
[12:38 30/9/2009 Bioinformatics-btp533.tex] Page: 2841 2841–2842

BIOINFORMATICS APPLICATIONS NOTE Vol. 25 no. 21 2009, pages 2841–2842
doi:10.1093/bioinformatics/btp533

Sequence analysis

Updates to the RMAP short-read mapping software
Andrew D. Smith1,∗, Wen-Yu Chung2, Emily Hodges2, Jude Kendall2, Greg Hannon2,
James Hicks2, Zhenyu Xuan2 and Michael Q. Zhang2,∗
1Molecular and Computational Biology, University of Southern California, Los Angeles, CA and
2Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
Received on July 11, 2009; revised on August 19, 2009; accepted on September 3, 2009
Advance Access publication September 7, 2009
Associate Editor: Limsoon Wong

ABSTRACT

Summary: We report on a major new version of the RMAP software
for mapping reads from short-read sequencing technology. General
improvements to accuracy and space requirements are included,
along with novel functionality. Included in the RMAP software
package are tools for mapping paired-end reads, mapping using
more sophisticated use of quality scores, collecting ambiguous
mapping locations and mapping bisulfite-treated reads.
Availability: The applications described in this note are available for
download at http://www.cmb.usc.edu/people/andrewds/rmap and
are distributed as Open Source software under the GPLv3.0. The
software has been tested on Linux and OS X platforms.
Contact: andrewds@usc.edu; mzhang@cshl.edu

The RMAP algorithm was introduced by (Smith et al., 2008) as
one of the earliest available programs for mapping reads from the
Illumina second-generation sequencing technology. One important
contribution of RMAP was to incorporate the use of quality scores
directly into the mapping process: read positions with too low a
quality score were not considered while mapping, and that quality
score cutoff could be adjusted by the user. Subsequently, numerous
mapping algorithm have appeared (Langmead et al., 2009; Li,H.
et al., 2008; Li,R. et al., 2008; Lin et al., 2008; Schatz, 2009;
Yanovsky et al., 2008), with improvements in both efficiency
and breadth of functionality (e.g. ability to map paired-end reads;
integrated SNP calling). Investigators requiring solutions to mapping
problems now have many options. As new applications of short-
read sequencing emerge, many variations on the analysis task of
read mapping emerge. Diversity in performance characteristics of
existing mapping tools becomes potentially valuable.

We report the first major update to RMAP. The basic algorithmic
framework in RMAP is still to preprocess reads and scan the genome,
but several modifications have been made and much additional
functionality has been included. Importantly, RMAP has a memory
footprint that depends on the number of reads being mapped. This
feature allows RMAP to be used effectively in cluster environments
with commodity nodes, because partitioning the reads allows natural
parallelizations with linear reduction in memory requirements per
processor core used.

Included in this release of the RMAP software package
is functionality for mapping paired-end reads, making more
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sophisticated use of quality scores, collecting mapping locations for
ambiguously mapping reads and mapping bisulfite-treated reads.

1 GENERAL MAPPING ALGORITHM

1.1 Layered seeds
Originally RMAP used the filtration method of (Baeza-Yates and Perleberg,
1996). Filtration algorithms for approximate matching first identify locations
in the genome where seeds (substrings of the reads) match exactly, which
can eliminate many potential matches from consideration very rapidly. The
updated version now uses the idea of layered seed structures, which is similar
to multiple filtration (Pevzner and Waterman, 1995). Seed structures indicate
sets of positions in the reads that are required to match the genome exactly at
any location where the read can map. Two distinct sets of seed structures are
obtained with the property that if two strings approximately match, then each
set of seed structures will contain at least one structure indicating positions
that match exactly between the two strings. The two distinct sets of seed
structures are combined by taking the union of the positions they specify,
creating a new set of seed structures corresponding to the cartesian product of
the original sets. These layered seed structures are more numerous, leading
to an increased number of scans of the genome. However, the layered seed
structures are also more specific, and therefore each genome scan excludes
more full comparisons and is more efficient.

Use of seeds in the filtration step proceeds by representing the seed as
a bit-mask that selects a subset of the bases in the reads, which are also
represented as bit-masks. The result of this operation is an unsigned integer
value determined by the bases in the read at seed positions. As each seed
structure is processed, a hash table is constructed to index all the reads based
on the result of applying the structure to the read sequences. Collisions are
resolved by chaining, and each chain indicates the set of reads with specific
bases at the seed structure positions. To hash values resulting from applying a
seed structure to a 2-bit sequence representation, we use the modulo function
of the size of the hash table, which is maintained at sizes that are prime
numbers to assist in balancing chain sizes.

1.2 Use of quality scores
Base-calling quality scores are generally derived from some probabilitistic
model that describes probabilities for each base at each position in a read.
Quality scores are usually assigned separately for each base at a given read
position, but may be summarized as a score for the position itself (generally
measuring confidence in the called base at that position). For example, the
original Illumina pipeline produced quality scores in the range of −40 to 40,
with at most one base at each position receiving a score of ≥0. The precise
meaning of quality scores depends on the base-calling method, and it is not
desirable for mapping methods to be too closely coupled to any particular
base caller.

Weight-matrix matching: in this mode RMAP uses quality scores to weigh
different possible mismatches at a given position so that mappings with
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non-consensus bases in the genomic sequence are penalized less if they are
closer in score to the consensus base at the same position. In this way we
generally penalize less for mismatches at positions with less confident base
calls, but also are sensitive to situations in which the base caller has difficulty
deciding between two bases at a position. Specified in the appropriate format,
RMAP can use any values as quality scores, enabling it to work with novel
base-calling methods.

More formally, let c denote the quality score of the consensus base at a
particular position, and let m denote the least quality score at that position.
Then for any base at that position, if the corresponding quality score is b
then the penalty associated with that base is (c −b)/(c −m). For example,
assume the greatest (smallest) possible score in the dataset is 40 (−40). If
the consensus base at a position receives a score of 40, and all others receive
scores of −40, then a mismatch at that position will be equated with a score
penalty of 1. So the penalty for the consensus base is always 0, and for a
perfect consensus, the penalty for a mismatch is 1.

Wildcard matching: originally RMAP could use base-call quality scores
through a user-specified cutoff, which designated read positions as either
high- or low-quality. The low-quality positions always induce a match (acting
as wildcards); mismatches are only counted at high-quality positions (and
reads are prescreened to ensure that they have some reasonable number of
high-quality positions). A similar ‘wildcard’ scoring option is available in
the current release of RMAP. Using the notation introduced in the previous
paragraph, at each position, if the probability for base b is less than a user-
specified value, then that position will induce a mismatch when aligned to a
genomic position with base b. In this way, positions with very low quality will
never be penalized (similar to the original use of quality scores in RMAP),
but positions with close calls between two bases will match either of the
high-scoring bases.

2 READS FROM BISULFITE SEQUENCING
Functionality for mapping reads from bisulfite sequencing has been included.
Bisulfite sequencing converts all Cs in reads to Ts, except those protected
by methylation (which, in mammals, generally happens at CpGs), and is
the gold-standard for interrogating CpG methylation status. The common
strategy in mapping bisulfite-treated reads is to map to a converted genome,
where all Cs are converted to Ts. Bisulfite treatment is harsh, and a balance
must be struck between converting as many unmethylated cytosines as
possible and retaining sufficient fragments at the appropriate sizes. Therefore,
along with the methylated Cs at CpGs, anywhere from 1–5% of the remaining
Cs may be unconverted by chance (depending on experimental parameters
used). RMAP is able to use information in unconverted Cs to expand the
portion of the genome that can be interrogated. Wildcard matching is used
to allow Ts in reads to match either C or T in the genome. Cs in reads are
not allowed to map over Ts in the reference unless the T is followed by a
G. This last condition is critical for exploiting unconverted cytosines while
ensuring that no bias is introduced toward increased mappability of reads
showing more methylation.

3 PAIRED-END READS
Originally, RMAP did not have functionality for paired-end reads. The
current version does map paired-end reads, either as read sequences or
using full quality-score information. There are two modes for paired-end
mapping. In the fully sensitive mode, RMAP simultaneously maps both read
ends requiring that both ends map within a user-specified range and with
appropriate relative orientation. A more efficient mode identifies candidate
mappings independently for each end, and joins the ends with candidate
mappings falling in the specified distance range.

4 PERFORMANCE EVALUATION
Similar to the evaluation by Smith et al. (2008) of the original
version of RMAP, we profiled RMAP performance using data

Table 1. Performance of RMAP for different scoring modes

Score Mapped
Program cutoff Coverage Enrichment in target

RMAP (orig) 1 0.699 0.966 2 490 598
2 0.750 0.958 3 071 044

RMAP (orig; Q) 0 0.589 0.978 1 829 939
1 0.742 0.975 2 871 745

RMAP (WC) 0 0.740 0.974 3 375 148
1 0.766 0.965 3 791 773

RMAP (Q) 1.75 0.611 0.980 2 064 228
2.0 0.652 0.976 2 273 794

from resequencing bacterial artificial chromosomes (BACs) with
well-known genomic origin (hg18). We measured coverage as the
proportion of bases in the target region covered by at least 10 reads
(using the first base of each read). Enrichment is the proportion
of mappable reads mapped inside the target region. The dataset
contained 6 721 851 reads of 36 bases each, and the target region
size was 162 829 bases. Results are presented in Table 1 comparing
RMAP using both wildcard matching (WC) and weight-matrix
matching (Q) with the original version (orig) using mismatch counts
and the original method of using quality scores (Q). The score
column indicates number of allowed mismatches (fractional values
arise from use of quality scores as described above). Only unique
mappings were considered. The results show clear improvements
in the coverage and reads mapped to target for a fixed value of
enrichment, demonstrating the importance of using full quality
score information at each read position.

In terms of speed, using the basic scoring method, RMAP is
capable of mapping 8 M reads/h, fully sensitive to two mismatches
(2 M/h fully sensitive to three mismatches) on a single Intel® Xeon
(2.5 GHz) processor core when mapping 50 M total reads to the
human genome.
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