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Abstract: Biologically active chemical compounds may provide remedies for several diseases.
Meanwhile, Machine Learning techniques applied to Drug Discovery, which are cheaper and
faster than wet-lab experiments, have the capability to more effectively identify molecules with the
expected pharmacological activity. Therefore, it is urgent and essential to develop more representative
descriptors and reliable classification methods to accurately predict molecular activity. In this
paper, we investigate the potential of a novel representation based on Spherical Harmonics fed into
Probabilistic Classification Vector Machines classifier, namely SHPCVM, to compound the activity
prediction task. We make use of representation learning to acquire the features which describe the
molecules as precise as possible. To verify the performance of SHPCVM ten-fold cross-validation
tests are performed on twenty-one G protein-coupled receptors (GPCRs). Experimental outcomes
(accuracy of 0.86) assessed by the classification accuracy, precision, recall, Matthews’ Correlation
Coefficient and Cohen’s kappa reveal that using our Spherical Harmonics-based representation
which is relatively short and Probabilistic Classification Vector Machines can achieve very satisfactory
performance results for GPCRs.

Keywords: representation learning; cheminformatics; molecular representation; G protein-coupled
receptors; machine learning; molecular activity predictions

1. Introduction

Rational drug discovery aims at the identification of ligands that act on single or multiple
drug targets [1–3]. The process is usually performed by research which is focused on developing
methods and tools for understanding chemical space. In order to find the desired candidates, several
computational approaches are required which enable to predict drug-like properties.

Take for instance virtual screening [4], which has its roots in cheminformatics and performs
the rapid in silico assessment of large libraries of chemical structures to identify those most likely
to bind to a drug target. Recently, one may observe the success and possible new opportunities
with regards to ligand-based virtual screening [5]. In this modern era of computational technological
advancement, machine learning has been extensively applied to predict the activity of new candidate
compounds. Willett et al. proposed a binary kernel discrimination approach [6]. The multidimensional
analysis of classification performance of compounds were performed by Smusz et al. [7]. The Bayesian
belief network was adopted by Nidhi et al. [8] and Xia et al. [9]. A lot of promising prediction
results by adopting Support Vector Machines were obtained by Buchwald et al. [10], Bruce et al. [11]
Czarnecki et al. [12], Rataj et al. [13], and Zhang et al. [14]. Liu et al. have constructed ensembles to
identify Piwi-Interacting RNAs [15].

However, the success of applied machine learning methods depends on the molecular structure
representation employed, also known as the molecular descriptors [16]. Thus, the main challenge is to
devise representations of molecules that are both complete and concise to enable to reduce the number
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of calculations that are needed to predict the properties [17]. There has been a flood of interesting
approaches to represent molecules [18]. For instance, classical QSAR (Quantitative Structure-Activity
Relationships) methodologies [19] have given their contribution [20–23]. Lozano et al. identified
molecular features responsible for the antileishmanial activity of 61 adenosine analogues acting
as inhibitors of the enzyme glyceraldehyde 3-phosphate dehydrogenase of Leishmania mexicana
(LmGAPDH) [24]. Adeniji et al. made a great effort to develop a model that relates the structures of
50 compounds to their activities against M. tuberculosis [25]. In [26], the authors propose new amino
acid descriptors which should result in more readily interpretable models for the enzyme activity of
proteins. Limitations of QSARs were addressed by Tong et al. [27]. Ghasemi et al. analyzed neural
network and deep-learning algorithms used in QSAR studies [28]. Lately, Consonni et al. introduced a
new metric to estimate the model predictive ability of QSARs [29].

As was previously mentioned, representation learning, a part of machine learning, also
serves to provide new descriptors [30]. Kuroda presented a novel descriptor based on atom-pair
properties [31]. Śmieja et al. investigated a new approach for fingerprint hybridization and reduction [32].
A molecular descriptor obtained by translating equivalent chemical representations was developed
by Winter et al. [33]. Wang et al. explored protein-protein interactions prediction using Zernike
moments descriptor [34]. Recently, the feature representation problem in bioinformatics was analyzed
by Li et al. [35]. In [36] the authors strive to provide a novel local conjoint triad feature representation.
Additionally, recent studies address the challenges faced in developing molecular descriptors and tools
to drug design targeting GPCRs [37,38].

At the same time, G protein-coupled receptors (GPCRs) are part of a large group of
signaling proteins that mediate cellular responses to most metabolites, hormones, cytokines and
neurotransmitters. For this reason, GPCRs have been extensively explored as important drug
targets [39]. Research indicates GPCRs are the targets of nearly 35% of all drugs approved by the US
Food and Drug Administration [40]. In the era of Computer-Aided Drug Design (CADD) machine
learning techniques can be used to discover active ligands and predict the activity of molecules.

In view of the above, in this study we focused on improving molecular activity prediction.
We introduce a novel methodology that involves Probabilistic Classification Vector Machines (PCVM)
and Spherical Harmonics-based descriptor which we call SHPCVM. Previous work has shown that
PCVM plays a prominent role in prediction-based processes [34]. Additionally, Spherical Harmonics
have been successfully applied to cheminformatics [41,42]. Nevertheless, the key principle of our
Spherical Harmonics-based approach is not the usage of Spherical Harmonics themselves but the fact
that our technique makes use of our feature selection strategy, namely Minimum Redundancy and
Maximum Relevance (MRMR) that enables obtaining only representative features. Although previous
studies also indicate a few attempts have been made to employ feature selection methodologies
to cheminformatics and bioinformatics [43–45], our methodology is novel. Finally, the vector
representation that we get is relatively short and more discriminative. The presented method was
applied to 21 GPCR datasets. In particular, the computer experiments included the comparison
with both competitive classifiers (Naïve Bayes, K Nearest Neighbours, Support Vector Machines and
Random Forests) and other representations (MOE and Connectivity descriptor). The results suggest
that SHPCVM is superior to other approaches. Therefore, this technique is adequate for molecular
prediction and may be further explored. Flowchart of our research methodology is shown in Figure 1.

The rest of this paper is organized as follows. Section 2 introduces the evaluation measures used
in the computer experiments, describes the architecture and demonstrates the results with a discussion
on influence of our methodology on prediction ability. The third section studies the datasets and
explains all applied methods. Section 4 summarizes the work presented in this paper.
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Figure 1. Flowchart of research methodology.

2. Results And Discussion

In this section we present the evaluation measures employed for performance comparison.
Then we analyze and discuss the experimental results and compare our results with other approaches.

2.1. Evaluation Measure

We considered compound activity prediction as a binary classification task. Hence, a number
of commonly used measures can be employed to evaluate its performance. These methods include
accuracy (ACC), precision (PRE), recall (REC), the Matthews Correlation Coefficient (MCC) and the
Cohen’s kappa (κ). They are listed in Table 1.

Table 1. Evaluation measures for the binary classification problem: TP—true positives (the total number
of active compounds that are predicted correctly), TN—true negatives (the total number of inactive
compounds that are predicted correctly), FP—false positives (the total number of these compounds
that have no interaction with the receptor but are predicted as active), FN—false negatives (the total
number of these compounds that are active but are predicted as inactive), PA—an observed level of
agreement, PE—an expected level of agreement.

Measure Computational Formula Description

Accuracy [46] ACC = TP+TN
TP+TN+FP+FN It quantifies the fraction of correct

predictions over the total instances.

Precision PRE = TP
TP+FP It quantifies the fraction of relevant

instances among the retrieved ones.

Recall REC = TP
TP+FN It quantifies the fraction of relevant

instances that have been retrieved over
the total relevant instances.

Matthews
Correlation
Coefficient [47]

MCC = TP·TN−FP·FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

It returns a value between −1 and
+1, where +1 represents a perfect
prediction, −1 total disagreement
between prediction and observation
and 0 indicates no better than random
prediction.

Cohen’s
kappa [48]

κ = PA−PE
1−PE

It returns a value between −1 and
+1, where +1 represents a complete
agreement, 0 or lower values mean
chance agreement.
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2.2. Experimental Design

In the study, the flowchart of SHPCVM is shown in Figure 1. More specifically, after getting the
data the spherical harmonics-based descriptor is calculated. In order to obtain the optimal number of
features, we perform feature selection process. Then the final molecular descriptor is used as input
to train the PCVM classifier. We divided the datasets into training (80%) and test (20%) sets to carry
out the computer experiments. Since cross-validation is a useful tool to select the appropriate model
and tune a few parameters, ten-fold cross-validation was used for the training purposes. Finally,
the performance of each classifier was evaluated on an external test set randomly selected from the
original dataset (20%).

We used in-house Python code for features calculations and the scikit-learn package (http://scikit-
learn.org/) for machine learning. 3D coordinates for the molecules were generated using 2D → 3D
structure generation routines included in the RDKit [49] and Open Babel [50] python packages.
Both Connectivity descriptor and MOE-type features for each molecule were calculated by Python
ChemoPy package [51].

2.3. Descriptor Insights

The main goal of any molecular descriptor is to achieve a mapping from the original space
to another designed descriptor space. Since the new space usually has a smaller dimension,
some information will be inevitably lost after the reduction. Thus, a perfect descriptor is supposed to
preserve the core information. In our computer experiments we have examined whether the spherical
harmonics-based descriptor meets the expectations. We have performed PCA [52] on 49 dimensional
descriptor and analyzed the quality of the separation between active and inactive molecules. PCA is a
well-known and widely used method that projects a dataset onto the directions that account for most
of the variance in the dataset. Figure 2 shows the distribution of the active and inactive compounds
in P35372 dataset after applying PCA to the 49 dimensional spherical harmonics-based descriptor,
MOE—type and Connectivity descriptor, and choosing the top three principle components. One may
notice that the biologically active compounds are gathered together.

On the other hand, the inactive compounds are spread out. Obviously, the active and inactive
molecules are not completely separated. However, it is quite easy to notice some patterns and clusters
of actives and inactives. The visual inspection suggests that the spherical harmonics-based descriptor
preserves most of information to allow classification and can be further explored. Please note that the
goal of this computer experiment was to ensure whether the information preserved by the descriptors
may be enough to apply the representation to search for active compounds. If the descriptor was useless,
the data would be randomly separated and none interesting patterns could be observed. Indeed,
Figure 2 indicates the data described by spherical harmonics based descriptor is not linearly-separable
but we did not expect it. Instead, we have found out the descriptor is a good tool to analyze the
chemical space. What is more, to give an illustrative example Figure 2 shows the distribution of data
for only 1 out of 21 sets included in the datasets. However, we have observed similar tendency in
all datasets.

http://scikit-learn.org/
http://scikit-learn.org/
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(a) SH-based descriptor

(b) MOE-type descriptor

(c) Connectivity descriptor

Figure 2. Scattergram of (a) Spherical Harmonics-based, (b) MOE-type and (c) Connectivity descriptor
for both active and inactive compounds in P35372 dataset.

The results of PCA applied to P35372 dataset, i.e., the percentage of the variation explained by
each principal component for three different descriptors are shown in Figure 3. It can be noticed
that for Spherical Harmonics-based descriptor the top three principle components explain more than
70% of the variation of samples in the descriptor space. It suggests that the 3D spatial distribution
illustrated in Figure 2 may, at least partially, reflect the real spatial distribution in the descriptor space.
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Moreover, the PCA results indicate the actives and inactives represented by the three descriptors (MOE,
Connectivity and SH-based) are not linearly separable. Nevertheless, such data can still be classified
correctly using some non-linear approaches.

Figure 3. Three principal components ranked by the amount of variance they capture in P35372 dataset
for Spherical Harmonics-based, MOE-type and Connectivity descriptor.

2.4. Performance Evaluation

The purpose of the computer experiments presented in this subsection was three-fold. As the
introductory computer experiments described in Section 2.3 have demonstrated, the spherical
harmonics-based descriptor is a reliable descriptor to analyze the molecular space. For this reason,
our first goal is to assess the ability of PCVM classifier with the spherical harmonics-based descriptor
to predict biologically active compounds. Secondly, we aimed to compare the PCVM performance with
SVM approach and another classifiers. Finally, we compared the prediction performance of PCVM as a
representative classification method when different descriptors are used.

2.4.1. PCVM Model with a Spherical Harmonics-Based Descriptor

After ten-fold cross-validation procedure, a performance estimate was obtained for each test
dataset. The outcomes over the evaluation measures for PCVM and the molecules are shown in
Tables 2–6. The results suggest that the proposed approach is valuable. We observed that ACC is more
than 0.8 in the vast majority of cases. The minimum values for ACC, PRE, REC, MCC and κ are 0.742,
0.726, 0.752, 0.69, and 0.651 respectively.

The results illustrated in Tables 2–6 indicate that our approach has good discriminative capabilities
for the molecular activity recognition. One may notice it is able to outperform representative
models. The corresponding outcomes obtained by cross-validation on the training set are available as
Supplementary Materials. Based on reported values, SHPCVM is indeed a robust approach. It appears
the results can be replicated on unseen data.

A point to consider is the fact that our final representation is strictly dependent on the precision
of 3D structure model. Consequently, for different conformations, we get different representation
of the given molecule. Also, the quality of 3D structure is significant. Here, we want to stress that
although the molecular activity is the joined effect of varied factors (physico-chemical and biochemical
properties, among others), PCVM combined with the new shape-based representation is able to give
good prediction outcomes. Our results again indicate that the choice of a proper set of features which
describe the molecule may affect prediction performance. Furthermore, the choice of PCVM model as
a classifier is meaningful as well. This fact is explored in the next computer experiments.
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2.4.2. SVM Model with a Spherical Harmonics-Based Descriptor

Inspired by the previously shown results we validated the performance of SVM [53] classifier
and compared it with PCVM. Tables 2–6 display all five measures. They illustrate that the highest
accuracy obtained by SVM was 0.826 for Q9Y5N1. Interestingly, PCVM achieved 0.862. Furthermore,
the maximum values for ACC, PRE, REC, MCC and κ are 0.826, 0.849, 0.831, 0.753. and 0.741,
respectively. The smallest accuracy rate is reported for P30542 and equals 0.712. For the other measures
the minimum values for P30542 (PRE, REC, MCC, κ) are 0.696, 0.725, 0.654 and 0.615. It is worth
noticing that for the same dataset PCVM yields 0.742, 0.726, 0.752, 0.691 and 0.651 for ACC, PRE, REC,
MCC and κ which is better than SVM.

The analysis in Tables 2–6 show that the performance of PCVM has significantly outperformed
SVM. Moreover, Figure 4 presents the maximum values recorded for PCVM and SVM. Both Tables 2–6
and Figure 4 reveal SHPCVM can be further used. Indeed, the performance of SVM is not so much
competitive against the PCVM. The major reason PCVM is significantly better than SVM may be the
fact that probabilistic decisions are important to accomplish such tasks.

Figure 4. The maximum scores achieved for SVM and PCVM.

2.4.3. Comparison with Other Classification Methods

To further investigate the prediction performance of our approach, we also compared the proposed
approach with several other existing methods on the GPCR datasets. The prediction results for the
three additional classifiers and abovementioned measures are reported in Tables 2–6. One may observe
that PCVM with a harmonic-based representation achieves the best results for all datasets. Tables 2–6
suggest the worst outcomes were provided by Naïve Bayes classifier. Some results are random in case
of this approach. Take for instance the value for Q14416 or Q8TDU6 data presented in Table 5. It is
probably caused by the fact that NB is a very a simple method that makes a strong assumption on the
shape of the data distribution which may not be true for the analyzed datasets. Also, it can be seen in
Tables 2–6 that RF and KNN results are poor. Generally, the outcomes show a common trend with the
results for RF, KNN and NB, namely the results are much more worse than for either SVM or PCVM,
but with specific differences due to the use of different classification methods.



Int. J. Mol. Sci. 2019, 20, 2175 8 of 23

Table 2. Performance comparison of target prediction methods in terms of Accuracy. Scores for the
external test set.

UniProt ID PCVM SVM RF NB KNN

P35372 0.820 0.771 0.694 0.636 0.659
P30542 0.742 0.712 0.637 0.608 0.595
P08908 0.809 0.750 0.671 0.603 0.632

Q9Y5N1 0.862 0.826 0.745 0.676 0.703
Q99705 0.814 0.788 0.716 0.659 0.694
Q14416 0.804 0.752 0.672 0.585 0.657
P21917 0.776 0.721 0.644 0.573 0.608

Q9HC97 0.770 0.741 0.658 0.596 0.621
Q99835 0.854 0.812 0.736 0.664 0.682
P50406 0.821 0.794 0.704 0.598 0.639

Q8TDU6 0.830 0.802 0.732 0.672 0.699
P47871 0.831 0.762 0.697 0.648 0.646
P30968 0.801 0.774 0.666 0.589 0.634
P35348 0.821 0.789 0.761 0.678 0.747
P24530 0.830 0.802 0.734 0.687 0.717
P41180 0.842 0.816 0.723 0.659 0.664
P51677 0.800 0.814 0.667 0.596 0.633
P21452 0.805 0.809 0.683 0.632 0.631
P35346 0.772 0.742 0.699 0.618 0.629
P48039 0.799 0.760 0.696 0.629 0.658

Q9Y5Y4 0.821 0.773 0.701 0.623 0.659

Table 3. Performance comparison of target prediction methods in terms of Precision. Scores for the
external test set.

UniProt ID PCVM SVM RF NB KNN

P35372 0.807 0.761 0.663 0.629 0.584
P30542 0.726 0.696 0.619 0.547 0.501
P08908 0.808 0.763 0.675 0.633 0.613

Q9Y5N1 0.889 0.849 0.723 0.644 0.674
Q99705 0.832 0.814 0.708 0.657 0.675
Q14416 0.791 0.772 0.609 0.566 0.575
P21917 0.732 0.681 0.618 0.547 0.581

Q9HC97 0.761 0.738 0.673 0.533 0.649
Q99835 0.867 0.830 0.718 0.642 0.692
P50406 0.827 0.791 0.691 0.615 0.653

Q8TDU6 0.821 0.794 0.673 0.597 0.622
P47871 0.822 0.765 0.693 0.612 0.634
P30968 0.790 0.762 0.638 0.621 0.629
P35348 0.812 0.777 0.686 0.639 0.648
P24530 0.815 0.783 0.707 0.648 0.643
P41180 0.863 0.834 0.712 0.615 0.638
P51677 0.803 0.818 0.688 0.595 0.657
P21452 0.791 0.791 0.643 0.534 0.629
P35346 0.804 0.777 0.677 0.592 0.652
P48039 0.786 0.752 0.642 0.569 0.639

Q9Y5Y4 0.816 0.760 0.716 0.628 0.656
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Table 4. Performance comparison of target prediction methods in terms of Recall. Scores for the
external test set.

UniProt ID PCVM SVM RF NB KNN

P35372 0.826 0.783 0.668 0.626 0.596
P30542 0.752 0.725 0.651 0.533 0.456
P08908 0.786 0.738 0.677 0.669 0.585

Q9Y5N1 0.847 0.816 0.675 0.655 0.676
Q99705 0.798 0.775 0.686 0.639 0.623
Q14416 0.808 0.819 0.602 0.542 0.569
P21917 0.764 0.713 0.621 0.536 0.597

Q9HC97 0.787 0.757 0.671 0.522 0.616
Q99835 0.826 0.797 0.689 0.616 0.634
P50406 0.788 0.764 0.687 0.598 0.631

Q8TDU6 0.841 0.819 0.676 0.552 0.593
P47871 0.854 0.801 0.688 0.578 0.648
P30968 0.835 0.803 0.651 0.655 0.623
P35348 0.853 0.817 0.675 0.602 0.619
P24530 0.864 0.831 0.664 0.626 0.607
P41180 0.824 0.793 0.693 0.619 0.609
P51677 0.822 0.795 0.683 0.513 0.615
P21452 0.820 0.781 0.634 0.506 0.595
P35346 0.764 0.739 0.686 0.569 0.615
P48039 0.814 0.784 0.649 0.593 0.625

Q9Y5Y4 0.840 0.791 0.676 0.625 0.646

Table 5. Performance comparison of target prediction methods in terms of Matthews Correlation
Coefficient. Scores for the external test set.

UniProt ID PCVM SVM RF NB KNN

P35372 0.768 0.725 0.611 0.573 0.557
P30542 0.691 0.654 0.648 0.552 0.387
P08908 0.756 0.702 0.652 0.606 0.544

Q9Y5N1 0.765 0.738 0.635 0.588 0.614
Q99705 0.770 0.746 0.632 0.577 0.593
Q14416 0.714 0.715 0.577 0.504 0.514
P21917 0.783 0.733 0.619 0.465 0.552

Q9HC97 0.696 0.661 0.633 0.480 0.603
Q99835 0.751 0.729 0.656 0.613 0.615
P50406 0.777 0.748 0.664 0.556 0.611

Q8TDU6 0.773 0.746 0.637 0.511 0.582
P47871 0.794 0.748 0.656 0.557 0.615
P30968 0.774 0.741 0.606 0.614 0.577
P35348 0.764 0.727 0.637 0.609 0.595
P24530 0.787 0.751 0.625 0.572 0.596
P41180 0.781 0.753 0.655 0.596 0.563
P51677 0.753 0.724 0.627 0.485 0.618
P21452 0.766 0.721 0.569 0.473 0.588
P35346 0.690 0.664 0.638 0.566 0.603
P48039 0.742 0.717 0.617 0.593 0.582

Q9Y5Y4 0.754 0.701 0.625 0.625 0.595
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Table 6. Performance comparison of target prediction methods in terms of κ. Scores for the external
test set.

UniProt ID PCVM SVM RF NB KNN

P35372 0.727 0.682 0.617 0.548 0.551
P30542 0.651 0.615 0.624 0.552 0.377
P08908 0.740 0.697 0.622 0.623 0.544

Q9Y5N1 0.742 0.684 0.611 0.566 0.612
Q99705 0.751 0.698 0.624 0.557 0.622
Q14416 0.689 0.676 0.534 0.472 0.556
P21917 0.772 0.722 0.621 0.467 0.565

Q9HC97 0.663 0.634 0.613 0.474 0.587
Q99835 0.732 0.703 0.648 0.635 0.573
P50406 0.761 0.734 0.622 0.519 0.588

Q8TDU6 0.766 0.731 0.623 0.512 0.542
P47871 0.781 0.735 0.636 0.559 0.622
P30968 0.763 0.732 0.595 0.613 0.564
P35348 0.750 0.725 0.654 0.544 0.575
P24530 0.753 0.722 0.603 0.568 0.591
P41180 0.772 0.741 0.625 0.587 0.543
P51677 0.735 0.691 0.586 0.467 0.582
P21452 0.723 0.687 0.528 0.456 0.557
P35346 0.668 0.633 0.608 0.547 0.579
P48039 0.713 0.680 0.575 0.557 0.564

Q9Y5Y4 0.742 0.691 0.592 0.617 0.592

2.4.4. Comparison with Other Representations

To assess the ability of PCVM classifier, two existing descriptors, i.e., MOE (60 dimensions) and
Connectivity (44 dimensions) found in RDKit [49], a popular cheminformatics package are applied
to represent the GPCR datasets and the results are compared with the results of SH. The comparison
of the results of these approaches in terms of Accuracy (ACC) and Matthews Correlation Coefficient
(MCC) is listed in Tables 7 and 8. Additionally, Figure 5 illustrates the maximum values obtained for
each descriptor and PCVM when all measures are taken into consideration.

Figure 5. Maximum evaluation results obtained for the prediction of active molecules with spherical
harmonic-based approach, MOE-type molecular descriptor and Connectivity descriptor using PCVM
as the classifier.
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Table 7. Performance comparison of target prediction methods in terms of Accuracy. Scores for the external test set.

UniProt ID
SH-Based MOE-Type Connectivity

PCVM SVM RF NB KNN PCVM SVM RF NB KNN PCVM SVM RF NB KNN

P35372 0.820 0.771 0.694 0.636 0.659 0.734 0.725 0.651 0.604 0.587 0.669 0.685 0.616 0.562 0.551
P30542 0.742 0.712 0.637 0.608 0.595 0.691 0.708 0.617 0.615 0.623 0.633 0.653 0.604 580 0.566
P08908 0.809 0.750 0.671 0.603 0.632 0.731 0.746 0.673 0.643 0.604 0.606 0.648 0.583 541 0.569

Q9Y5N1 0.862 0.826 0.745 0.676 0.703 0.713 0.708 0.662 0.629 0.591 0.607 0.622 0.571 0.553 0.512
Q99705 0.814 0.788 0.716 0.659 0.694 0.731 0.713 0.685 0.641 0.611 0.678 0.721 0.645 0.609 0.621
Q14416 0.804 0.752 0.672 0.585 0.657 0.712 0.695 0.651 0.612 0.576 0.649 0.628 0.604 0.584 0.568
P21917 0.776 0.721 0.644 0.573 0.608 0.722 0.672 0.616 0.583 0.562 0.641 0.627 0.598 0.567 0.557

Q9HC97 0.770 0.741 0.658 0.596 0.621 0.664 0.673 0.607 0.617 0.573 0.602 0.616 0.573 0.552 0.564
Q99835 0.854 0.812 0.736 0.664 0.682 0.732 0.716 0.668 0.613 0.563 0.669 0.653 0.606 0.581 0.566
P50406 0.821 0.794 0.704 0.598 0.639 0.695 0.711 0.672 0.605 0.568 0.592 0.575 0.542 0.527 0.511

Q8TDU6 0.830 0.802 0.732 0.672 0.699 0.616 0.654 0.632 0.616 0.584 0.511 0.561 0.548 0.539 0.525
P47871 0.831 0.762 0.697 0.648 0.646 0.757 0.718 0.672 0.649 0.622 0.610 0.628 0.572 0.548 0.525
P30968 0.801 0.774 0.666 0.589 0.634 0.712 0.697 0.685 0.574 0.592 0.622 0.641 0.579 0.526 0.503
P35348 0.821 0.789 0.761 0.678 0.747 0.728 0.735 0.678 0.638 0.603 0.593 0.604 0.561 0.539 0.558
P24530 0.830 0.802 0.734 0.687 0.717 0.712 0.759 0.663 0.625 0.611 0.584 0.616 0.559 0.539 0.593
P41180 0.842 0.816 0.723 0.659 0.664 0.716 0.736 0.671 0.614 0.592 0.608 0.585 0.553 0.528 0.542
P51677 0.800 0.814 0.667 0.596 0.633 0.625 0.672 0.633 0.582 0.606 0.559 0.586 0.531 0.502 0.484
P21452 0.805 0.809 0.683 0.632 0.631 0.641 0.639 0.625 0.593 0.613 0.534 0.556 0.502 0.528 0.502
P35346 0.772 0.742 0.699 0.618 0.629 0.658 0.692 0.685 0.572 0.589 0.542 0.568 0.511 0.518 0.528
P48039 0.799 0.760 0.696 0.629 0.658 0.692 0.713 0.652 0.585 0.603 0.590 0.623 0.584 0.548 0.523

Q9Y5Y4 0.821 0.773 0.701 0.623 0.659 0.739 0.758 0.649 0.578 0.559 0.630 0.641 0.596 0.542 0.531
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Table 8. Performance comparison of target prediction methods in terms of Matthews Correlation Coefficient. Scores for the external test set.

UniProt ID
SH-Based MOE-Type Connectivity

PCVM SVM RF NB KNN PCVM SVM RF NB KNN PCVM SVM RF NB KNN

P35372 0.768 0.725 0.611 0.573 0.557 0.654 0.623 0.599 0.551 0.506 0.646 0.618 0.588 0.539 0.526
P30542 0.691 0.654 0.648 0.552 0.387 0.588 0.553 0.507 0.523 0.501 0.528 0.514 0.485 0.503 0.495
P08908 0.756 0.702 0.652 0.606 0.544 0.702 0.664 0.615 0.602 0.610 0.402 0.443 0.482 0.506 0.501

Q9Y5N1 0.765 0.738 0.635 0.588 0.614 0.601 0.572 0.548 0.563 0.556 0.488 0.509 0.512 0.519 0.489
Q99705 0.770 0.746 0.632 0.577 0.593 0.637 0.612 0.585 0.511 0.594 0.587 0.575 0.559 0.508 0.569
Q14416 0.714 0.715 0.577 0.504 0.514 0.613 0.624 0.619 0.572 0.603 0.584 0.602 0.564 0.581 0.568
P21917 0.783 0.733 0.619 0.465 0.552 0.671 0.693 0.642 0.618 0.637 0.560 0.613 0.582 0.554 0.549

Q9HC97 0.696 0.661 0.633 0.480 0.603 0.586 0.591 0.544 0.531 0.505 0.537 0.558 0.521 0.506 0.502
Q99835 0.751 0.729 0.656 0.613 0.615 0.684 0.702 0.638 0.597 0.582 0.632 0.613 0.574 0.607 0.601
P50406 0.777 0.748 0.664 0.556 0.611 0.648 0.668 0.624 0.539 0.556 0.481 0.446 0.503 0.501 0.495

Q8TDU6 0.773 0.746 0.637 0.511 0.582 0.529 0.516 0.495 0.502 0.505 0.421 0.376 0.504 0.508 0.481
P47871 0.794 0.748 0.656 0.557 0.615 0.635 0.659 0.622 0.575 0.599 0.531 0.578 0.593 0.504 0.512
P30968 0.774 0.741 0.606 0.614 0.577 0.583 0.603 0.558 0.506 0.540 0.522 0.536 0.495 0.552 0.506
P35348 0.764 0.727 0.637 0.609 0.595 0.632 0.667 0.613 0.582 0.571 0.531 0.554 0.496 0.517 0.554
P24530 0.787 0.751 0.625 0.572 0.596 0.641 0.685 0.597 0.562 0.610 0.530 0.579 0.516 0.503 0.526
P41180 0.781 0.753 0.655 0.596 0.563 0.687 0.641 0.582 0.545 0.569 0.531 0.552 0.506 0.491 0.507
P51677 0.753 0.724 0.627 0.485 0.618 0.602 0.628 0.564 0.550 0.586 0.489 0.439 0.501 0.518 0.493
P21452 0.766 0.721 0.569 0.473 0.588 0.618 0.616 0.582 0.547 0.593 0.473 0.491 0.464 0.414 0.402
P35346 0.690 0.664 0.638 0.566 0.603 0.564 0.575 0.532 0.516 0.551 0.481 0.452 0.471 0.418 0.459
P48039 0.742 0.717 0.617 0.593 0.582 0.609 0.658 0.604 0.613 0.585 0.489 0.496 0.452 0.549 0.512

Q9Y5Y4 0.754 0.701 0.625 0.625 0.595 0.703 0.684 0.642 0.605 0.668 0.582 0.573 0.551 0.512 0.560
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Table 7 suggests that the highest accuracy was obtained for SH-based variant and equals 0.862
in Q9Y5N1. Thus, from the results in Tables 7 and 8, we can also conclude that the spherical
harmonic-based representation was able to handle all the datasets. Most importantly, the results for
harmonic-based representation (Tables 7 and 8 and Figure 5) show that using SH-based as the descriptor
has an influence on prediction of molecules activity. Although a harmonic-based representation has
the same length as MOE-type descriptor, it has improved the effectiveness of the prediction of active
molecules. The other results for the rest of datasets indicate that SHPCVM is very promising for
molecular activity prediction and they are available in the Supplementary Materials.

3. Materials And Methods

In this section, we give a brief introduction to datasets we used for computer experiments.
Then we introduce the details of PCVM, SVM, Random Forest, Bayesian classifier and KNN. Also,
we present a brief introduction of representation descriptors, including characteristics of Spherical
Harmonics-based approach.

3.1. Datasets

To get the data we partially repeated the steps described in [54]. We downloaded data for
3052 G-protein coupled receptors from UniProt database [55]. The database consists of 825 human
GPCR proteins. Among these, we obtained 519 051 GPCR-ligand interactions data from the GLASS
database [56]. For the purpose of ensuring the effectiveness of the computer experiments, we sorted
the GPCRs by the number of interacting ligands, as done in [54]. Since some GPCR individuals have
very small number of ligands or none, a threshold value to indicate the minimum number of ligands
each target is expected to have is set to 600. Finally, we selected 21 proteins which are listed in Table 9.
In consequence, there is a one individual which represents family F (Q99835), two representatives of
class C (P41180, Q14416), one target from family B (P47871) and the additional representatives are
associated with class A. All used ligands were gathered from CHEMBL database [57].

Several measures may be employed to verify the activity of molecules. They include IC50, EC50,
Ki, Kd, etc. [58]. Thus, we followed the approach of Wu et al. [54] and the p-bioactivity is used in the
work which is defined as − log10 val. Please note that val is the raw bioactivity. The value of the raw
bioactivities of ligands varies over a large range. However, taking logs reduces the magnitude of data
in relation to other variables data, and the properties of the model were not lost in any case. In the
datasets the activity range is extremely diverse. The smallest activity value is −12 and the largest is 4.
For ligands which have more than one activity value, we assume the mean as the final p-bioactivity
value. The inactive molecules are those which do not interact with the target GPCR. We selected
them randomly from the set of irrelevant GPCR data, similarly as described in [54]. In consequence,
the number of inactive compounds for a given GPCR target is about 30% of the actives (see Table 9).
Unfortunately, the number of irrelevant datasets which are considered as inactive is smaller than the
number of active compounds. This is the reason the data is unbalanced.

Please note that to solve the imbalanced data set problem, we have also made an attempt to select
the compounds with the lowest activity data as inactive. In the experiments we have considered the
values below −10. Taking such extra molecules decreased the results in the range of 0.222 to 0.375.
We believe it was caused by the fact the low activity compounds were labeled as inactive.
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Table 9. Datasets used in the experiments.

UniProt ID Protein Name # of Actives # of Inactives

P35372 Mu-type opioid receptor [59] 3828 1100
P30542 Adenosine receptor A1 [60] 3016 900
P08908 5-Hydroxytryptamine receptor 1A [61] 2294 700

Q9Y5N1 Histamine H3 receptor [62] 2092 600
Q99705 Melanin-concentrating hormone receptors 1 [63] 2052 600
Q14416 Metabotropic glutamate receptor 2 [64] 1810 540
P21917 D(4) dopamine receptor [65] 1679 500

Q9HC97 G-protein coupled receptor 35 [66] 1589 470
Q99835 Smoothened homolog [67] 1523 450
P50406 5-Hydroxytryptamine receptor 6 [68] 1421 420

Q8TDU6 G-protein coupled bile acid receptor 1 [69] 1153 340
P47871 Glucagon receptor [70] 1129 340
P30968 Gonadotropin-releasing hormone receptor [71] 1124 340
P35348 Alpha-1A adrenergic receptor [72] 1027 300
P24530 Endothelin receptor type B [73] 1019 305
P41180 Extracellular calcium-sensing receptor [74] 940 280
P51677 C-C chemokine receptor type 3 [75] 781 234
P21452 Substance-K receptor [76] 696 170
P35346 Somatostatin receptor type 5 [77] 689 200
P48039 Melatonin receptor type 1A [78] 684 200

Q9Y5Y4 Prostaglandin D2 receptor 2 [79] 641 190

3.2. Spherical Harmonics-Based Descriptor

To clearly introduce the Spherical Harmonics-based descriptor, we briefly introduce the concept
of Spherical Harmonics and our feature selection idea in the following two subsections.

3.2.1. Spherical Harmonics

Spherical harmonics are considered as a set of solutions to Laplace’s equation in spherical
coordinates [80,81]. The coordinates construct a set of basis functions

Ym
l (θ, φ) = Sm

l Pm
l (cos θ)eIm φ, (1)

where Pm
l means the associated Legendre polynomials which are real-valued and defined over the

range [−1, 1]. The goal of Sm
l is functions normalization.

Sm
l (θ, φ) =

√
(2l + 1)(l −m) !

4π(l + m) !
(2)

We introduce the concept of spherical depth which is a function that provides the distance between
two atoms. Thus, one can consider a molecule in a spherical depth map as a spherical function f (θ, φ)

that may be expanded into a linear combination of all spherical harmonics scaled by their associated
Fourier coefficients clm:

f (θ, φ) =
∞

∑
l=0

l

∑
m=−l

cl,mYm
l (θ, φ). (3)

For molecular representation we need only real value spherical harmonics. The real valued
spherical harmonic basis functions are shown in Figure 6. The real spherical harmonics can be
expressed in spherical coordinates as follows:

ym
l (θ, φ) =


√

2Sm
l cos(mφ)Pm

l cos(θ); m > 0
√

2Sm
l sin(−mφ)P−m

l cos(θ); m < 0

S0
l P0

l cos(θ); m = 0.

(4)
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The spherical harmonic features (coefficients) are given by the equation:

cl,m =
∫ 2π

0

∫ π

0
f (θ, φ)ym

l (θ, φ) sin(θ)dθdφ (5)

In consequence, the spherical harmonics descriptor is seen as a k dimensional vector

V = (‖v1‖, ‖v2‖, ‖v3‖, . . . , ‖vd‖), (6)

where bandwidth that is important to achieve a certain concentration factor equals N, ‖vi‖ =√
∑l

m=−l |c1,1|2 and d(V) ≤ N
2 . Furthermore, V is rotation invariant.

Figure 6. Illustration of the real valued spherical harmonic basis functions, where green means positive
values and red is associated with negative values.

3.2.2. Feature Selection

Interestingly, it shows spherical harmonics are able to capture a various number of geometric
object properties. The molecule’s model is characterized by the energies at different frequencies of
spherical harmonics. Thus, at high frequencies one may capture some details, whereas low frequencies
rather reveal gross information. In other words, for small value of l in Equation (5) we consider low
frequencies and the higher value of l gives more details.

Nevertheless, the SH descriptor, itself, may produce numerous features. Obviously, it is one of
many descriptors which may be employed to classification. However, the number of features included
in the well-known descriptors (SH descriptor, among others) can be high. Such high dimensionality
combined with a comparatively small sample size usually causes a degradation of the classifier’s
performance. Such a phenomenon is known as the curse of dimensionality [82]. It shows a well-defined
dimensionality reduction scheme may lead to an improvement in the performance of a prediction
model. Feature selection algorithms reduce the dimensionality of the input sequence by selecting only
a subset of features.

Feature selection approaches can be divided into filters [83] and wrappers [84]. Filters perform
feature selection independently from the learning process. Wrappers combine the learning process
and feature selection to select an optimal subset of features. Here, we apply Minimum Redundancy
Maximum Relevance feature selection approach (MRMR) [85]. It represents a filter-based methodology.
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Generally, it selects highly predictive but uncorrelated features. The features are ranked according to
the minimal-redundancy-maximal-relevance criteria.

Let us denote two random variables X and Y. Now, their mutual information is defined as:

I(X, Y) =
∫ ∫

p(x, y) log
p(x, y)

p(x)p(y)
dxdy, (7)

where p(•) is the probability density function, x and y represent realizations X and Y. MRMR criterion
is the following:

max ψ(D, R), ψ = D− R, (8)

where max D(S, y) = 1
|S| ∑xi∈S I(xi, y) (max relevance), min R(S) = 1

|S|2 ∑xi ,xj∈S I(xi, xj) (min
redundancy) and S is the set of n input variables.

3.2.3. Descriptor Computation

To sum up, the procedure used to calculate our Spherical Harmonics-based descriptor includes
the following steps which are also depicted in Figure 7.

1. Reading in atom’s type, coordinates, temperature factor, occupancy.
2. Placing a molecule into a common frame of reference.
3. Scaling in such a way each molecule fits within the unit ball.
4. Placing an orthogonal grid around each molecule.
5. Building so-called spherical depth map which provides the distance between the closest atoms.
6. Using the grid values to perform decomposition into spherical harmonics.
7. Learning the most informative Spherical Harmonics features by applying feature selection

strategy Section 3.2.2 to the vector of coefficients given in (5) and (6).

Figure 7. Steps in computing Spherical Harmonics-based descriptor.

In our approach, feature selection enables finding the most discriminative features (more precisely:
type of features) before the training phase. Tests are performed on external data that was never used
for neither feature selection nor training. All in all, SH-based descriptor is shorter than SH descriptor
since it contains only the most descriptive types of features. Removing irrelevant features leads to the
improvement in prediction and increases interpretability of the classification model.

Finally, the dimension of the descriptor presented in the paper is 60. The final length of 60 was
chosen arbitrarily. We leave for further studies the challenges connected with the most optimal selection
of number of coefficients. It is worth mentioning that since our SH-based descriptor depends on the
3D structure of the molecule, the molecular conformation has an influence on molecular prediction
ability. In fact, it was out of the scope of this paper and we have not tested different conformations.
Nevertheless, our studies suggest the more faithful 3D model is, the better Spherical Harmonic-based
representation is expected to be. However, discussions on the impact of the 3D structure on SH-based
representation could be a fruitful direction for future work.
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3.3. Probabilistic Classification Vector Machines (PCVM)

Probabilistic Classification Vector Machines [86] is a probabilistic kernel classifier with a kernel
regression model ∑n

i wiφi,θ(x) + b, where wi are the weights of the basis functions φi,θ(x) and b is a
bias. In the work we have adopted some PCVM settings to the molecules classification problem which
is considered as a binary classification.

Suppose we have a dataset S = {xi, yi}n
i=1, where yi ∈ {−1,+1} (labels - active and inactive

molecules). We employed a probit link function

ψ(x) =
∫ x

−∞
N (t|0, 1)dt,

where ψ(x) is the cumulative distribution of the normal distribution. Expectation Maximization
approach is used to optimize parameters. Finally, the model is defined as follows

l(x, w, b) = ψ(
n

∑
i=1

wi,φ(x) + b) = ψ(Φθ(x)w + b),

where Ψ(x) is seen as a vector of basis function evaluations for a molecule x.

3.4. Other Approaches

Meanwhile, in order to further evaluate the performance of SHPCVM, we separately train
the different state-of-the-art classifiers mentioned in the following subsections using Spherical
Harmonics-based representation to encode the molecules.

3.4.1. Support Vector Machines (SVM)

SVM [53] is a state-of-the art machine learning method that finds a hyperplane to separate
data from different classes. SVM has been widely used in chemoinformatics and its generalization
performance is significantly better than that of competing methods [87]. The choice of similarity
measure is a vital step to increase the performance of SVM. Typically, a positive semi-definite similarity
measure between data points (i.e., a kernel) is applied.

For the class of hyperplanes in a dot product spaceH, SVM performs a classification of samples
using a decision function as follows:

f (x) = sgn(< w, x > +b),

where b ∈ R is the bias weight and w ∈ H are the feature weights.
For a linearly separable set of observations, a unique optimal hyperplane exists. It is differentiated

by the maximal margin of separation between any observation point xi and the hyperplane.
The optimal hyperplane is the solution of

maximize
b∈R,w∈H

min{‖x− xi‖; x ∈ H, < wx + b >= 0, i = 1, . . . , n}.

In case of nonlinear decision function, the kernel trick is applied. f can be defined as:

f (x) = sgn(
n

∑
i=1

yiαik(x, xi) + b),

where k : H×H and (x, x′)→ k(x, x′).
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3.4.2. Random Forests (RF)

A Random Forest is a supervised machine learning methodology that can be used to classify
data into activity classes [88]. In formal, we consider a collection of randomized base regression
trees mn(x, Θm,Sn), where Θ1, Θ2, . . . are associated with the randomness in the tree construction.
Such random trees combined together form the aggregated regression estimate

m̂n(X,Sn) = EΘ[mn(X, Θ,Sn)],

where Sn = {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)} ⊂ Rd × R is a training sample of independent
and identically distributed random variables, E refers to the expectation with respect to the
random parameter.

3.4.3. K Nearest Neighbours (KNN)

K Nearest Neighbours classifier is a relatively simple classification model which uses a known
dataset of molecules to classify a new compound by polling the closest data molecule in the known
dataset. To be more precise, the new compound is classified based on the class with the majority
representation among the k nearest neighbors.

The goal is to classify a new molecule mol ∈ M (made up of mi, where i = 1, . . . , |M|).
Furthermore, each molecule mi is described by a set of features, ie. a vector Vi = ( f1, f2, f3, . . . , fn)

(descriptor). Formally, for each mi ∈ M the distance between a new molecule mol and xi is calculated.

(mol, xi) = ∑
fi∈Vi

val fi
δ(mol fi

, mi fi
),

where δ(•) is a distance metric. Now, the voting strategy may be defined as follows

vote_proc(yj) =
k

∑
c=1

1
(mol, xc)

(yj, yc),

where yj, yc ∈ Y (set of labels - active and inactive).

3.4.4. Naïve Bayes (NB)

Naïve Bayes classifier [89] is a linear classifier that assumes the features in a descriptor are
mutually independent.

Suppose a given molecule m is assigned the activity class a

A∗ = arg max
a

p(a|m).

NB uses the Bayes’ rule

p(a|m) =
p(a)p(m|a)

p(m)
.

To estimate p(a|m), i.e., the probability of the molecule m being in class a, NB uses the
following equation:

pNB(a|m) =
p(a)(∏n

i=1 p(Vi|a)xi(m))

p(m)
,

where Vi = (x1, x2, x3, . . . , xn) is a feature vector that describes molecule m.
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4. Conclusions

In this article, we propose a novel molecular activity prediction method called SHPCVM.
More specifically, there are two main contributions of the paper.

• We have introduced the novel Spherical Harmonics-based descriptor. The key principle of our
Spherical Harmonics-based approach is not the usage of Spherical Harmonics themselves but the
fact that our technique makes use of feature selection strategy (Minimum Redundancy Maximum
Relevance) that enables obtaining only representative features. We outline that such an approach
leads to the development of a more interpretable representation. What is more important for
us, the vector representation we get is relatively short and that affects the computational costs.
Therefore, our approach has a significant impact on molecular activity prediction where one does
not have a large set of labeled examples and low-dimensional descriptor is required.

• We have tested several machine learning methods, more precisely Probabilistic Classification
Vector Machines (PCVM), Support Vector Machines (SVM), Naïve Bayes (NB) and K Nearest
Neighbours (KNN) for molecules described by the proposed Spherical Harmonics-based
model. The results yield Probabilistic Classification Vector Machines (PCVM) and Spherical
Harmonics-based descriptor is superior to another approaches when molecular activity prediction
of small compounds is considered. Obviously, the outcomes have revealed the influence of PCVM.

Experimental results for G protein-coupled receptors (GPCRs) demonstrate SHPCVM produces
the best performance ranging from 0.742 Accuracy to 0.862, and from 0.691 to 0.794 in terms of
Matthew Correlation Coefficient. Although the goal was to find out a tradeoff between the descriptive
capabilities and computational costs of the descriptor, our approach may pave the way for more
interpretability oriented research on molecule’s computational model.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/9/
2175/s1.
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