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Abstract

Neuroimaging techniques that can sensitivity characterize healthy brain aging and detect subtle 

neuropatholo-gies have enormous potential to assist in the early detection of neurodegenerative 

conditions such as Alzheimer’s disease. Magnetic resonance elastography (MRE) has recently 

emerged as a reliable, high-resolution, and especially sensitive technique that can noninvasively 

characterize tissue biomechanical properties (i.e., viscoelasticity) in vivo in the living human 

brain. Brain tissue viscoelasticity provides a unique biophysical signature of neuroanatomy that 

are representative of the composition and organization of the complex tissue microstructure. In this 

article, we detail how progress in brain MRE technology has provided unique insights into healthy 

brain aging, neurodegeneration, and structure-function relationships. We further discuss additional 

promising technical innovations that will enhance the specificity and sensitivity for brain MRE to 

reveal considerably more about brain aging as well as its potentially valuable role as an imaging 

biomarker of neurodegeneration. MRE sensitivity may be particularly useful for assessing the 

efficacy of rehabilitation strategies, assisting in differentiating between dementia subtypes, and in 

understanding the causal mechanisms of disease which may lead to eventual pharmacotherapeutic 

development.
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1. Introduction

With increasing age, the human brain is subjected to structural, chemical, molecular, and 

electro-physiological changes that impact its ability to function. Physical signs of brain 

aging can be identified through conventional neuroimaging, where it is frequently reported 

that the volume of the brain declines with age at a rate of around 5% per decade after age 40 

(Peters, 2006), most likely due to the degeneration and death of neurons and 

oligodendrocytes (Anderton, 2002). Tissue volume loss is accompanied by increases in 

ventricular volume and other cerebrospinal fluid spaces, as well as the appearance of white 

matter lesions, alterations to brain vasculature, and depletion of neurotransmitters. While 

brain aging is inevitable to some extent, it is also a complex and heterogeneous process with 

no uniform signature. The interplay between both genetic and environmental factors are 

likely to determine the degree and rate of brain aging, which ultimately reflects in the high 

inter-individual variability in neurocognitive abilities observed in the elderly. As a result, 

new techniques are needed to enhance the study of the mechanisms behind healthy aging to 

better understand individual differences in the aging process, and to assist ongoing efforts to 

combat age-associated neurodegeneration and eventual disease and disorder.

Quantitative neuroimaging contrasts provide an attractive option to more precisely measure 

age-related changes to brain health and microstructure. Compared to morphometric 

measures, which capture tissue geometry that is presumably influenced by microstructure, 

quantitative contrasts offer measures more directly related to microscale characteristics 

(Paus, 2018). Recently, magnetic resonance elastography (MRE) (Muthupillai et al., 1995) 

has been applied to study brain health through imaging tissue biomechanics (Hiscox et al., 

2016; Murphy et al., 2019). MRE probes tissue viscoelasticity non-invasively and in vivo, 

which is sensitive to brain tissue architecture and reflects the composition and organization 
of the underlying microstructure (Guo et al., 2019; Sack et al., 2013). Since the first brain 

MRE publication in 2005, the field has experienced considerable growth with now almost 

150 dedicated publications (determined via PubMed search June 2020 using PubMed with 

key words “brain” and “magnetic resonance elastography”; Fig. 1). These papers comprise 

both methodological enhancements and clinical applications, with studies of healthy aging 

and age-related neurological disease providing the most robust body of literature in the field. 

Several different research groups across the world have now reported that the brain becomes 

softer with increasing age, which is likely to reflect a loss of neurons and their synaptic 

connections. Through continuous developments and more advanced methodologies, brain 

MRE has transitioned to a reliable, specific, and especially sensitive neuroimaging modality 

(Mariappan et al., 2010, Manduca et al., 2021). As a result, the field has begun to delve 

further into understanding more precise localized aging effects, which ultimately has 

implications for improving understanding of age-related cognitive decline and 

neurodegeneration.

1.1. Magnetic resonance elastography of the brain

Regardless of the organ of interest, there are three main components that constitute an MRE 

examination. First, shear waves of sufficient amplitude must be delivered into the tissue by 

gentle vibration using an external mechanical actuator; second, the resulting tissue 
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displacements need to be encoded into the MRI signal using customized phase-contrast 

pulse sequences; and third, displacement images must be inverted using a mathematical 

reconstruction to recover and quantify the underlying mechanical properties of the tissue. 

Mechanical actuators for brain MRE need to gently vibrate the entire head to induce shear 

tissue deformation, typically at 50 or 60 Hz; brain MRE pulse sequences should capture full 

vector wave fields at high spatial resolution across the entire brain; and inversion algorithms 

should account for significant material heterogeneity due to the varying types of cerebral 

tissue. An overview of a typical brain MRE procedure is illustrated in Fig. 2. The vibrations 

used for brain MRE have an extremely small, micron-level amplitude (Ehman et al., 2008) 

and consequently are safe and well tolerated, even in the elderly (Hiscox et al., 2018).

Brain tissue exhibits viscoelastic behavior and the most common output measures from 

MRE express both the elastic and viscous components through the complex shear modulus 

G∗ = G′ + iG″. Here, the storage modulus (G’ reflects the elastic properties that describe the 

ability of a material to return to its original shape after deformation forces have been 

removed. In contrast, the loss modulus (G”) is associated with the viscous properties of 

tissue that cause attenuation of the waves as they travel through a material and relate to the 

absorption of mechanical energy. All MRE studies report parameters related to these terms, 

a full summary of which has been thoroughly described by Manduca et al., 2021. Regardless 

of which of these material parameters are reported across studies, all calculations rely on a 

series of mathematical assumptions within the inverse solution, with the brain typically 

modelled as a heterogenous, isotropic, and incompressible material.

In single frequency brain MRE studies, it has become increasingly common to report the 

composite parameter of shear stiffness, μ = 2 G∗ 2/ G′ + G∗ , which is the resistance of a 

viscoelastic material to an applied harmonic forcing, and is equivalent to the density × wave 

speed squared (Manduca et al., 2001) or shear wave speed reported by other groups 

(Herthum et al., 2021). In this case, μ can be regarded as a wave-field parameter in which 

measurements describe a purely elastic object that exhibits the observed wavelength at the 

driving frequency. To capture the full viscoelastic behavior, reporting is then typically 

coupled with a dimensionless parameter such as the damping ratio, ξ = G″/2G′ which 

describes the relative viscous-to-elastic behavior of tissue, with higher values indicative of 

greater relative viscosity (Manduca et al., 2021). While the earliest brain MRE studies did 

not regularly report parameters related to the loss modulus, it has now become more 

common due to increased confidence in measurement accuracy and reliability (Johnson et 

al., 2016). Note that while μ and ξ are often reported for single frequency MRE studies, 

multifrequency MRE experiments instead seek to fit general dispersion behavior of brain 

tissue. In these cases, parameters such as the magnitude of the complex modulus and its 

phase angle, φ = tan−1 G″/G′  are often reported instead (Barnhill et al., 2019; Gerischer et 

al., 2017; Manduca et al., 2021).

The measured mechanical properties obtained from MRE reflect microstructural 

characteristics of neural tissue (Sack et al., 2013). Just as the constitutive elements of man-

made structures determine their rigidity and flexibility, so too does the microenvironment 

determine the macroscopic mechanical response of the brain. Evidence from animal models 
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combined with ex vivo histology of tissue slices has suggested that stiffness may reflect the 

composition of individual tissue components. For example, increased stiffness has been 

observed due to the generation of new neurons from a dopamine defect (Klein et al., 2014), 

to the density of intermediate filaments induced from reactive gliosis (Lu et al., 2011), and 

to increased myelin content (Weickenmeier et al., 2016, 2017), while decreased brain 

stiffness has been associated with neuronal loss in a mouse model of stroke (Freimann et al., 

2013) and demyelination provoked by a cuprizone diet (Schregel et al., 2012). On the other 

hand, the relative viscous-to-elastic behavior described by the damping ratio or phase angle 

is thought to generally reflect the geometric organization of tissue components and their 

network complexity (Guo et al., 2012; I Sack et al., 2013). In a recent developmental mouse 

model, viscosity was associated with actin crosslinking and axonal organization (Guo et al., 

2019). As such, the unique sensitivity and contrast afforded by MRE offers considerable 

potential for providing new insights into age-related neurological changes through a 

quantitative representation of the microstructural constituents of tissue.

As effects of aging on brain tissue integrity is both subtle and largely localized to specific 

neuroanatomical structures, researchers have begun to employ high-resolution MRE 

methods to improve mapping of brain biomechanics. This has been made possible through 

continued technological advances to imaging and inversion schemes. For example, the 

development of spiral MRE pulse sequences (Johnson et al., 2013, 2014), finite-element 

based nonlinear inversion (McGarry et al., 2012; Van Houten et al., 1999), multi-frequency 

MRE (Guo et al., 2013; Papazoglou et al., 2012; Barnhill et al., 2018), and inversion with 

machine learning and artificial neural networks (Murphy et al., 2018, 2020), have each 

contributed to improving the validity, reliability, and sensitivity of brain MRE. While beyond 

the remit of this review, we encourage interested readers to refer to the citations provided for 

aspects of MRE methods that would be relevant to studying the aging brain. As a result of 

these contributions, brain MRE has moved away from reporting average tissue stiffness of 

the brain parenchyma, to reliable measures that enable the study of individual 

neuroanatomical regions, including white matter tracts (Anderson et al., 2016; Johnson et 

al., 2013; Romano et al., 2012), subcortical gray matter structures (Hetzer et al., 2018; 

Johnson et al., 2016), hippocampal subfields (Daugherty et al., 2020; Delgorio et al., 2020), 

and the cerebral cortex (Hiscox et al., 2020a; McIlvain et al., 2020). In the following 

sections we examine how high-resolution MRE has allowed researchers to obtain sensitive 

and reliable mechanical measures to better understand age and disease. Example high-

resolution MRE maps of a healthy young, and older adult are illustrated in Fig. 3.

1.2. Viscoelasticity of the aging brain

Several studies have utilized MRE to study healthy brain aging; information regarding the 

MRE protocols used as well as the main results are provided in Table 1. In one of the earliest 

brain MRE studies, Sack, et al., investigated healthy brain aging in adults aged between 18 

and 88 years and reported a significant linear decline in whole-brain averaged stiffness (Sack 

et al., 2009). The annual 0.8% reduction in stiffness was broadly speculated to be 

attributable to the degeneration of neurons and oligodendrocytes. Shortly afterwards, the 

same group reported that the decline in whole-brain stiffness was three times greater than 

changes in brain volume measurements (Sack et al., 2011). These were important 
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discoveries as, first, it suggested that MRE may be more sensitive at detecting aging effects 

beyond those obtained from structural MRI, and second, that MRE measures were 

independent of geometry effects and in fact reflected a tissue-intrinsic structure alteration.

With improved MRE imaging methods to capture whole-brain, 3D MRE displacement data 

coupled with more stable inversion protocols, the ability to accurately quantify brain 

stiffness moved from non-specific global measures to examining lobar regions (Murphy et 

al., 2013). As a result, Arani, et al., studied the effect of healthy aging on regional brain 

stiffness measurements in 45 older participants aged between 56 and 89 years (Arani et al., 

2015). Complementing the previous studies mentioned, a significant negative linear 

correlation was observed between age and global cerebrum stiffness, in addition to a linear 

age-related decline in stiffness within the individual frontal, occipital, parietal, and temporal 

lobes. Interestingly, no relationship between brain stiffness and age was observed in the 

cerebellum or sensory-motor regions. Similar results were reported by Takamura, et al., who 

found softening to all four lobes in 50 participants across a younger age range (20–60 years) 

(Takamura et al., 2020), but also not in the cerebellum. This study also reported how 

stiffness of all lobes differed between participants in their twenties compared with 

participants in their sixties, whereas volumetric differences between the two groups were 

minimal. These studies demonstrated the specificity for MRE to detect age-related effects 

within only certain brain partitions and which were also greater than age-related reductions 

in volume.

Using higher resolution MRE methods at a 1.6 mm isotropic resolution, Hiscox, et al., 

investigated aging effects on the mechanical properties of a range of subcortical gray matter 

structures, which are expected to support cognitive processes that may decline in old age 

(Hiscox et al., 2018). A sample of 12 healthy older adults (age range: 66–73 years) were 

found to exhibit reduced brain stiffness in the amygdala, caudate, pallidum, putamen, and 

thalamus compared to a group of 12 healthy young adults (age range: 19–30 years). 

Moreover, differences in MRE properties were independent of concomitant volume 

differences, which is suggestive of the additive value of MRE over traditional volumetric 

measures. The hippocampus did not exhibit a statistically significant difference between 

groups, although it did show a trend in the same direction for being softer in the older adult 

group; the absence of statistical significance was attributed to low statistical power given by 

the small sample size.

As the spatial resolution of brain MRE continued to evolve, Delgorio, et al., recently 

demonstrated the feasibility of performing MRE of the hippocampal subfields through the 

development of a specifically tailored high-resolution MRE protocol that combined 1.25 mm 

isotropic displacement data with NLI parameters tuned for high sensitivity and reliability 

(Delgorio et al., 2020). Viscoelasticity was quantified for four subregions including cornu 

ammonis areas 1 and 2 combined (CA1-CA2), dentate gyrus and cornu ammonis area 3 

combined (DG-CA3), entorhinal cortex, and subiculum. In the cross-sectional study 

involving 54 participants (age range: 23–81 years), older age was associated with softer 

subfields with the magnitude of aging effects dependent on region. Entorhinal cortex showed 

the greatest annual change (0.014 kPa), whereas the subiculum exhibited the lowest (0.011 

kPa). These results complement existing structural MRI and diffusion data in which 
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differential age-related trajectories in subfield volumes have been observed (Daugherty et 

al., 2016; Mueller et al., 2007; Raz et al., 2005). There is evidence, however, that age-related 

variability in the volume of the entorhinal cortex and subiculum are minimal (Daugherty et 

al., 2016), suggesting that brain stiffness may be more sensitive marker to the early stages of 

age-related neurodegeneration.

Aging is also a common target for the application of new brain MRE methods to 

demonstrate the ability to recover “biologically-relevant” effects, such as with higher 

resolution inversion approaches (Barnhill et al., 2018; Murphy et al., 2018). One area of 

development that has received attention recently is in recovery of anisotropic mechanical 

properties in the brain with MRE. White matter tracts consist of highly-aligned, myelinated 

axonal fiber bundles, which cause anisotropic mechanical properties, and as such, stiffness 

of white matter is both regionally and directionally dependent (Anderson et al., 2016; Prange 

and Margulies, 2002; Smith et al., 2020). However, typical MRE methods assume 

mechanical isotropy to simplify analysis that has so far limited the ability to reliably assess 

the stiffness of white matter tracts and how it is affected by aging. A recent study attempted 

to study aging effects on white matter anisotropy in the brain, but the results were generally 

equivocal, likely due to methods with insufficient sensitivity or reliability (Kalra et al., 

2019). Future work adopting advanced anisotropic MRE methods, including transverse 

isotropic (McGarry et al., 2020; Schmidt et al., 2018) or orthotropic models (Romano et al., 

2014, 2012), may identify age-related softening of white matter tracts and changes in 

anisotropy. Previous studies using diffusion MRI have shown that aging causes a decrease in 

anisotropy, as well as anincrease in radial diffusivity (Davis et al., 2009), which has been 

linked with demyelination (Song et al., 2002). As brain stiffness is sensitive to myelination 

(Weickenmeier et al., 2016, 2017), studies of white matter tracts using appropriate 

anisotropic MRE methods may reveal similar effects.

In summary, the consensus reached from several separate MRE research groups is that the 

brain softens with advancing age, with the cerebrum experiencing an approximate reduction 

in stiffness by 0.008 kPa per year. The magnitude of softening is also region specific, 

suggesting that some brain regions are more vulnerable and/or resilient to age-related 

microstructural changes. It should be noted that the degree of reported softeningalso varies 

between studies, as shown in Table 1. This may be attributed to a number of reasons, such as 

the age differences in the sample population or, most likely, to the variety of MRE methods 

used including 2D or 3D wave acquisitions, actuation frequency, imaging spatial resolution, 

or the assumptions required in inversion algorithms. Another potentially confounding 

variable may be how studies have differed in their approach to handling voxels that contain 

CSF. Some studies have subtracted CSF-containing voxels for ROIs prior to inversion 

(Hiscox et al., 2020a; Hiscox et al., 2020b) or have used adaptive postprocessing techniques 

in conjunction with mask erosion to remove atrophy bias (Hughes et al., 2015; Murphy et 

al., 2013;Huston et al., 2015), while others have presumably ignored the issue entirely. The 

exact contribution of these approaches to data analysis, however, are not conclusively 

known. Despite the small deviations in the actual rates of change, the fundamental finding of 

brain tissue softening with increasing age is remarkably consistent and persists despite a host 

of differences in study protocols. We also note that while these annual changes are still 

small, they are well within published test-retest repeatability estimates for brain MRE 
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(Barnhill et al., 2018; Johnson et al., 2016; Murphy et al., 2013). While longitudinal studies 

of brain aging with MRE do not yet exist, it is likely that current MRE methods would be 

unable to robustly detect a change in brain stiffness from year-to-year in a single individual. 

Studies on groups or populations will therefore be needed to observe the expected 

viscoelastic aging effects.

While the majority of brain MRE studies mentioned have reported age-related effects on 

stiffness showing tissue softening, the effects of aging on viscous behavior are less 

understood. Early studies found a general preservation of the relative viscous properties of 

the brain (Sack et al., 2011, 2008). With higher resolution and an optimized inversion 

protocol, Delgorio, et al., report that the individual hippocampal subfields show an age-

related linear increase in the damping ratio, reflecting greater viscous-to-elastic properties in 

older age (Delgorio et al., 2020). These results are consistent with a previous study on the 

whole hippocampus which reported 21% higher damping ratio in older compared to younger 

adults (Hiscox et al., 2018). Additionally, the magnitude of the age relationship varied 

according to subfield damping ratio, indicating differential patterns of brain aging. For 

example, results suggest that the subiculum may undergo accelerated aging compared to the 

entorhinal cortex, which may open up new opportunities to study the successive emergence 

of neurodegeneration within the hippocampus. There has been speculation that higher 

damping ratio in older age may be reflective of more disorganized microstructural 

interactions from an increased proportion of mobile tissue components caused by common 

features of hippocampal aging, such as increased oxidative stress, altered protein processing, 

and dysregulated metabolism (Fan et al., 2017). These results are consistent with both a 

mouse model that had reported the viscous properties of the hippocampus increase with age 

(Munder et al., 2018), as well as human studies that have linked higher damping ratio to 

poorer cognitive performance (Hiscox et al., 2020b; Johnson et al., 2018; Schwarb et al., 

2016, 2017), which are discussed later in this article.

1.3. MRE studies of dementias

Increasing age is the single greatest risk factor for the development of Alzheimer’s disease 

(AD), which is the most common cause of dementia. The study of healthy brain aging is 

therefore essential for improving understanding of the underlying neurological mechanisms 

that may eventually lead to mild cognitive impairment (MCI) and AD development. While 

atrophy is a common consequence of aging, the accumulation of toxic proteins is required to 

meet the pathological criteria for AD; namely, the appearance of neurofibrillary tangles in 

the hippocampus, and the deposition of ß-amyloid and neuritic infiltrate in association 

cortices (Halliday, 2017; Blennow and Zetterberg, 2018). How these processes may impact 

tissue mechanics is of interest for disease detection with MRE offering a novel contrast for 

observing subtle microstructural changes.

MRE has been used to study AD more than any other neurological condition. In the first 

proof-of-concept MRE study of AD in humans, Murphy, et al. reported global brain stiffness 

was 7% lower in biomarker-confirmed patients when compared with age-matched healthy 

control participants (Murphy et al., 2011). The same study also showed that ß-amyloid 

deposition alone was insufficient to cause a change in observed stiffness, as brain stiffness 
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did not differ between cognitively healthy participants who were amyloid positive or 

amyloid negative, as measured through PET imaging. As such, it was reported that MRE 

may be most sensitive to downstream neurodegenerative effects particularly in patients who 

exhibited clinical symptoms and were in the later stages of the AD continuum. Despite 

reports that ß-amyloid plaques are far stiffer than surrounding brain tissue (Knowles and 

Buehler, 2011; Mattana et al., 2017), it is important to note that ß-amyloid plaques are 

distinct, discontinuous, and only form a relatively small volume fraction of the entire tissue; 

therefore, the effective stiffness of such a material will be dominated by changes in the softer 

matrix. A regional investigation of brain stiffness subsequently followed and illustrated the 

specificity of MRE for detecting more substantial softening to the frontal, parietal, and 

temporal lobes in AD patients (Fig. 4A) (Murphy et al., 2016), in accordance with what is 

known regarding the spatial localization of AD pathology. Brain stiffness was further shown 

to correlate with disease severity as assessed by established AD biomarkers including 

amyloid PET imaging and hippocampal volume (Murphy et al., 2016).

The hippocampus is an integral structure for memory encoding and consolidation and 

hippocampal neuronal loss and atrophy is incorporated into the pathological criteria for AD 

(Jack et al., 2011). As a result, there was anticipation that MRE would provide additional 

information regarding hippocampal health in AD patients. To ensure sufficient resolution for 

imaging its smaller structure, Gerischer, et al., from a different research group, adopted a 

multifrequency MRE protocol. Stiffness of the hippocampus was 22% lower in AD patients 

compared to controls, yet no differences were observed in the thalamus (Fig. 4B). These 

results illustrated both the sensitivity and specificity of MRE to detect differences in a region 

of interest known to be vulnerable to the disease. The diagnostic accuracy of AD was also 

improved with the incorporation of hippocampal stiffness with two other MRI-based 

hippocampal parameters. Compared with mean diffusivity from diffusion imaging and 

hippocampal volume alone, the addition of hippocampal stiffness yielded significantly 

higher classifier scores and thus greater discriminative value between healthy controls and 

AD patients (Gerischer et al., 2017).

More recently, a voxel-wise analysis using higher-resolution MRE was performed by 

Hiscox, et al. to investigate the viscoelasticity of the cerebral cortex in AD (Hiscox et al., 

2020a). Brain tissue softening in AD was localized to specific areas within the frontal, 

parietal, and temporal cortices, supporting the previous study by Murphy, et al. that had 

investigated larger lobar regions (Murphy et al., 2016). More precisely, the middle temporal 

and superior temporal gyri, precuneus, operculum, and precentral gyri were softer in AD, 

which were independent from differences in cortical volumes (Fig. 4C). These results are 

consistent with existing studies which have shown how these regions are particularly 

affected early in the course of AD (Agosta et al., 2012; Jin et al., 2012; Migliaccio et al., 

2015; Zhang et al., 2015), and likely account for some of the clinical symptoms of dementia. 

Interestingly, the spatial patterns of lower stiffness and smaller volumes in AD were not 

identical, suggesting that MRE may provide an indication of changes in tissue integrity not 

spatially localized to volume loss (Hiscox et al., 2020a). However, as with any cross-

sectional study, the inference of the temporal progression cannot be determined.
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The sensitivity of MRE to AD pathophysiology has been explored in animal studies, which 

have shown that stiffness is altered in both APP-PS162 and APP2363 mouse models of the 

disease (Munder et al., 2018; Murphy et al., 2012). At this stage there is limited data to 

confirm the neurobiological correlates of reduced stiffness in AD, but it has been 

hypothesized that it may reflect degradation of the extracellular matrix (due to amyloid 

deposition), loss of normal cytoskeletal architecture (due to tau hyper-phosphorylation), or 

altered synaptic connectivity (Murphy et al., 2019). Factors such as a decrease in the neuron-

to-glial cell ratio may also contribute to the overall softening observed in AD (Hall et al., 

2020). Nevertheless, the suggestion of a disease-related loss of microstructural integrity 

measured with MRE is consistent with well-established findings reported across numerous 

neuroimaging modalities and postmortem analyses.

The MRE studies of AD have shown changes in viscoelasticity within regions that 

correspond to the expected pathophysiology of AD, and they reflect how improvements in 

the resolution of MRE mechanical property maps have driven investigations that target 

affected neuroanatomical regions. A similar example is an MRE investigation into 

frontotemporal dementia (FTD), which found reduced stiffness only within the frontal and 

temporal lobes, as its name suggests (Huston et al., 2015). The reduction in stiffness in FTD 

was 9% for each lobe when compared to healthy controls, whereas no differences in stiffness 

were observed for any other lobar region. ElSheikh, et al. reviewed different signatures of 

softening in lobar regions in other dementias, including AD and FTD, and found distinct 

patterns of softening that differ between dementia subtypes (ElSheikh et al., 2017). These 

results indicate that MRE may be a useful non-invasive alternative to assist in the difficulties 

currently faced in the differential diagnosis of these conditions.

Collectively, these studies illustrate that MRE detects a physical transformation of the 

diseased brain through viscoelasticity that goes beyond what is observed in healthy aging. 

Offering a novel contrast sensitive to brain tissue health, brain MRE may be a valuable 

biomarker for characterizing healthy aging and at detecting deviations from a normal aging 

trajectory. Reliable biomarkers are urgently sought to detect the pathophysiology of AD 

during the pre-symptomatic stage to improve understanding of disease etiology and assist in 

providing metrics for the testing of candidate therapies. At the current time, however, 

longitudinal MRE studies in aging and disease have not been published. As such, we 

recommend that brain MRE could be a valuable addition to large-scale epidemiological 

studies such as the UK Biobank (Miller et al., 2016; Sudlow et al., 2015) and Lothian Birth 

Cohort (LBC) (Deary et al., 2011; Taylor et al., 2018) as well as in disease-modifying 

clinical trials of dementia such as the PREVENT-Dementia project (Habib et al., 2017; Mak 

et al., 2017; McKeever et al., 2020; McKiernan et al., 2020).

1.4. Viscoelastic structure-function relationships

An exciting new direction in brain MRE has been the study of how tissue biomechanics may 

relate to individual differences in cognitive function, which has implications for studying 

age-related cognitive decline and the links between brain health and cognitive impairment. 

Based on the relationship between tissue mechanical properties and microstructural 

organization, it was hypothesized that viscoelasticity may relate to brain function, which 
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would allow these measures to be more fully interpretable with regard to brain health. 

Several studies have now examined so-called viscoelastic structure-function relationships 

that have found an association between MRE measures and outcomes on behavioural tasks. 

Although these studies to date have largely been conducted on healthy, young adults, they 

nevertheless highlight the potential for MRE to characterize memory-related impairments 

and other cognitive deficits related to early brain alterations in older age.

The first investigation that reported a significant viscoelastic structure-function relationship 

was performed by Schwarb, et al., who measured the viscoelastic properties of the 

hippocampus in twenty healthy young adult males aged 18–33 years (Schwarb et al., 2016). 

Each participant underwent a high-resolution MRE scan and performed a computerized 

spatial reconstruction task – a particularly sensitive measure of relational memory – to 

obtain individual scores of memory performance (Monti et al., 2015; Watson et al., 2013). 

Results indicated a strong, significant relationship between hippocampal damping ratio and 

memory performance (i.e., task reconstruction accuracy) (r = −0.72, p < 0.001), such that 

higher memory scores were associated with lower damping ratio, or more elastic material 

behavior (Fig. 5A). Furthermore, volumetric measures of the hippocampus were not 

associated with relational memory scores, suggesting that damping ratio may be an explicit 

measure of tissue integrity particularly sensitive to cognitive outcomes.

These compelling, yet preliminary, results were subsequently followed up in a larger sample 

of fifty-one participants, including both young men and women. Importantly, results 

remained consistent to those originally reported with lower damping ratio indicative of 

greater memory performance (Schwarb et al., 2017) (Fig. 5B) Neither hippocampal volume 

nor stiffness was associated with relational memory scores, thereby reinforcing the original 

findings that the relative elastic-to-viscous properties of the hippocampus are most strongly 

associated with relational memory function. Utilizing the same sample of participants, a 

recent report demonstrated that the damping ratio of the CA3-DG subregion of the 

hippocampus was able to predict relational memory accuracy, which in fact replicated most 

of the variance in performance that was explained by the entire hippocampus (Daugherty et 

al., 2020). Importantly, the CA3-DG region has been shown to support the information 

binding necessary to support relational memory and ensure successful performance in the 

administered task (Daugherty et al., 2017; Johnston et al., 2016; Rolls, 2016; Yassa and 

Stark, 2011). As such, there remains the opportunity to map and dissociate relationships 

between individual differences in specific domains of memory function with hippocampal 

subfield-specific viscoelasticity(Carey et al., 2019; Carr et al., 2017; Zammit et al., 2017).

There has also been preliminary work on the relationship between hippocampal 

viscoelasticity and memory in a healthy older adult population (Hiscox et al., 2020b) which 

revealed the same trend as observed with younger adults (Fig. 5C): higher damping ratio 

scores are associated with poorer memory performance, as assessed with a verbal paired 

associates (VPA) subtest from the Wechsler Memory Scale – Revised (WMS-R) (Wechsler 

and Stone, 1987). More specifically, the association was localized to the left hippocampus, 

which may be attributed to the role of the left hippocampus in the storage of verbal material, 

thus supporting the concept of functional hemispheric lateralization (Papanicolaou et al., 

2002; Trenerry et al., 1993). No significant association was observed between VPA score 
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and the right hippocampus damping ratio, or any stiffness or volumetric measure. A single 

dissociation, however, is not sufficient to demonstrate specificity for mapping cognitive 

function, and future studies should therefore identify more precisely cognitive functions 

supported by lateral hippocampi.

While these results show considerable promise for further exploring the hippocampal-

memory relationship, extending the viscoelastic structure-function relationship to other brain 

regions and cognitive domains was essential to demonstrate that MRE was generalizable and 

relevant to wider brain mapping approaches. As a result, Johnson, et al., sought to examine 

and compare relationships of performance in relational memory (associated with the 

hippocampus) and fluid intelligence (associated with the orbitofrontal cortex) with the 

viscoelasticity of the associated structures (Johnson et al., 2018). In a sample of fifty-three 

healthy, young adults, a significant relationship between orbitofrontal cortex damping ratio 

and fluid intelligence performance (measured using a figure series task) was observed in 

addition to the hippocampal-memory relationship (measured using a spatial reconstruction 

task). Most importantly, however, was that a significant double dissociation between the 

orbitofrontal-fluid intelligence relationship and the hippocampal-relational memory 

relationship was also identified. These results provided clear evidence that the viscoelastic 

properties of each brain structure reflected performance in the expected cognitive domain, 

but not the other, strongly supporting the specificity of regional MRE measures. A similar 

finding has recently been reported by Schwarb, et al., who applied a context-dependent 

relational memory task and MRE to report correlations between hippocampal viscoelasticity 

and memory and between the viscoelasticity of the ventromedial prefrontal cortex and rule 

learning (Schwarb et al., 2019).

As is the case in most brain MRE applications and findings, the precise biological 

mechanism that results in lower damping ratio and greater cognitive function is not known. 

Previous hypotheses have suggested that lower damping ratio in the hippocampus may 

reflect elements of neurogenesis (Munder et al., 2018; Schwarb et al., 2017), which persists 

throughout adulthood (Kumar et al., 2019), resulting in an opportunity to influence 

hippocampal microstructure through lifestyle modifications (van Praag et al., 2005;van 

Praag et al., 1999). Yet as similar viscoelastic structure-function relationships are observed 

in other key brain areas, additional candidate mechanisms need to be considered. For 

example, greater connectivity within neuronal networks could plausibly reduce tissue 

viscosity, or conversely, disorganized microstructural interactions in the extracellular matrix 

may lead to increased viscosity. Other biological factors such as the tissue microvasculature 

(Jugé et al., 2015), and actin crosslinking and axonal organization (Guo et al., 2019) have 

been coupled to tissue viscosity and could account for part of the observed relationships. 

Important to note is how an increase in damping ratio may not be representative of a single 

structural or biological process. At first, the higher damping ratio may seem to represent an 

elevated imaginary loss modulus, yet as thoroughly discussed in this review, aging also 

causes a loss in stiffness and thus the real storage modulus, which could also affect the 

damping ratio. Whether the viscoelastic structure function relationships reported here can be 

explained by a reduction in the storage modulus (with the loss modulus staying relatively 

constant), or an actual increase to the loss modulus, is likely to infer separate structural 

changes. Targeted studies in animal models should therefore seek to disentangle the 
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contributions from both the storage and loss modulus to more definitively understand the 

underlying neurobiology related to performance in functional tasks.

Regardless, the emergence of the viscoelastic structure-function relationship is only in its 

infancy, and there remain unlimited opportunities to explore key questions within cognitive, 

emotion, and social neuroscience, and age-related alterations in these fundamental 

processes. In what is usually interpreted as a compensatory mechanism, the elderly brain 

relies on increased network integration and a more distributed set of cortical regions than 

younger adults to maintain successful levels of performance during demanding tasks 

(Cabeza, 2002; Crowell et al., 2020). As a result, future MRE studies could study the 

mechanical integrity of more complex cortical networks that support both specialized and 

distributed information processing (Smith Bassett and Bullmore, 2006) using powerful 

quantitative techniques such as graph theoretical analysis (Bassett and Bullmore, 2009). This 

concept is supported by a recent demonstration of the sensitivity for MRE to map risk-taking 

behaviors in adolescents to a maturational imbalance between the reward and controls 

systems as revealed through viscoelasticity (McIlvain et al., 2020).

Finally, an exciting new development within the field is functional MRE (fMRE), an 

analogue to fMRI, in which researchers have begun to explore whether mechanical 

properties of localized regions respond accutely to stimulation or cognitive processes (Lan et 

al., 2020; Patz et al., 2019). In essence, these studies have unearthed a new functional 

contrast mechanism that shows how changes in brain stiffness respond to stimuli which can 

be observed on a time scale of 100 milliseconds. Importantly, the changes in stiffness appear 

to be 60 times faster than the fluctuations in blood oxygen levels (BOLD) typically captured 

by fMRI, allowing an assessment of neuronal activity at high speed (Patz et al., 2019). Work 

by a different research group also showed an agreement between fMRE and fMRI activation 

maps using a visual task, with changes in tissue stiffness within the visual cortex 

significantly greater than the BOLD signal change on a single-subject level (Lan et al., 

2020). Future work will need to explore the relationship between baseline brain 

viscoelasticity and the magnitude of changes reported to stimuli to discover any possible 

interaction between the two. For instance, is the change in stiffness observed in fMRE 

impacted by baseline brain mechanics? Does the softer, aged brain exhibit more or less 

mechanical activation? While much work on fMRE remains in the future, fMRE provides an 

exciting extension to MRE and offers strong support for the relationship between tissue 

mechanics and functional processes.

1.5. Future directions

Efforts are ongoing within brain MRE development to fully exploit the inherently high 

sensitivity of MRE to changes in brain tissue health which may ultimately enhance our 

understanding of the physiological processes’ underling brain aging. While MRE 

displacement fields can now be captured at a comparable spatial resolution to a standard 

structural anatomical scan, further innovative work is needed to capture MRE displacement 

fields nearer the histological resolution. This will be required to investigate smaller and more 

complex structures such as the specific layers of the neocortex, with each layer likely to 

possess differing mechanical characteristics due to the relative distribution of neurons and 
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glial cells (Lu et al., 2006). Future work will also need to reduce the current methodological 

constraints in inversion strategies. For example, while existing inversion algorithms are 

being optimised for improved sensitivity and/or reliability (Delgorio et al., 2020), more 

advanced mechanical models such as anisotropy and poroelasticity (McGarry et al., 2015, 

2019; Solamen et al., 2019; Solamen 2020) or artifical intelligence approaches to inversion 

such as those proposed by Murphy et al., 2020) should be applied in aging populations 

(Murphy et al., 2018; Matthew C 2020). With an even more detailed and accurate 

characterization of brain mechanics, the multiple nuclei of the hypothalamus could also be a 

region of interest. Animal models have revealed that accelerated aging may be caused by a 

decline in hypothalamic neural stem cells, suggesting that the hypothalamus may in fact 

control the rate of aging (Zhang et al., 2017). Interestingly, replenishment of these cells was 

shown to slow and even reverse signs of aging, opening up opportunities to develop 

strategies for delaying age-related disease and extending the human lifespan. Whether MRE 

can provide a neuroimaging correlate of such processes will certainly be of interest.

As is the case with all brain MRE investigations, the biological interpretation of 

viscoelasticity and the mechanisms underlying viscoelastic changes in aging warrant serious 

investigation. Understanding how changes in tissue microstructure impacts the macroscopic 

mechanical response will be critical for the interpretation of the MRE signal to explain brain 

structure, function, and pathology. While some valuable work has been performed in this 

area, it has largely been limited to cross-sectional or observational studies. To establish 

causal links between viscoelasticity and microstructural characteristics, a recent 

developmental model combined MRE with histological and mass spectrometry proteome 

analysis during an extended period of mouse brain adolescence (Guo et al., 2019). Results 

revealed brain stiffness increased alongside the progressive accumulation of microtubular 

structures, myelination, cytoskeleton linkage, and cell-matrix attachment, whereas the phase 

angle decreased alongside downregulated actin crosslinking and axonal organization (Guo et 

al., 2019). It would be naïve to suggest that the observed decrease in stiffness and increase in 

viscosity in older age would simply mirror these effects, as the underlying presence of 

common age-related structural changes, including ß-amyloid burden, white matter 

microbleeds, enlarged perivascular spaces, or simply neuronal loss, will likely interact and 

have an impact on brain viscoelasticity. Therefore, a similar longitudinal model in brain 

aging would be highly desirable to obtain a better understanding of the neurobiological 

correlates of viscoelasticity directly related to senescence.

Evidence from animal models (Guo et al., 2019) and the recent application of MRE in the 

study of children and adolescents (Johnson and Telzer, 2018; McIlvain et al., 2018; E.F. 

2020; Yeung et al., 2019) converge to a general observation that brain tissue stiffens during 

development at a time of rapid and significant myelination and synaptic pruning. The natural 

next questions are at what age or stage do viscoelastic properties reach a plateau, how long 

do these properties remain at their optimal levels, and what then causes a loss of brain 

stiffness and concomitant loss in tissue integrity? As biomechanical cues guide proliferation, 

differentiation, and maturation of neurons (Hall et al.,2020), which are essential processes in 

tissue regeneration (Mousavi and Hamdy Doweidar, 2015), does the decline in stiffness 

accelerate with age? Different brain structures are likely to follow different trajectories 

through development and aging, with high inter-individual variability in accordance with 
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similar patterns observed for volumetry. Longitudinal studies will not only be able to 

provide answers to some of these questions but would also allow for a more direct and 

precise account of age-related changes of mechanical properties on an individual basis. This 

would also permit analyses of the temporal progression of changes in viscoelasticity and 

how they may relate to volume loss. Current conjecture is that the microstructural changes 

observed from MRE would predate those of volume loss, similar to the effects reported for 

diffusion imaging (Weston et al., 2015); however, this remains an open area of investigation.

A new trend in neuroscience is to establish biomarkers of the neu-roanatomical aging 

process in order to provide risk-assessments and predictions of cognitive dysfunction and 

age-associated brain diseases at single subject level (Franke and Gaser, 2019). For example, 

a popular area of research has combined structural and functional MRI with advanced 

machine learning methods to characterize individual brain health, or so-called “brain-

predicted age” (Franke et al., 2010), (Cole et al., 2019). The brain age-delta (i.e. Δ: the 

brain’s estimated age minus the individual’s chronological age) has been shown as a 

heritable metric for monitoring cognitively healthy aging, as well as for the early 

identification of individuals with high-risk of age-associated disorders and mortality (Cole et 

al., 2018). In particular, baseline brain-predicted age scores have been shown to be 

significantly more accurate for predicting conversion to AD than conversion predictors 

based on chronological age, hippocampal volumes, cognitive scores, and CSF biomarkers 

(Gaser et al., 2013). Still, these models are not perfect and applying new features of brain 

aging obtained from MRE could improve model accuracy to make more precise judgments 

about individual risk for AD development. Other potential implementations include 

determining reference curves for healthy brain aging and discovering both protective and 

harmful environmental influences on brain health through comparison with the expected 

aging trajectory.

Finally, brain MRE may also be a clinically useful technique for identifying appropriate 

rehabilitation strategies and for enhancing our understanding of disease mechanisms to 

potentially accelerate the discovery of novel drug targets. For example, identification of a 

deviation from the expected healthy trajectory in structures such as the hippocampus may 

present opportunities for individuals to adopt relevant techniques to improve or maintain 

function by strengthening neural pathways through exercise, diet, cognitive training, or 

pharmaceutical intervention. This concept is supported by findings that have linked 

differences in blood lipid profiles (Sanjana et al., 2020) and body mass index (Hetzer et al., 

2020) with viscoelasticity measured through MRE. Hippocampal viscoelasticity has also 

been identified as playing a mediating role between greater aerobic fitness, as measured with 

VO2,max, and greater memory function (Schwarb et al., 2017). Greater levels of physical 

activity are well documented to improve cognitive processes and memory (Di Liegro et al., 

2019), and these results suggest that viscoelasticity may provide a noninvasive imaging 

marker to examine the mechanisms behind this relationship. For example, if MRE measures 

were explicitly representative of excessive synapse loss, this could accelerate the discovery 

and efficient deployment of novel pharmaceutical agents that promote dendrite and synapse 

regeneration (Agostinone et al., 2018). Additional support for using MRE to study the 

rehabilitative effects on brain health is provided by a preliminary investigation into the 

benefits of an exercise intervention in patients with multiple sclerosis (Sandroff et al., 2017). 
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As a result of the exercise program, patients with MS exhibited significantly improved 

memory scores which corroborated with changes in hippocampal stiffness and damping 

ratio. Inevitably, large scale intervention studies are needed to more fully investigate this 

phenomenon.

Concluding remarks

Brain MRE has developed into a powerful neuroimaging technique for examining the 

integrity and complexity of the tissue microstructure through the analysis of its physical 

architecture. In this review, we have provided an overiew of studies that have utilized MRE 

to study healthy brain aging and age-related neurological disease, demonstrating how 

technological advances have substantially evolved knowledge regarding the biomechanics of 

the brain in health and disease. With further technical innovation including faster, higher-

resolution MRE sequences, more advanced mechanical models, and the integration of 

artifical intelligence approaches to inversion, MRE has the potential to reveal vastly more 

about the relationship between brain biomechanics, health, structure and function.. We hope 

that this review highlights the growing utility of brain MRE to study brain aging to motivate 

its adoption into established longitudinal imaging protocols and within clinical trials to fully 

exploit the diagnostic potential for the early detection and differentiation of 

neurodegenerative diseases.
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Fig. 1. 
Summary of the key events in brain aging MRE and the growth of brain MRE studies since 

the first publication in 2005. Manuscript production in absolute numbers per year. Search 

was performed in June 2020 using PubMed with key words “brain” and “magnetic 

resonance elastography” (Green et al., 2008, Curtis L Johnson et al., 2013, Kruse et al., 

2008, McCracken et al., 2005).
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Fig. 2. 
Overview of a typical brain magnetic resonance elastography investigation. (a) An external 

pneumatic mechanical actuator is used to gently vibrate the head and generate steady-state 

shear wave fields in brain tissue; (b) specialized phase-contrast MRI sequences image the 

resulting displacements through synchronization with applied vibration; and (c) an inversion 

algorithm is used to recover mechanical properties from the imaged wave field: μ, shear 

stiffness (kPa), and ξ, damping ratio (dimensionless).
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Fig. 3. 
Structural T1−, weighted MRI images, and high-resolution MRE shear stiffness, μ, and 

damping ratio, ξ, maps for a (A) 23-year-old male, and (B) 65-year-old female. Widespread 

softer tissue and increased damping behavior is visibly notable in the older adult. Note that 

MRE inversion techniques do not model fluids and therefore are not valid in CSF spaces, 

including the lateral ventricles.
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Fig. 4. 
Summary of main findings that have used MRE to investigate brain stiffness in Alzheimer’s 

disease (AD). Color bar indicates percentage difference in AD patients compared to healthy 

controls (HC) in each of the respective studies. (A) Frontal (F), parietal (P), temporal (T) 

lobes, and a composite measure of deep gray/white matter (D) show AD-related softening, 

whereas the occipital lobe (O) remains unaffected; (B) analysis of subcortical structures 

indicate that the hippocampus (HP) is softer in AD, whereas the stiffness of the thalamus 

(TH) is relatively preserved; (C) cortical gray matter structures such as the superior temporal 

(ST), precentral (PCTL), precuneus (PCNS), and middle temporal (MT) cortex, show the 

greatest differences between AD and HC. These studies demonstrate the importance of 

obtaining high-resolution images for the investigation of ROIs with expected 

pathophysiology for greater sensitivity. Study A = Murphy et al., 2016; study B = Gerischer 

et al., 2018; study C = Hiscox et al., 2020a).
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Fig. 5. 
Results from three studies that have investigated the structure-function relationship between 

hippocampal viscoelasticity and memory score. In all studies, lower damping ratio was 

associated with better scores of memory performance, whereas hippocampal volume showed 

no relationship with performance in these tasks. Memory scores are from a spatial 

reconstruction task in studies 1 and 2 and from a verbal paired associates task in study 3. 

The blue line shows the regression line and the gray shaded region indicates the 95% 

confidence intervals. Study 1 = Schwarb et al., 2016; study 2 = Schwarb et al., 2017; study 3 

= Hiscox et al., 2020b.
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