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ABSTRACT

Traditional bulk RNA-sequencing of human pancre-
atic islets mainly reflects transcriptional response of
major cell types. Single-cell RNA sequencing tech-
nology enables transcriptional characterization of in-
dividual cells, and thus makes it possible to detect
cell types and subtypes. To tackle the heterogene-
ity of single-cell RNA-seq data, powerful and ap-
propriate clustering is required to facilitate the dis-
covery of cell types. In this paper, we propose a
new clustering framework based on a graph-based
model with various types of dissimilarity measures.
We take the compositional nature of single-cell RNA-
seq data into account and employ log-ratio transfor-
mations. The practical merit of the proposed method
is demonstrated through the application to the cen-
tered log-ratio-transformed single-cell RNA-seq data
for human pancreatic islets. The practical merit is
also demonstrated through comparisons with exist-
ing single-cell clustering methods. The R-package for
the proposed method can be found at https://github.
com/Zhang-Data-Science-Research-Lab/LrSClust.

INTRODUCTION

Background on the biological problem

Human pancreatic islets consist of multiple types of cells,
which play important roles in diabetes pathophysiology.
Among them, beta (54%) and alpha (35%) cells are dom-
inant. In bulk RNA-seq of human pancreatic islets, gene
expression mainly reflects the information of these two cell
types. Single-cell RNA-seq technology enables transcrip-

tional characterization of individual cells, and thus facilitate
cell-type discoveries. In a single-cell experiment, individual
cells are isolated, amplified and sequenced. In this process,
the information on the identities of cells is commonly miss-
ing. Currently, researchers have to use clustering techniques
to partition the data into several clusters and try to infer the
represented cell types based on some known marker genes.
Therefore, in single-cell data analysis, the quality of clus-
tering is crucial. In this paper, motivated by the problem of
detecting cell types in human pancreatic islets, we propose
a graph-based model to accomplish this clustering task.

Graph-based clustering methods

Graph-based models have been widely used in biological
and biomedical research (1–9) to represent the relationships
among objects. Graph can also serve as a tool for a single-
cell clustering problem. In this scenario, cell relationships
are represented by a similarity graph with its nodes corre-
sponding to cells and weighted edges reflecting similarities
among cells. For instance, PhenoGraph (3) takes an N ×
p single-cell gene expression matrix for N cells and p genes
as its input, and utilizes Euclidean distance to find the k
nearest neighbors (KNN) of each cell. The weight for an
edge connecting two cells is calculated as the proportion
of their shared neighbors over the union of all neighbors.
Then, PhenoGraph employs the Louvain method to iden-
tify the graph communities presenting the clusters of cells.
SNN-cliq (2) is also a graph-based clustering method pro-
posed for single-cell clustering. It first calculates the pair-
wise Euclidean distances of cells, connects a pair of cells
with an edge if they share at least one common neighbor
in KNN, and then defines the weight of the edge as the
difference between k and the highest averaged ranking of
the common KNN. SNN-cliq then employs a greedy algo-
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rithm to find a maximal quasi-clique associated with each
node, and finally identifies clusters by iteratively combining
significantly overlapping subgraphs starting with the quasi-
cliques.

In this paper, we treat RNA-seq counts as compositional
data. We first make an appropriate centered log-ratio (clr)
transformations. Then, we propose a graph-based cluster-
ing method for single-cell data with the following major
components: (i) choosing an appropriate type of measure to
represent the dissimilarity patterns of cells; (ii) transforming
pairwise dissimilarities to similarities as the weights of edges
connecting the corresponding cells; (iii) cutting the graph
into disjoint sub-graphs representing clusters of cells. Each
step can be accomplished by various methods depending on
the dataset of interest. In this paper, we employ appropriate
methods based on our motivating single-cell RNA-seq data
for human pancreatic islets.

The rest of this paper is organized as follows. We first in-
troduce the proposed method. We then apply our method to
clr-transformed single-cell RNA-seq data for human pan-
creatic islets and compare with other methods. Further-
more, we conducted a simulation study. Finally, we con-
clude our paper.

MATERIALS AND METHODS

Single-cell RNA-seq and compositional data analysis

RNA-seq data are compositional in nature. For all next-
generation sequencing abundance data, a property cannot
be ignored: the abundances for each sample are limited
by its arbitrary total sum (the library size). Thus, to ana-
lyze RNA-seq data, effective library size normalization is
usually employed before conventional data analysis. How-
ever, the assumptions of normalization methods are often
untestable in reality. Compositional data measure each sam-
ple as a composition, a vector of non-zero positive values
(i.e. components) carrying relative information (10). Treat-
ing RNA-seq as compositional data opens a new perspec-
tive on data analysis, which avoids normalization. Please re-
fer to (11) for a comprehensive treatment on this subject.

In this paper, we apply the clr-transformation (11)
to raw RNA-seq counts. Before the application of clr-
transformation, we add one to each raw count at first. The
reason we employ this addition operation is to avoid the oc-
currence of minus infinity when we do natural logarithm
transformation. Next, for each cell vector, x, we calculate
its geometric mean denoted by g(x). Then we perform the
following clr-transformation for each sample j (10,11):

y j = clr(x j ) =
[

ln(
x1 j

g(x j )
), ..., ln(

xpj

g(x j )
)
]

, (1)

where p is the total number of features.
We then develop our graph-based clustering method

based on the clr-transformed data.

New graph-based clustering framework

The graph-based clustering aims to use graphs to repre-
sent the patterns of similarities among cells and to obtain

clusters by dropping the weak edges. First, we need to de-
fine an appropriate metric to evaluate the dissimilarity be-
tween two cells. While Euclidean distance (based on L2
norm) is commonly used to measure the dissimilarity be-
tween two objects, for our single-cell RNA-seq data from
human pancreatic islets, we found that Euclidean distance
is not appropriate. Although single-cell RNA-seq data is
high-dimensional, it is possible that only a small set of
genes can determine the underlying types of cells. Thus,
we will investigate more types of distances in our cluster-
ing framework including the Manhattan distance (based on
L1 norm) and the L∞ distance. The L∞ distance is defined
as the maximum absolute deviation of two vectors across
all coordinates. Namely, for two cells vi and vj, suppose
their clr-transformed transcriptomic profiling vectors are
yi = (yi1, · · · , yi p)T and y j = (yj1, · · · , yj p)T, the L∞ mea-
sure is calculated by the maximum of |yi1 − yj1|, ···, |yip −
yjp|. For the convenience of the following theoretical inves-
tigation, we define L∞ dissimilarity as

d∞(vi , v j ) = maxp
l=1(yil − yjl )2, (2)

Euclidean or L2 dissimilarity as

d2(vi , v j ) =
p∑

l=1

(yil − yjl )2, (3)

and Manhattan or L1 dissimilarity as

d1(vi , v j ) =
p∑

l=1

|yil − yjl |. (4)

We want to quantify the performance of these different
measures in clustering tasks. Intuitively, a good dissimilar-
ity measure should be able to distinguish the ‘within-cluster’
dissimilarities and the ‘between-cluster’ dissimilarities. For
well-separated clusters, we expect the within-cluster pair-
wise dissimilarity to be small and the between-cluster dis-
similarity to be as large as possible. Based on this obvious
rationale in clustering problems, we propose to use the ratio
of the average between-cluster dissimilarity and the average
within-cluster dissimilarity to quantify the goodness of the
corresponding distance measure. More formally, for objects
V = {v1, v2, · · · , vn}, we denote Ai as the ith cluster, A1 ∪
· · · ∪ Ak = V,Ai ∩ A j = ∅, i �= j . The dissimilarity score
between two cells is denoted by d(vi, vj), where d(vi, vj)
can be L∞ dissimilarity, L2 dissimilarity, or L1 dissimilar-
ity. Then, we consider the ratio of the expected between and
within dissimilarities, denoted by Rd, in the form of

Rd = E
(
d(vi , v j )

)
E

(
d(vi , vi ′ )

) = E(dbetween)
E(dwithin)

(5)

where vi and vj are from different clusters, and vi and vi ′

belong to the same cluster.
We first provide some intuitive comparisons on the clus-

tering effects when we choose d(vi, vj) to be d2(vi, vj) or
d1(vi, vj) or d∞(vi, vj) through a simple example. Assume
there are two clusters with measures yi , i ∈ {1, · · · , m} and
y j , j ∈ {m + 1, · · · , n}. We first consider yi (i ∈ {1, ···, m})
and y j (j ∈ {m + 1, ···, n}), which independently follow
multivariate normal distributions with means μ1 and μ2,
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Table 1. Comparison of the inferred cluster assignments for the whole 638 cells in the human pancreatic islets dataset by Linf-SClust, L1-SClust, L2-
SClust, SNN-cliq and Pheno-Graph, as well as the cluster configuration for the 617 cells based on the known gene markers reported in (17)

Cluster Acinar Alpha Beta Delta Ductal PP/Gamma Stellate Other

Linf-SClust

1 1 0 0 1 26 0 0 6
2 0 3 233 1 2 0 2 6
3 0 0 0 0 0 0 16 0
4 0 0 31 0 0 0 1 0
5 0 236 0 0 0 0 0 5
6 23 0 0 0 0 0 0 0
7 0 0 0 0 0 18 0 0
8 0 0 0 23 0 0 0 0

L1-SClust

1 6 58 51 6 7 2 2 12
2 0 0 65 2 1 11 0 0
3 0 55 32 4 0 2 0 2
4 4 108 61 13 7 8 7 6
5 14 0 0 0 10 0 9 1
6 0 13 17 0 3 1 1 0
7 0 1 4 2 0 0 0 0

L2-SClust

1 2 1 2 3 6 0 3 9
2 0 5 185 15 1 9 0 2
3 0 0 0 0 0 0 14 0
4 2 136 15 7 1 8 2 8
5 8 0 0 0 0 0 0 0
6 0 0 0 0 20 0 0 2
7 0 95 0 0 0 1 0 0
8 0 0 62 0 0 0 0 0
9 0 2 0 0 0 0 0 0
10 12 0 0 0 0 0 0 0

SNN-cliq

1 0 0 0 1 21 0 0 2
2 21 0 0 0 0 0 0 0
3 3 239 264 24 7 18 19 19

Phneo-Graph

1 0 0 147 0 0 3 0 1
2 0 1 101 1 2 12 1 5
3 0 83 0 0 0 0 0 0
4 0 73 0 0 0 0 0 0
5 3 2 0 22 3 1 17 8
6 2 2 16 2 6 2 1 7
7 0 31 0 0 0 0 0 0
8 0 27 0 0 0 0 0 0
9 0 20 0 0 0 0 0 0
10 18 0 147 0 0 0 0 0
11 1 0 0 0 17 0 0 0

‘Other’ indicates the 21 (638–617) cells that were not assigned to any cell type in (17).

and a common p × p covariance matrix I , where p is the
number of features. We further assume that a subset of fea-
tures separates the clusters. Without loss of generality, let
μ1 = (a1, · · · , as, 0, · · · , 0)T ∈ R

p, where ai �= 0, and let μ2
be a p-dimensional zero vector. Naturally, for within-cluster
difference, yi − yi ′ (i

′ �= i, i, i
′ ∈ {1, ···, m}) or y j − y j ′ (j

′

�= j, j, j
′ ∈ {m + 1, ···, n}) follows the multivariate normal

distribution N(0, 2I ). For the between-cluster difference,
yi − y j ∼ N(μ1, 2I ).

When d(vi, vj) = d2(vi, vj) and d(vi , vi ′ ) = d2(vi , vi ′ ), Rd
is denoted by RL2 . If the total number of genes p is of the
same order as ‖a‖2

2, a = (a1, · · · , as)T, RL2 is of order 1. The

reason is as follows. For numerator of RL2 , it can be decom-
posed into the variations coming from signals and noises.
The first s coordinates of yi − y j correspond to the signal
source, having expectation ‖a‖2

2 + 2s, and the rest of the co-
ordinates are from the noise source with expectation 2(p −
s). Therefore, the numerator of RL2 is ‖a‖2

2 + 2p. The de-
nominator of RL2 is 2p. The ratio is RL2 = (‖a‖2

2 + 2p)/2p.
Thus, if the total number of genes p is of the same order as
‖a‖2

2, then RL2 is of order 1, which means it is hard to sepa-
rate the clusters. Under this setting, the critical size for RL2

is of the same order as ‖a‖2
2. Similarly, the critical size of

RL1 is of the same order as ‖a‖1
1, i.e.

∑s
l=1 |al |.
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Table 2. Comparison of the inferred cluster assignments for the whole 638 cells in the human pancreatic islets dataset by CIDR and SC3, as well as the
cluster configuration for the 617 cells based on the known gene markers reported in (17)

Cluster Acinar Alpha Beta Delta Ductal PP/Gamma Stellate Other

CIDR

1 2 2 1 2 5 0 0 9
2 0 0 99 1 0 1 0 1
3 0 2 148 3 0 0 0 0
4 0 0 0 1 0 0 18 5
5 0 84 13 5 0 6 0 0
6 1 151 3 12 2 11 0 3
7 21 0 0 1 21 0 1 3

SC3

1 0 213 0 0 0 0 0 1
2 0 2 0 0 0 0 0 3
3 0 10 0 0 0 0 0 0
4 0 2 156 0 0 0 0 1
5 0 0 5 0 1 0 0 0
6 0 0 16 0 0 0 0 0
7 0 0 78 0 0 0 0 0
8 0 0 0 1 25 0 0 5
9 22 3 3 1 0 0 19 4
10 0 0 0 22 1 17 0 0
11 2 9 6 1 1 1 0 7

‘Other’ indicates the 21 (638–617) cells that were not assigned to any cell type in (17).

When d(vi, vj) = d∞(vi, vj) and d(vi , vi ′ ) = d∞(vi , vi ′ ), Rd
is denoted by RL∞ . Let zl = yil − yi ′l be a random sample of
within-in cluster difference determined by feature l, then zl
∼ N(0, 1) (following the assumption of the simple example)
and z2

l ∼ χ2
1 , where l = 1, ···, s. We have:

RL∞ = E(dbetween)
E(dwithin) ≥ E(maxs

l=1(yil −yjl )2)
E(maxp

l=1z2
l )

≥ maxs
l=1 E(yil−yjl )2

E(maxp
l=1z2

l )
= 2+maxs

l=1a2
l

E(maxp
l=1z2

l )
.

Let Tp be the maximum value of p χ2
1 random variables,

then (Tp − dp)/2 → G, where G is a Gumbel random vari-
able, and dp = 2(lnp − 1/2ln(lnp) − ln�(1/2)) (12). Thus,
the denominator of RL∞ is of the same order as ln p. When
p is of the same order as exp(maxs

l=1a2
l ), RL∞ is of order 1.

In this setting, the critical size of RL∞ is of the same order
as exp(maxs

l=1a2
l ). When the number of noise features in-

creases, RL∞ can have lower signal contamination rate than
RL1 and RL2 .

Furthermore, dropping the aforementioned Gaussian as-
sumption on zl, let’s consider a scenario where z2

l follows a
distribution with sub-Gaussian tail. We have the following
theorem:

THEOREM 1. For i.i.d. random variables W1, ···, Wp which
have sub-Gaussian tail, i.e. P(|Wi| ≥ w) = O(exp ( − �w�)),
where � > 0 and � > 0, then as p → ∞, E

(
maxp

i=1|Wi |
) =

O
((

ln p
)1/α)

.
Thus, the critical size for RL∞ under this setting is of the

same order as exp[(maxs
i=1a2

i )α]. This can be much larger
than the critical sizes of RL1 and RL2 , which are of the same
order as ‖a‖1

1 and ‖a‖2
2 respectively.

In summary, the rationale indicates that the L∞ measure
can be a better choice compared to the Manhattan measure
and the Euclidean measure in certain scenarios.

Given a set of cell vectors y1, · · · , yn , where yi =
(yi1, · · · , yi p)T stands for the clr-transformed transcrip-
tomic values for p genes in cell i, and an appropriate metric
to evaluate the pairwise dissimilarity of cells, we can build
a graph, denoted by G = (V, E), to represent the similarities
among these cells, where V is the set of cells {v1, ···, vn}, E
is the set of edges with weight eij for the edge connecting
vi and vj (i, j ∈ {1, ···, n}, i �= j). We determine the weights
of edges using an entropy equalizer similarity measure (13).
Specifically, if there is no edge between vi and vj, we set the
weight to be zero. We define the similarity between vi and vj
(i �= j) as the normalized conditional probability pj|i,

p j |i := exp(−di j/2σ 2
i )∑

k�=i exp(−dik/2σ 2
i )

> 0, (6)

where dij is the dissimilarity between i and j, and σ 2
i is the

variance parameter for the Gaussian kernel. Please refer to
Supplementary Algorithm 1 for the calculation of �i. In ad-
dition, we define pi|i = 0 for i ∈ {1, ···, n}. Then, for any cell
vi, the similarity measures between vi and any other cells
induce a probability distribution, i.e.

∑
j �=i

p j |i = 1. (7)

The corresponding entropy is the form of

H(vi ) = −∑
j �=i p j |i ln p j |i . (8)

The perplexity is defined as eH(vi ), which is a tuning param-
eter affecting cluster assignments. Intuitively, the perplexity
can be interpreted as a smooth measure of the effective num-
ber of neighbors. Smaller perplexity will encourage forming
clusters with small sizes. Larger perplexity will yield larger
cluster configuration. Furthermore, it is notable that the de-
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Figure 1. UMAP Plot for Linf-SClust, L1-SClust, L2-SClust, Pheno-
Graph, SNN-cliq, and the original clustering results reported in (18)
with eight clusters: beta cells (INS), alpha cells (GCG), delta cells (SST),
PP/gamma cells (PPY), acinar cells (PRSS1), stellate cells (COL1A1), duc-
tal cells (KRT19) and other cells.

fined similarity in Equation (6) may be asymmetric: pj|i is
not necessarily equal to pi|j. Thus, we set wij = (pi|j + pj|i)/2.

With the weighted graph, we then employ an appropri-
ate graph-cutting procedure to obtain clusters (sub-graphs).
Specifically, we cut the graph G = (V, E) into several sub-
graphs, such that cells within the same sub-graph share
more similarity than the other cells. We define a cluster as
a subset of cells, A ⊂ V . All clusters form a partition of the
whole set, A1 ∪ · · · ∪ Ak = V,Ai ∩ A j = ∅, i �= j. In addi-
tion, a ‘cut’ means that for all clusters A1, · · · ,Ak, there
is no edge between Ai and A j , i �= j . Due to cutting, the
‘loss of similarity’ between two clusters is the summation of
all pairwise original weights of the edges between these two
clusters, denoted by

W(Ai ,A j ) :=
∑

k∈Ai ,r∈A j

wkr . (9)

For our real data, we expect to see some relative large and
biologically meaningful clusters for future study. Thus, we
adopt the RatioCut approach (14) defined as below

(A1, · · · ,Ak)RatioCut = argminA1,··· ,Ak

1
2

k∑
i=1

W(Ai ,Ac
i )

|Ai | ,

(10)

where |Ai | denotes the number of cells in a cluster, and Ac
i is

the complement of Ai . The RatioCut optimization problem
is equivalent to the following (15),

(A1, · · · ,Ak)RatioCut = argminA1,··· ,Ak
Tr(H(D − W)H′),

(11)

where D is a diagonal matrix, and its diagonal elements are[ ∑n
l=1 w j l

]
1≤ j≤n , W = [

wi j
]

1≤i, j≤n , H = [
hi j

]
1≤i≤k,1≤ j≤n ,

and

hi j =
{

1/
√|Ai | j ∈ Ai ,

0 otherwise. (12)

This optimization problem is NP hard. In practice, we
employ a spectral clustering method to solve the relaxed op-
timization problem through a spectral decomposition. De-
note hi to be the indicator vector for cells belong to Ai ,
hi = (hi,1, · · · , hi,n). Based on the construction of hij, H is
an orthogonal matrix, hi h j

′ = 0, i �= j, hi h i
′ = 1. Instead

of finding a cut, we can optimize the objective function by
searching H among orthogonal matrices. The relaxed prob-
lem becomes

minH∈Rk×n Tr(H(D − W)H′) s.t. H H′ = I . (13)

By Poincaré separation theorem,

λ1 + · · · + λk ≤ Tr(H(D − W)H′) ≤ λn−k+1 + · · · + λn,

(14)

where �1 ≤ ··· ≤ �n are eigenvalues of a Laplacian matrix
(D − W). Thus, H is the matrix which contains the first k
eigenvectors as its columns.

To select the optimal number of clusters and perplexity,
we maximize a Gap-statistic (16) type of objective function.
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Table 3. Comparison of between/within-cluster dissimilarity ratios for the seven cell types in the human pancreatic islets dataset (17)

Genes PRSS1 GCG INS SST KRT19 PPY COL1A1
Cells acinar alpha beta delta ductal gamma stellate

L∞ 1.23 1.31 1.26 1.32 1.18 1.33 1.17
L1 1.10 1.06 1.02 1.05 1.04 1.04 1.09
L2 1.08 1.06 1.02 1.04 1.06 1.03 1.06

Table 4. Purity of seven methods in human pancreatic islets data con-
taining eight cell types: beta cell (INS), alpha cell (GCG), delta cell (SST),
PP/gammacell (PPY), acinar cell (PRSS1), stellate cell (COL1A1), ductal
cell (KRT19) and other cell

Method Linf-SClust L1-SClust L2-SClust Pheno-Graph

Purity 0.9467 0.5627 0.8511 0.8699

Method SNN-cliq CIDR SC3

Purity 0.4796 0.8307 0.8856

Here, the total within-cluster dissimilarity for all clusters
A1, · · · ,Ak under perplexity p is

Wwithin
p,k =

k∑
r=1

1
2nr

∑
i< j,i∈Ar , j∈Ar

di j , (15)

where nr is the number of cells in the rth cluster. It is clear
that as the number of clusters increases, the total within-
cluster dissimilarity may always decrease. In the extreme
case, all cells form their own clusters, the total within-cluster
dissimilarity is zero. We extend the Gap statistic (16) to se-
lect the tuning parameters. More formally, the Gap-statistic
type of criterion under perplexity p and the number of clus-
ters k is defined as

Gap(p, k) = E∗{ln(Wwithin
p,k )} − lnWwithin

p,k , (16)

where E∗{ln(Wwithin
p,k )} is estimated from bootstrap samples,

which are uniformly drawn from the range of the values for
that feature (16). Given the number of replicates B in sim-
ulation and the standard error of the bootstrap replicates
sd(p, k), the standard error of the Gap statistic can be com-
puted as

sd(Gap)(p, k) = sd(p, k)
√

1 + 1/B. (17)

We then use the 1-standard-error rule to select the small-
est number of clusters k, and the largest perplexity p with
a large Gap-statistic value no less than the largest Gap-
statistic minus its one standard error.

RESULTS

Application to single-cell RNA-seq data from human pancre-
atic islets

We used existing single-cell RNA-seq data for 638 cells
from nondiabetic (ND) and type 2 diabetes (T2D) hu-
man islet samples (17). (17) employed a Gaussian mixture
model to classify the cells based on some known biomark-
ers, and only reported cell types for 617 (out of 638 in to-
tal) cells from T2D and ND islets. Specifically, these cell
types include (the corresponding marker gene is shown

in bracket): beta cell (INS), alpha cell (GCG), delta cell
(SST), PP/gamma cell (PPY), acinar cell (PRSS1), stellate
cell (COL1A1) and ductal cell (KRT19). The remaining 21
(638–617) cells were not clustered to any cell type in (17).

In this paper, we applied the proposed clustering method
to single-cell RNA-seq data from the whole 638 cells with-
out knowing the marker genes. We downloaded the raw
single-cell RNA-seq data from GEO (www.ncbi.nlm.nih.
gov/geo/) under accession number GSE86469. To analyze
this single-cell RNA-seq dataset, we first added one count
to each entry of the data matrix to avoid zeros, then ap-
plied clr-transformation. Then, we applied the proposed
graph-based clustering framework (with L∞, L1 and L2
norms as the corresponding dissimilarities, denoted by
Linf-SClust, L1-SClust and L2-SClust, respectively), to the
clr-transformed single-cell RNA-seq data with the total of
26,616 genes and 638 cells from human pancreatic islets.
For comparison, we also applied the existing graph-based
clustering methods for single-cell RNA-seq data, i.e. Pheno-
Graph and SNN-cliq (with default parameter setting) to
this dataset. We also applied CIDR and SC3 that can re-
port the final optimized number of clusters and had good
performances based on the investigation in (18). Tables 1
and 2 summarize the final clustering results of Linf-SClust,
L1-SClust, L2-SClust, SNN-cliq, PhenoGraph, CIDR and
SC3. We also visualized their results using uniform mani-
fold approximation and projection (UMAP) in Figure 1 and
Supplementary Figure S1. For Linf-SClust results, most
cells in cluster 3 are stellate cells. Similarly, cluster 6, 7 and
8 can represent acinar, PP/gamma, ductal and delta cells,
respectively. Cluster 1 and 5 primarily consist of ductal and
alpha cells, respectively. Both cluster 2 and 4 mainly con-
tain beta cells. We found that 71.22% of the cells in cluster
2 are non-diabetic cells, while 93.54% of the cells in clus-
ter 4 are T2D cells. Therefore, cluster 2 may represent the
non-diabetic beta cell group, and cluster 4 may represent the
T2D beta cell group. For the L1-SClust, L2-SClust, SNN-
cliq, PhenoGraph, CIDR and SC3 results, the clusters are
harder to interpret biologically.

The original clustering result reported in (17) is visualized
in the bottom panel in Figure 1. To quantify the difference
between the result from each method and the original result
in (17), we computed a purity measure. Specifically, we first
identified the most frequent class in each cluster reported
by each compared method based on the original cell type
assignment in (17). Then, we counted the number of con-
sistently assigned cells by each method compared with the
original cell type assignment result in (17). Then, we cal-
culated the purity by dividing this count by the total num-
ber of cells (638). The purity for each compared method is
shown in Table 4. One can see that Linf-SClust is the most
consistent with the original cell type assignment result in
(17), which was based on one known biomarker for each
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Table 5. Selected frequencies for known marker genes by Linf-SClust in the clustering of the total 638 cells, which include 617 cells based on the known
gene markers reported in (17) and other 21 (638–617) cells that were not assigned to any cell type in (17)

GeneIndex GeneName CellType Frequency Percent Order

1 ENSG00000115263 GCG Alpha 40340 19.85% 1
2 ENSG00000254647 INS Beta 34360 16.91% 2
3 ENSG00000115263 SST Delta 9469 4.66% 3
4 ENSG00000115263 PPY PP/Gamma 9161 4.51% 4
5 ENSG00000115263 PRSS1 Acinar 5283 2.60% 8
6 ENSG00000115263 COL1A1 Stellate 92 0.05% 180

Table 6. A simple introduction to 15 simulation datasets

Dataset Cells Genes TrueClass

Koh HVG10 531 4898 9
Koh Expr10 531 4898 9
Koh M3Drop10 531 4898 9
Kumar HVG10 246 4515 3
Kumar Expr10 246 4515 3
Kumar M3Drop10 246 4515 3
Zhengmix4eq HVG10 3300 1557 4
Zhengmix4eq Expr10 3555 1556 4
Zhengmix4eq M3Drop10 3430 1557 4
Zhengmix4uneq HVG10 5079 1644 4
Zhengmix4uneq Expr10 6414 1644 4
Zhengmix4uneq M3Drop10 3830 1644 4
Zhengmix8eq HVG10 3798 1572 8
Zhengmix8eq Expr10 3971 1571 8
Zhengmix8eq M3Drop10 2662 1572 8

Koh, Kumar, Zhengmix4eq, Zhengmix4uneq and Zhengmix8eq are the
name of five real datasets name, as well as HVG10, Expr10 and M3Drop10
are three methods of filtering gene from real datasets (18). ‘TrueClass’ is a
synonym for ‘True Cluster’ in simulation datasets.

cell type. This finding is consistent with the methodologi-
cal nature of Linf-SClust. We further illustrated this point
in Table 3 by computing the between/within-cluster dissim-
ilarity ratios calculated based on L∞, L1 and L2 norms for
the cells assigned to the seven types by the corresponding
seven known biomarkers in (17). The L∞ norm resulted in
the largest average ratio (around 1.26) compared to the ra-
tios based on the L1 norm (around 1.06) and the L2 norm
(around 1.05). This is consistent with the performance of
Linf-SClust, L1-SClust and L2-SClust applied to this real
dataset.

Biologically, we further investigated the genes con-
tributed to the clustering in Linf-SClust. Specifically, we cal-
culated pairwise distances for all the 638 cells based on the
L∞ norm. In total, we obtained

(638
2

) = 203, 203 dissimilar-
ities. For each obtained dissimilarity, we investigated which
gene made the contribution in L∞. We summarized the fre-
quencies of the ‘gene contributors’, and ranked them in Ta-
ble 5. One can see that GCG, INS, SST and PPY are the top
four ‘gene contributors’, PRSS1 is the eighth and COL1A1
is the 180th. The existing study in (17) only assigned 617
cells to certain known cell types based on these seven marker
genes. There were 21 (638–617) cells without cell type infor-
mation. Our Linf-SClust method and the analyses provide
the potential direction to improve the cell-type discovery
for human pancreatic islets based on single-cell RNA-seq
data. Furthermore, for running time, it took about 1.2 min
to run the Linf-SClust method with a specified perplexity
value and the number of clusters on the single-cell RNA-

seq dataset with 26,616 genes and 638 cells using a computer
with one Intel64 processor.

Simulations

We further investigated Linf-SClust, L1-SClust, L2-SClust
and 13 other methods including CIDR, FlowSOM, mono-
cle, PCAHC, PCAKmeans, pcaReduce, RaceID2, RtsneK-
means, SAFE, SC3, SC3svm, Seurat and TSCAN using 15
simulated single-cell RNA-seq datasets in (18). Table 6 pro-
vides an overview of these simulated datasets. These simu-
lated datasets were generated based on certain real datasets
using different methods (named as HVG10, Expr10 and
M3Drop10), and provided true cell labels (18). We used four
evaluation criteria, i.e. ARI (Adjusted Rand Index) (19),
NMI (Normalized Mutual Information) (20), purity and
classification error rate, to investigate the performances of
the 16 methods applied to the 15 simulated datasets.

We first investigated the effects of perplexity on the per-
formances of Linf-SClust, L1-SClust and L2-SClust ap-
plied to the simulated datasets. Supplementary Figures S2–
4 show the effects of perplexity on the four evaluation cri-
teria applying Linf-SClust, L1-SClust and L2-SClust to the
15 simulated datasets with various perplexity values. One
can see that Linf-SClust has the best overall performances
on datasets Zhengmix4eq, Zheng4uneq and Zhengmix8eq
with various perplexity values. L2-SClust has the best over-
all performance on dataset Koh. L1-SClust and L2-SClust
have good overall performances on dataset Kumar. These
findings suggest that it is necessary to have the options for
different types of distances for single-cell RNA-seq cluster-
ing methods to facilitate the applications to diverse biolog-
ical contexts.

We then compared Linf-SClust, L1-SClust and L2-
SClust with the 13 clustering methods including CIDR,
FlowSOM, monocle, PCAHC, PCAKmeans, pcaReduce,
RaceID2, RtsneKmeans, SAFE, SC3, SC3svm, Seurat and
TSCAN using the simulated datasets. We used the per-
plexity values that yielded the best performances for Linf-
SClust, L1-SClust, L2-SClust in this study. Figures 2, 3,
4 show the comparison results for the 16 clustering meth-
ods. To summarize the comparisons, at least one of the
proposed methods (i.e. Linf-SClust, L1-SClust and L2-
SClust) was among the top five methods with good per-
formances. In particular, L1-SClust ranks the first on the
dataset HVG10 Kumar, Linf-SClust ranks the second on
dataset Expr10 Zhengmix8eq, and L2-SClust ranks the sec-
ond on dataset M3Drop10 Kumar. These findings suggest
the graph-based spectral clustering techniques can be help-
ful for single-cell RNA-seq clustering problems.
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Figure 2. Method comparisons on five simulation datasets obtained via
gene-filtering method ‘HVG10’.

CONCLUSION

We developed a new graph-based single-cell clustering
framework. Under this framework, we investigated the
choices on different measures (i.e. L∞, L1 and L2) used for

Figure 3. Method comparisons on five simulation datasets obtained via
gene-filtering method ‘Expr10’.
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Figure 4. Method comparisons on five simulation datasets obtained via
gene-filtering method ‘M3Drop10’.

dissimilarity characterization on clr-transformed single-cell
RNA-seq data. We theoretically investigated the effects of
L∞, L1 and L2 measures used for dissimilarity calculations
on clustering. We applied the proposed methods to the clr-
transformed single-cell RNA-seq data from human pancre-
atic islets. We found that the Linf-SClust method is suitable
for this dataset, which provides biologically meaningful in-
sights. We also compared the proposed methods with ex-
isting single-cell clustering methods through real data ap-
plication and simulations. These analyses suggest the pro-
posed methods are valuable additions to single-cell cluster-
ing methods.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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18. Duò,A., Robinson,M.D. and Soneson,C. (2018) A systematic
performance evaluation of clustering methods for single-cell
RNA-seq data. F1000Res, 7, 1141–1163.

19. Yeung,K.Y. and Ruzzo,W.L. (2001) Details of the adjusted rand index
and clustering algorithms, supplement to the paper an empirical
study on principal component analysis for clustering gene expression
data. Bioinformatics, 17, 763–774.

20. Knops,Z.F., Maintz,J.A., Viergever,M.A. and Pluim,J.P. (2006)
Normalized mutual information based registration using k-means
clustering and shading correction. Med. Image. Anal., 10, 432–439.


