TTC, PanReac AppliChem, Darmstadt,
Germany). The 24 h bacterial/yeast broth cultures in tryptic-soy broth culture medium
(TSB, Biomaxima, Lublin, Poland) were prepared and diluted in sterile 0.9% saline (Stanlab,
Lublin, Poland) to 0.5 McF (McFarland turbidity scale) using a densitometer (DensiLaMe-
ter II, Erba Lachema, Brno, Czech Republic). The suspensions were diluted 1000-times
to obtain a cell density of ca. 105 CFU/mL (colony-forming unit, CFU). The wells of
a 96-well microtitration plate (F type, Nest Scientific Biotechnology, Wuxi, China) were
filled with 200 µL of diluted suspensions in 12 repetitions, separately for both tests. The
samples were incubated at 37 ◦C for 24 h in static conditions to form biofilm. Then, the
culture medium over the biofilm was removed (8.5 mL/min, Ismatec Reglo Digital, Is-
matec, Wertheim, Germany). Two hundred µL of 20% water solution of crystal violet (CV,
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Aqua-Med, Lodz, Poland) or 200 µL of a 0.1% solution of TTC (PanReac AppliChem, Darm-
stadt, Germany) in TSB (Biomaxima, Lublin, Poland) was added. A 0.001% solution of
resazurin (Acros Organics, Geel, Belgium) in TSB (Biomaxima, Lublin, Poland) was added
instead of TTC (PanReac AppliChem, Darmstadt, Germany) to the samples containing
Candia albicans biofilms due to a very poor ability of Candida albicans to metabolize TTC
(PanReac AppliChem, Darmstadt, Germany). The samples with TTC (PanReac AppliChem,
Darmstadt, Germany) and resazurin (Acros Organics, Geel, Belgium) were incubated for
2 h at 37 ◦C and the samples with CV (Aqua-Med, Lodz, Poland) for 10 min at room temp.
CV (Aqua-Med, Lodz, Poland) and TTC (PanReac AppliChem, Darmstadt, Germany) was
removed from above the biofilms. The samples stained with CV (Aqua-Med, Lodz, Poland)
were rinsed twice with 0.9% saline (Stanlab, Lublin, Poland) to remove the dye from the
polystyrene. The next step was adding a solvent—200 µL of 100% methanol (Chempur,
Piekary Slaskie, Poland) for TTC (PanReac AppliChem, Darmstadt, Germany) and 200 µL
of 30% water solution of acetic acid (Chempur, Piekary Slaskie, Poland) for CV-stained
biofilms (Aqua-Med, Lodz, Poland). The samples with solvents were incubated for 15 min
with shaking at 400 rpm (PSU 2-T, Biosan, Riga, Latvia). In the case of resazurin (Acros
Organics, Geel, Belgium), the discoloration step was omitted because the dye transfers
from the cells to the solution. One hundred µL of each sample was transported to a new
96-well plate (F type, Nest Scientific Biotechnology, Wuxi, China), and spectrophotometric
measurements were performed (Multiscan Go, Thermo Fisher Scientific, Waltham, MA,
USA)—for TTC (PanReac AppliChem, Darmstadt, Germany) at a wavelength of 490 nm,
for resazurin (Acros Organics, Geel, Belgium) at 570 nm and for CV (Aqua-Med, Lodz,
Poland) at 550 nm.

4.2.4. Evaluation of Minimal Inhibitory Concentration (MIC) and Minimal Biofilm
Eradication Concentration (MBEC) of Test Substances

All test substances (n = 6) and strains (n = 54) were used in MIC and MBEC tests.
The MICs of antiseptics were determined by the broth microdilution method. Each

substance was tested in a concentration range of 50–0.098% of its working solution. If the
MIC value was not determined within this concentration range, the dilution series was
extended to 0.0015% of the working solution. Dilutions were prepared in tryptic soy broth
(Biomaxima, Lublin, Poland). Every substance was tested in triplicate, and for every repli-
cate, the bacteria/yeast growth control (without tested substances) and medium sterility
control (the culture medium only) were done. The 24 h bacterial/yeast broth cultures in
TSB (Biomaxima, Lublin, Poland) were prepared and diluted in sterile 0.9% saline (Stanlab,
Lublin, Poland) to 0.5 McF using a densitometer (DensiLaMeter II, Erba Lachema, Brno,
Czech Republic). The suspensions were diluted 1000 times to obtain a cell density of ca.
105 CFU/mL. Bacterial/yeast suspensions were added to dilution series of antiseptics in a
volume ratio of 1:1 to obtain the test concentration range mentioned above. The test was
carried out in 96-well sterile microtiter plates (F type, Nest Scientific Biotechnology, Wuxi,
China). The samples were incubated overnight at 37 ◦C with shaking at 400 rpm (PSU
2-T, Biosan, Riga, Latvia). Before and after incubation, spectrophotometric measurements
(Multiscan Go, Thermo Fisher Scientific, Waltham, MA, USA) at a wavelength of 580 nm
were done to determine the minimal inhibitory concentration of the test substances. After
the second measurement, 20 µL of 1.0% solution of TTC (PanReac AppliChem, Darm-
stadt, Germany) in TSB (Biomaxima, Lublin, Poland) was added to each well to visualize
metabolically active cells. To the samples containing Candia albicans biofilms, 20 µL of
0.02% solution of resazurin (Acros Organics, Geel, Belgium) in TSB (Biomaxima, Lublin,
Poland) instead of TTC (PanReac AppliChem, Darmstadt, Germany) was added due to the
very poor ability of Candida albicans to metabolize TTC (PanReac AppliChem, Darmstadt,
Germany). The samples were incubated for 2 h at 37 ◦C with shaking 400 at rpm (PSU 2-T,
Biosan, Riga, Latvia), and MIC values were determined based on the change in medium
color from yellow to red (TTC, PanReac AppliChem, Darmstadt, Germany) or from blue to
pink (resazurin, Acros Organics, Geel, Belgium).
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MBECs of antiseptics were also determined by the broth microdilution method. Every
substance was tested in triplicate, and for every replicate, the bacteria/yeast growth control
(without the test substances) and medium sterility control (the culture medium only) were
done. The 24 h bacterial/yeast broth cultures in TSB (Biomaxima, Lublin, Poland) were
prepared and diluted in sterile 0.9% saline (Stanlab, Lublin, Poland) to 0.5 McF. The suspen-
sions were diluted 1000 times to obtain a cell density of about 105 CFU/mL (DensiLaMeter
II, Erba Lachema, Brno, Czech Republic). Two hundred µL of bacterial/yeast suspensions
were added to the wells of 96-well sterile microtiter plate (F type, Nest Scientific Biotechnol-
ogy, Wuxi, China) and incubated at 37 ◦C for 24 h in static conditions to form biofilm. After
incubation time, the culture medium from over the biofilms was removed. Serial dilutions
of antiseptics were prepared by adding the TSB (Biomaxima, Lublin, Poland) medium to
the test substances. The obtained concentration range was from 100% to 0.2% of the test
substances working solutions. The dilution series was added to the wells with the formed
biofilm and incubated overnight at 37 ◦C. Next, the fluid was removed, and 200 µL 0.1%
solution of TTC (PanReac AppliChem, Darmstadt, Germany) in TSB (Biomaxima, Lublin,
Poland) was added. Two hundred µL of 0.001% solution of resazurin (Acros Organics,
Geel, Belgium) in TSB (Biomaxima, Lublin, Poland) instead of TTC (PanReac AppliChem,
Darmstadt, Germany) was added to the samples containing Candia albicans biofilms. After
2 h of incubation at 37 ◦C, MBECs were determined based on culture medium color change
from yellow to red (TTC) or blue to pink (resazurin).

4.2.5. Evaluation of Antimicrobials’ Activity Using Disk-Diffusion Method

All the test substances (n = 6) and strains (n = 54) were used for the disc-diffusion test.
To evaluate the antimicrobial activity of the test substances, the disc diffusion method

was used. Sterile blotting paper discs (diameter 16 mm, Whatman, Maidstone, England)
were dipped in 0.5 mL of the test substances for 10 min. The 24 h bacterial/yeast broth
cultures in TSB (Biomaxima, Lublin, Poland) were prepared and diluted in sterile 0.9%
saline (Stanlab, Lublin, Poland) to 0.5 McF (DensiLaMeter II, Erba Lachema, Brno, Czech
Republic). The microorganisms were spread evenly throughout the Mueller–Hinton agar
plates (Biomaxima, Lublin, Poland) and soaked blotting paper discs were put on the plates.
The cultures were incubated overnight at 37 ◦C, and then the growth inhibition zone
diameters were measured. The areas of the zones were calculated, and the area of the paper
disc was subtracted from them.

4.2.6. Evaluation of Antimicrobial Activity of Chemisorbed Bacterial Cellulose Dressings
Using Modified Disk-Diffusion Method

All the test substances (n = 6) and strains (n = 54) were used in the disc-diffusion test.
The 24 h bacterial/yeast broth cultures in TSB (Biomaxima, Lublin, Poland) were

prepared, diluted in sterile 0.9% saline (Stanlab, Lublin, Poland) to 0.5 McF (DensiLaMeter
II, Erba Lachema, Brno, Czech Republic) and spread evenly throughout Mueller–Hinton
agar plates (Biomaxima, Lublin, Poland). The previously prepared chemisorbed bacterial
cellulose discs were put on the plates. The cultures were incubated overnight at 37 ◦C.
Then the growth inhibition zones diameters were measured. The areas of the zones were
calculated, and the area of BC disc was subtracted from them.

4.2.7. Evaluation of Silver Dressings’ Activity Using the Modified Disk Diffusion Method

All the test strains (n = 54) were used for the disc-diffusion test.
A silver dressing was used as comparative material for bacterial cellulose dressings.

The Aquacel® Ag (ConvaTec, Berkshire, England) dressing was cut into 14 mm side
squares. The microorganisms were spread evenly throughout the Mueller–Hinton agar
plates (Biomaxima, Lublin, Poland) and pieces of silver dressings were put on the plates.
The cultures were incubated overnight at 37 ◦C, and then the growth inhibition zones sides
were measured. The areas of the zones were calculated, and the areas of silver dressing
pieces were subtracted from them.
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4.2.8. Evaluation of Anti-Biofilm Activity of Chemisorbed Bacterial Cellulose Dressings
Using the Modified Antibiofilm Dressing’s Activity Measurement (ADAM) Test

The modified ADAM test was performed using 3 of the test substances: octenidine
dihydrochloride (Octenilin® Schülke, Norderstedt, Germany), polyhexanide (Prontosan ®,
B. Braun, Melsungen, Hessen, Germany) and iodine povidone (Braunol®, B. Braun, Mel-
sungen, Hessen, Germany). Sterile 0.9% NaCl solution (Stanlab, Lublin, Poland) was used
as a negative control. The test was carried out for reference strains only (n = 9).

For the purposes of the modified ADAM test [129,130], mini agar-based reaction tubes
and agar discs were prepared. The 24-well plates (F type, Nest Scientific Biotechnology,
Wuxi, China) were filled with microbiological agar (VWR Chemicals, Radnor, PA, USA) to
4/5 of their height. Following congealing of the agar, the wells were cut in the middle of
the agar using a cork-borer (well diameter 5.0 mm). Using the same size cork-borer, the
agar discs were cut from the 5.0 mm thick agar plates. Two kinds of culture media were
used for the ADAM test: TSB (Biomaxima, Lublin, Poland) as a basic culture medium and
a mixture imitating an artificial exudate (AE). AE was prepared by mixing 1% of mucin
(Merck, Darmstadt, Germany), 1% of bovine serum albumin (VWR Chemicals, Radnor,
PA, USA), 10% of fetal bovine serum (Biowest, France) and 88% of RPMI 1640 cell culture
medium (Biowest, Nuaille, France). The AE was filtered through 0.21 micron pore size
filters (Filtropur S plus, Sarstedt, Nümbrecht, Germany) to obtain sterility. The 24 h bacte-
rial/yeast broth cultures in TSB (Biomaxima, Lublin, Poland) were prepared and diluted in
sterile 0.9% saline (Stanlab, Lublin, Poland) to 0.5 McF (DensiLaMeter II, Erba Lachema,
Brno, Czech Republic). The suspensions were diluted 105 times in TSB (Biomaxima, Lublin,
Poland) and AE to obtain a cell density of about 103 CFU/mL. The previously prepared
agar discs were placed into 24-well plates (F type, Nest Scientific Biotechnology, Wuxi,
China), and 2.0 mL of bacterial/yeast suspensions were added, with suspensions in differ-
ent media added to separate plates. The samples were incubated at 37 ◦C for 24 h in static
conditions to form biofilm on the agar discs. The BC discs were placed in 24-well plates
(F type, Nest Scientific Biotechnology, Wuxi, China) and 1.0 mL of the substances (OCT
(Octenilin® Schülke, Norderstedt, Germany), PHMB (Prontosan®, B. Braun, Melsungen,
Hessen, Germany), PVP-I (Braunol®, B. Braun, Melsungen, Hessen, Germany) and NaCl
(Stanlab, Lublin, Poland) was added. The BC discs were incubated overnight at 4 ◦C. After
incubation time, the agar discs with biofilms on them were gently pulled out of the 24-well
plates (F type, Nest Scientific Biotechnology, Wuxi, China) and placed into the agar wells
prepared in advance. The space above the biofilms was filled with culture media—one
series with TSB (Biomaxima, Lublin, Poland), the second with AE. The chemisorbed bac-
terial cellulose discs were placed on top of the agar tube (6 repetitions of 1 substance per
species per medium). The samples were incubated at 37 ◦C for 24 h under static conditions.
Then the BC discs were removed, and the agar discs were gently moved to new 24-well
plates (F type, Nest Scientific Biotechnology, Wuxi, China). Two mL of 0.1% solution of
TTC (PanReac AppliChem, Darmstadt, Germany) in TSB (Biomaxima, Lublin, Poland) was
added to the wells and incubated for 4 h at 37 ◦C to visualize metabolically active cells. A
0.001% solution of resazurin (Acros Organics, Geel, Belgium) in TSB (Biomaxima, Lublin,
Poland) instead of TTC (PanReac AppliChem, Darmstadt, Germany) was added to the
samples containing Candia albicans biofilms due to the very poor ability of Candida albicans
to metabolize TTC (PanReac AppliChem, Darmstadt, Germany). Incubation time and
conditions were the same as in the method with TTC (PanReac AppliChem, Darmstadt,
Germany). Then, the fluid over the agar discs was removed, the discs were moved to new
24-well plates (F type, Nest Scientific Biotechnology, Wuxi, China), and 2.0 mL of methanol
(Chempur, Piekary Slaskie, Poland) was added. The plates were incubated for 15 min at
37 ◦C with shaking at 300 rpm (PSU 2-T, Biosan, Riga, Latvia) to release the color to the
solution. Two hundred µL of the obtained solutions were moved from each well to 96-well
plates (F type, Nest Scientific Biotechnology, Wuxi, China) in 4 repetitions and measured
spectrophotometrically (Multiscan Go, Thermo Fisher Scientific, Waltham, MA, USA) at
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490 nm for TTC (PanReac AppliChem, Darmstadt, Germany) and at 570 nm for resazurin
(Acros Organics, Geel, Belgium).

4.2.9. Evaluation of Anti-Biofilm Activity of Silver Dressing Using the Modified
Antibiofilm Dressing’s Activity Measurement (ADAM) Test

This test was performed for reference strains (n = 9). The silver dressing (Aquacel®

Ag, ConvaTec, Berkshire, England) was used as comparative material for bacterial cellulose
dressings. The preparation and carrying out of the modified ADAM test were the same
as described in the previous subsection. Instead of chemisorbed BC discs, square pieces
of silver dressings with a side of 14 mm were used. BC discs saturated with sterile
0.9% NaCl solution (Stanlab, Lublin, Poland) were used as a controlled setting of the
microorganisms’ growth.

4.2.10. Statistical Analysis

Calculations were performed using the GraphPad Prism version 7 software (GraphPad
Co., San Diego, CA, USA). The normality of distribution was assessed using the D’Agostino–
Pearson’s omnibus test. Because all values were non-normally distributed, the Kruskal–
Wallis test with post hoc Dunnett analysis was applied. The results of statistical analyses
were considered significant if they produced p-values < 0.001.

5. Conclusions

• By chemisorption with various classes of antiseptics, BC can be functionalized into
dressing displaying antimicrobial and antibiofilm properties;

• PVP-I released from BC displayed the highest antibiofilm activity among the tested
antiseptics, while SOH and EL were of little or no usability in this aspect;

• BC dressings chemisorbed with PVP-I were more effective against biofilms than
commercially applied silver dressings;

• The antimicrobial compound applied as an additive to the dressing should be selected
not only based on its antimicrobial activity but also concerning its safety of use and
the potential to induce microbial resistance.

Limitations of This Study

All the tests in our research were performed in vitro and should be considered as
preliminary studies. We used commercially available antimicrobial products and compared
their activity against eight species of bacteria and one species of yeast, six strains per
species. Confirmation of the superior antimicrobial efficacy of one of the tested compounds
would require a further increase in the number of test strains and the performance of
clinical trials. We have compared the antimicrobial activity of BC dressings chemisorbed
with antimicrobials against only one type of silver dressing (Aquacel® Ag). There are
other silver dressings with a higher content of this element. The rationale behind our
decision was to use a commercial product of high popularity among clinical practitioners,
and Aquacel® Ag definitely meets this criterion. Nevertheless, the application of other
commercially available silver dressings could produce different outcomes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22083996/s1, Figure S1. Areas of growth inhibition zones for Staphylococcus aureus strains,
Figure S2. Areas of growth inhibition zones for Staphylococcus epidermidis strains, Figure S3. Areas of
growth inhibition zones for Enterococcus faecium strains, Figure S4. Areas of growth inhibition zones
for Klebsiella pneumoniae strains, Figure S5. Areas of growth inhibition zones for Escherichia coli strains,
Figure S6. Areas of growth inhibition zones for Pseudomonas aeruginosa strains, Figure S7. Areas of
growth inhibition zones for Enterobacter cloacae strains, Figure S8. Areas of growth inhibition zones
for Acinetobacter baumannii strains, Figure S9. Areas of growth inhibition zones for Candida albicans
strains, Figure S10. Graphic representation of average growth inhibition zones areas (mm2) caused by
silver dressing compared to o BC dressing chemisorbed with octenidine (BC with OCT), Figure S11.
Graphic representation of average growth inhibition zones areas caused by silver dressing compared
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to BC dressing chemisorbed with polyhexanide (BC with PHMB), Figure S12. Graphic representa-
tion of average growth inhibition zones areas caused by silver dressing compared to BC dressing
chemisorbed with povidone-iodine (BC with PVP-I), Figure S13. Graphic representation of average
growth inhibition zones areas caused by silver dressing compared to BC dressing chemisorbed with
chlorhexidine (BC with CHX), Figure S14. Graphic representation of average growth inhibition zones
areas caused by silver dressing compared to BC dressing chemisorbed with ethacridine lactate (BC
with EL), Figure S15. Graphic representation of average growth inhibition zones areas caused by
silver dressing compared to BC dressing chemisorbed with super-oxidized hypochlorous solution
(BC with SOH), Figure S16. The results of the ADAM test presented as the average percentage of
metabolically active cells in biofilm eradication in tryptic-soy broth (TSB) culture medium, Figure S17.
The results of the ADAM test presented as the average percentage of metabolically active cells in
biofilm eradication in an artificial exudate (AE) culture medium, Figure S18. Stages of the modified
ADAM test, Table S1. Resistance mechanisms of the test strains, Table S2. Areas of growth inhibition
zones around BC dressings (BC) chemisorbed with the test antimicrobial compounds, Table S3.
Average growth inhibition zones (mm2) obtained in the modified disc-diffusion method using a
silver dressing.
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