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Abstract

In radiotherapy, a trade‐off exists between computational workload/speed and dose

calculation accuracy. Calculation methods like pencil‐beam convolution can be much

faster than Monte‐Carlo methods, but less accurate. The dose difference, mostly

caused by inhomogeneities and electronic disequilibrium, is highly correlated with

the dose distribution and the underlying anatomical tissue density. We hypothesize

that a conversion scheme can be established to boost low‐accuracy doses to high‐
accuracy, using intensity information obtained from computed tomography (CT)

images. A deep learning‐driven framework was developed to test the hypothesis by

converting between two commercially available dose calculation methods: Anisotro-

pic analytic algorithm (AAA) and Acuros XB (AXB). A hierarchically dense U‐Net

model was developed to boost the accuracy of AAA dose toward the AXB level.

The network contained multiple layers of varying feature sizes to learn their dose

differences, in relationship to CT, both locally and globally. Anisotropic analytic algo-

rithm and AXB doses were calculated in pairs for 120 lung radiotherapy plans cover-

ing various treatment techniques, beam energies, tumor locations, and dose levels.

For each case, the CT and the AAA dose were used as the input and the AXB dose

as the “ground‐truth” output, to train and test the model. The mean squared errors

(MSEs) and gamma passing rates (2 mm/2% & 1 mm/1%) were calculated between

the boosted AAA doses and the “ground‐truth” AXB doses. The boosted AAA doses

demonstrated substantially improved match to the “ground‐truth” AXB doses, with

average (± s.d.) gamma passing rate (1 mm/1%) 97.6% (±2.4%) compared to 87.8%

(±9.0%) of the original AAA doses. The corresponding average MSE was 0.11(±0.05)

vs 0.31(±0.21). Deep learning is able to capture the differences between dose calcu-

lation algorithms to boost the low‐accuracy algorithms. By combining a less accurate

dose calculation algorithm with a trained deep learning model, dose calculation can

potentially achieve both high accuracy and efficiency.
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1 | INTRODUCTION

In radiation therapy, the radiation doses to the tumor and surrounding

normal tissues directly determine treatment efficacy and safety.1,2 It is

pivotal for the radiation therapy treatment planning systems (TPSs) to

accurately calculate the dose distributions to aid physician decisions.

Accurate dose calculation is also key to a reliable and reproducible

model between dose distributions and clinical outcomes to guide future

treatments.3 The dose calculation algorithms have seen generations of

development. The early generations of algorithms, usually referred to as

correction‐based methods,4–7 are barely physics principle driven. Their

accuracy is highly unreliable in heterogeneous regions (for instance,

areas with lung tissue surrounding tumors), where the loss of electronic

equilibrium occurs.8 To better model the physics in these regions,

model‐based techniques were developed.9–12 These techniques model

the radiation energy transport via dose kernels and convolutions. To

account for the tissue heterogeneity, the dose kernels are scaled based

on the equivalent electron density path lengths encountered by radia-

tion beams, leading to the superposition–convolution type of algorithm,

which is widely used in today's clinic. Analytical anisotropic algorithm

(AAA), one of such algorithms, is commercially implemented in the

Eclipse TPS12 (Varian Medical Systems, Palo Alto, CA). However, a dis-

crepancy over 5% from measurements can still be observed for AAA

calculations in inhomogeneous regions,13 which can be clinically signifi-

cant.14,15 The discrepancy is due to the fact that kernel scaling does not

explicitly and realistically model the energy transport through physical

interactions either. The Monte Carlo algorithm represents a third type

of dose calculation algorithms. It models the transport and energy depo-

sition of each particle (photons, electrons, etc.) via explicit physics prin-

ciples, which are modeled with measured data or proven formula, and

provides the highest accuracy.16,17 However, Monte Carlo needs to

simulate the transport of each particle individually, which requires sub-

stantial computational power and may significantly prolong the dose

calculation time. Besides Monte Carlo, recently a new dose calculation

technique using the linear Boltzmann transport equation was imple-

mented as the Acuros XB (AXB) algorithm in Eclipse.18,19 It is proven

that AXB would theoretically converge to the same solution as the

Monte Carlo algorithm.20 The accuracy of AXB has been extensively

validated.17,21,22 The efficiency of AXB is plan dependent, which

improves with increasing beam numbers (relatively) and favors volumet-

ric‐modulated arc therapy plans. In some scenarios, however, AXB can

be 10 times slower than AAA.23

In general, a trade‐off exists on dose calculation: more accurate

dose calculation requires more computational power, and is generally

more time consuming and resource demanding. Due to this trade‐
off, current radiotherapy TPSs may have to use less accurate meth-

ods for dose calculation, in order to improve efficiency, especially

during plan optimization.24 Such an adoption is less ideal, since these

low‐accuracy dose calculations used during optimization may poten-

tially trap the optimization into a local optimum, and yield a subopti-

mal final plan. As the radiotherapy society is pursuing more precise,

individual‐tailored treatments, the use of low‐accuracy dose calcula-

tion algorithms for plan optimization may fail to generate high‐

quality plans within a tight time frame, especially for online adaptive

radiotherapy.25 A technique enabling dose calculation with both high

accuracy and efficiency is thus much desired for plan optimization.

In addition, recent advancements of real‐time imaging techniques

also call for such a technique,26 which will make possible on‐the‐fly
dose monitoring and intervention through real‐time plan re‐optimiza-

tion and adaptation.

As mentioned, the differences between low‐accuracy and high‐
accuracy doses are mostly within inhomogeneous regions. The inho-

mogeneity, however, is fully captured in CT images that are used for

dose calculation. From this observation, we hypothesize that the dif-

ferences between dose algorithms can be learned and correlated

with the dose distribution and the CT intensity information. With

this learnt correlation, we can then quickly boost the low‐accuracy
doses to high‐accuracy, to overcome the trade‐off between dose cal-

culation accuracy and efficiency. Recently, the developments and

applications of artificial intelligence (AI) in radiation therapy have

seen tremendous growth.27–32 Sophisticated convolutional neural

networks can handle intensive tasks including medical image de‐nois-
ing, segmentation, treatment plan optimization/evaluation, and clini-

cal outcome prediction. Some networks, including the U‐Net,33 can

perform voxel‐wise prediction and mapping, which allows a potential

voxel‐to‐voxel dose map conversion to boost the accuracy of low‐ac-
curacy doses. Additionally, the U‐Net can extract both global and

local features from dose distributions and CT images, which can be

directly correlated with dose differences between algorithms, as the

energy transport is essentially determined by both long‐range (global)

photon transport and short‐range (local) electron transport. With

dedicated graphics processing units (GPUs), the inference of U‐Net

can also be executed within seconds, meeting the efficiency require-

ment. Driven by our hypothesis, in this study we introduced an AI‐
based framework to achieve rapid, direct 3D dose map conversion

from low‐accuracy doses to high‐accuracy doses. We trained and

evaluated the whole framework on AAA (“low‐accuracy”) and AXB

(“high‐accuracy”) dose maps to demonstrate its effectiveness, since

these two algorithms are well studied, widely available and can be

easily evaluated by other groups. Note that the “low‐accuracy” and

“high‐accuracy” here were defined relatively, since under different

context and scenarios, AAA can also be high accuracy (for instance,

when compared with pencil‐beam convolution) and AXB may be low

accuracy when compared with a full‐fledged Monte‐Carlo package.

The “high” and “low” here, thus, were determined relatively between

the two algorithms under study. We derived and tested the dose

conversion model using a large lung cancer patient database, aiming

to improve the dose calculation of lung cancer treatment, whose

accuracy is the most susceptible to tissue inhomogeneity.28

2 | MATERIALS AND METHODS

2.A | Data preparation

In this study, we retrospectively collected a total of 120 lung cancer

patient cases in our institution treated between 06/2017 and 03/
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2018. The retrospective study was approved under an institutional

review board umbrella protocol. All patients were planned in Eclipse

V15.5, by techniques ranging from 3D non‐coplanar conformal static

beams, intensity‐modulated static beams, and 3D conformal arcs to

volumetric‐modulated arcs. The total prescription doses ranged from

24 to 60 Gy, covering both conventional and stereotactic body radi-

ation therapy treatments. The tumors were distributed across both

central and peripheral lung regions. Both primary lung tumors and

metastatic tumors from breast, liver, kidney, and prostate were

included. The treatment plans used beam energies ranging from 6

MV, 10 MV, 6 MV FFF, to 10 MV FFF. All treatments were

designed and successfully delivered on an Elekta VersaHD LINAC

with a 160‐leaf Agility multi‐leaf collimator head.34 All cases were

planned and treated using AAA as the dose calculation engine, with

heterogeneity correction turned on. The dose grid was 2.5 mm × 2.5

mm × 2.0 mm in resolution.

For each AAA dose distribution, we calculated the corresponding

AXB dose distribution using exactly the same plan. The AXB doses

were reported in the form of dose to medium to account for the ele-

mental composition of different tissues. In Eclipse, the tissue desig-

nation is based on the densities determined from CT Hounsfield

units. The corresponding elemental composition of each tissue is

then determined on the basis of the International Commission on

Radiological Protection Report 23.35 The dose grid of AXB was

2.5 mm × 2.5 mm × 2.0 mm in resolution, same as AAA. For each

patient, we also exported the planning CT volume. The planning CT

volumes were of varying voxel resolutions and volumetric dimen-

sions for different patient cases. We exported the CT and dose files

as DICOM‐RT files from Eclipse, registered them with DICOM coor-

dinates, and converted them into numeric arrays for the training, val-

idation, and testing purposes. Prior to feeding them into the neural

network, we rescaled and interpolated both the AAA and AXB doses,

as well as the patient‐specific CT volumes to a uniform resolution of

1.37 mm × 1.37 mm × 2.00 mm.

2.B | Network structure selection

For efficient and accurate dose boosting, we employed a Hierarchi-

cally Dense U‐Net (HD U‐Net) structure.30 Hierarchically Dense U‐
Net is a combined version of U‐Net and DenseNet.36 Compared

with U‐Net, HD U‐Net uses densely connected layers within each

hierarchical level of U‐Net, which helps with feature propagation and

reuse, and reduces the vanishing gradient issue. Compared with

DenseNet, HD U‐Net preserves the pooling and upsampling proce-

dures of U‐Net, which are able to capture the global features from

the input. Once the HD U‐Net structure is set, it trains the same

way as U‐Net. Quantitative comparisons between the three type of

networks have been reported and well‐documented in a previous

publication,30 showing the advantage of the HD U‐Net. As reported,

HD U‐Net was able to achieve high accuracy with much fewer

parameters in the network than U‐Net, which reduced the chance of

overfitting. In contrast, DenseNet provided the overall worst results

due to its lack of ability in capturing global features. For the

supervised training, input channels for the HD U‐Net include the

Eclipse‐calculated AAA dose distribution and the CT volume, and the

“ground‐truth” output is the Eclipse‐calculated AXB dose distribution.

For testing, the output will be the boosted dose. We used patch‐
based training37 to balance the size of the training data and the

computational resources. We separated the full dose volume

(512 × 512 × 128) into patches (patch size: 512 × 512 × 16), and

feed each of them individually into the network for training/testing.

We then merged the output dose maps into a single volume as the

final output. The overall training and testing framework is illustrated

in Fig. 1.

2.C | Training and testing

Of the 120 paired, patient‐specific AAA‐AXB dose maps, we ran-

domly selected 72 sets for training, 18 for validation during training,

and another 30 for testing. The deep learning model was trained

with its hyperparameters tuned using the validation data set. The

HD U‐Net contained a hierarchy of five levels to reduce the feature

size down to 8 × 8 × 1 at the bottom layer with 2 × 2 × 2 interlayer

max pooling, to learn both local and global features. Within each

layer, the convolutional kernel of size 3 × 3 × 3 was implemented

with zero padding to maintain the feature size. On the first half of

the U‐Net, 16 feature maps (filters) were generated in each convolu-

tion step. On the remaining half, the number of feature maps of con-

volution in each layer, except for the very last convolution step,

increased by 16 features from the bottom to the top. The last con-

volution step generated one channel as the final output. Batch nor-

malization was applied after convolution with rectified linear unit

(ReLU) operations. The learning rate was set at 10−4 and the Adam

algorithm38 was selected as the optimizer to minimize the loss

defined using the mean squared error (MSE). A total of 200 epochs

were used for the training in our study, with 100 iterations per

epoch. The deep learning model was trained on one NVIDIA Tesla

V100 GPU card with 32 GB dedicated memory.

To assess the accuracy of the boosted AAA dose map, we visu-

ally evaluated its difference with the AXB dose map directly calcu-

lated from Eclipse. MSEs were computed between the boosted AAA

and the AXB dose maps to evaluate their differences. 3D gamma

analysis39 based on both 1%/1 mm and 2%/2 mm criteria was also

performed to quantitatively assess the match between the boosted

AAA and the AXB dose distributions. We also compared the dose

volume histograms (DVHs) of the planning target volume (PTV) and

lungs between the boosted AAA and the AXB doses to evaluate the

accuracy of dose conversion. Quantitative dosimetric endpoints,

including the D95 and V100 of the PTV and V20Gy and Dmean of the

lungs, were also assessed. The corresponding results between the

original AAA doses (prior to boosting) and the AXB doses were also

computed for comparison.

In addition to the proposed network with both original AAA dose

and CT as input, we also evaluated a second network using only the

original AAA dose as input. The second network was evaluated to

assess the potential of directly learning intensity, texture, and
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structural information from the low‐accuracy dose maps, to correlate

with high‐accuracy dose maps for dose boosting. The second net-

work was trained and tested with the same AAA‐AXB dose map

pairs.

3 | RESULTS

Figure 2 shows the relative differences between the original AAA

and the AXB doses [Figs. 2(b) and 2(e)], and between the boosted

AAA and the AXB doses [Figs. 2(c) and 2(f)], on three views (coronal,

sagittal, and axial). Figures 2(a)–2(c) present a representative non‐
coplanar static beam plan case, and Figs. 2(d)–2(f) present a volumet-

ric‐modulated arc plan case. For both cases, the original AAA dose

maps show prominent deviations from the reference AXB doses.

These dose deviations were substantially reduced in the boosted

AAA dose maps.

In Fig. 3 we showed the gamma index maps between the original

AAA and the AXB dose distributions, and between the boosted AAA

and the AXB dose distributions for a 3D non‐coplanar static beam

plan [Fig. 3(a)] and a volumetric‐modulated arc plan [Fig. 3(b)],

respectively. A stringent criterion (1%/1 mm) was used to fully

demonstrate the differences between dose maps. The red regions in

the map indicated failed gamma index (>1). Large dose discrepancies

can be observed on the original AAA gamma index maps, especially

around the tumor region. As a comparison, the gamma index maps

of the boosted AAA dose have these discrepancies largely removed.

Figure 4 compared the DVH curves between the original AAA, the

AXB, and the boosted AAA dose distributions, for both PTV and lungs.

The DVH curves of the boosted AAA doses matched well with those

F I G . 1 . (a) General framework of the Hierarchically Dense U‐Net (HD U‐Net) model for the proposed dose accuracy boosting technique. (b)
General training and testing processes where the patient‐specific computed tomography (CT) and low‐accuracy anisotropic‐analytic‐algorithm
(AAA) doses serve as the input into the HD U‐Net structure, and the high‐accuracy Acuros XB (AXB) doses serve as the ‘ground‐truth’ output
for supervised training/validation. Using the trained framework, a new patient‐specific CT and low‐accuracy AAA dose can be input to obtain a
high‐accuracy, boosted AAA dose as the output, with its accuracy matching the AXB dose level.
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of the AXB doses, while substantial discrepancy could be observed

between DVH curves of the original AAA and the AXB doses.

In Table 1, the boosted AAA doses demonstrated substantially

improved match to the AXB doses, with average (± s.d.) gamma

passing rate (1 mm/1%) 97.6% ± 2.4%, compared to 87.8% ± 9.0%

for the original AAA doses. Using a less strict criterion (2 mm/2%)

yielded 99.8% ± 0.4% for the boosted AAA doses, compared to

98.4% ± 1.5% for the original AAA doses. The corresponding aver-

age MSE was 0.11 ± 0.05 between the boosted AAA and the AXB

doses, compared to 0.31 ± 0.21 between the original AAA and the

F I G . 2 . (a) The “ground‐truth” Acuros XB
(AXB) dose maps and relative differences
between (b) the original anisotropic‐
analytic‐algorithm (AAA) and the AXB dose
maps; (c) the boosted AAA and the AXB
dose maps, for a three‐dimensional non‐
coplanar static beam plan. (d) The “ground‐
truth” AXB dose maps and relative
differences between (e) the original AAA
and the AXB dose maps; (f) the boosted
AAA and the AXB dose maps, for a
volumetric‐modulated arc plan. The
“ground‐truth” AXB doses were shown in
absolute quantities (Gy). The dose
differences were normalized to the plan
prescription dose (%).
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AXB doses. The boosted AAA doses (w/o CT as input) were of accu-

racy in between the original AAA doses and the boosted AAA doses.

Note that since this study focuses on developing a network using

CT as one of the input, if not specifically mentioned, boosted AAA

doses by default refer to those obtained from this network.

In Table 2, dosimetric comparison results were reported in terms

of D95 of PTV, V100 of PTV, Dmean of lungs, and V20Gy of lungs. Wil-

coxon signed‐rank tests with the Bonferroni corrections revealed

that the AXB was significantly distinct from the original AAA in

Dmean of lungs (P < 10−5), D95 of PTV (P = 0.001), and V100 of PTV

(P = 0.002). In contrast, the boosted AAA did not statistically differ

from the AXB (P = 0.094 for Dmean of lungs, P = 0.642 for D95 of

PTV, and P = 0.417 for V100 of PTV). No significant differences were

found for V20Gy of lungs, either for the boosted AAA and the AXB

pair, or the original AAA and the AXB pair. Therefore, the boosted

AAA matched better with AXB than the original AAA doses,

which provided more accurate target coverage and OAR sparing

information.

4 | DISCUSSION

Accurate dose calculation and reporting are key to effective and safe

radiation therapy. A dose calculation algorithm with both high accu-

racy and high efficiency is much desired in today's clinic for treat-

ment planning and dose reporting. Our study demonstrated that

through a deep learning framework, we could achieve a high‐accu-
racy dose map by boosting from a low‐accuracy dose map with

patient‐specific anatomical CT information, to successfully overcome

the trade‐off between computational speed and accuracy. The train-

ing of our deep learning model takes around ~48 h for 200 epochs.

Currently, the inference of our deep learning model takes on average

19 s, with a standard deviation of 3 s. The relatively long inference

time is mostly due to the memory limit of our GPU hardware. Under

the memory limit, we have to use a patch‐based strategy to boost

the AAA dose patch by patch, and then merge the results together

for a full dose volume. With a larger GPU memory, we can boost

the whole AAA dose volume by running the model only once, which

F I G . 3 . Gamma index (1%/1 mm) maps
between the original anisotropic‐analytic‐
algorithm (AAA) and the Acuros XB (AXB)
dose distributions, and between the
boosted AAA and the AXB dose
distributions for (a) a three‐dimensional
non‐coplanar static beam plan and (b) a
volumetric‐modulated arc plan. The color
bar on the right shows the scale of gamma
index and the dashed lines indicate the
planning target volumes. A gamma
index > 1 indicates failed gamma test.
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F I G . 4 . The dose volume histograms
(DVH) curves of planning target volume
and lungs for (a) a three‐dimensional non‐
coplanar static beam plan, and (b) a
volumetric‐modulated arc plan. (c) shows
the zoomed‐in lung DVH curves for the
volumetric‐modulated arc plan. The solid,
dashed, and dotted lines correspond with
the Acuros XB, the boosted anisotropic‐
analytic‐algorithm (AAA), and the original
AAA dose maps, respectively
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takes roughly 1–2 s. In addition, in this study we performed dose

boosting on an AAA dose volume of 512 × 512 × 128 voxels, while

the meaningful dose cloud only occupies a much smaller region

within. We may trim the AAA dose volume to remove the irrelevant

regions of minimal doses, and apply the deep learning model to the

remaining dose cloud only. By this way, we can also remove the

need of patch‐based model inference and accelerate dose boosting

to ~1 s. To put the dose boosting time into context, for our AAA

dose and AXB dose calculations, we found the AXB calculation was

around 1.5 to 5 times slower than the AAA calculation, depending

on the treatment technique and beam arrangement of each plan. In

terms of seconds/minutes, AXB can be ~30 s to more than 2 min

slower than AAA. In general, AXB tends to be much less efficient for

plans with static gantry beams, which are frequently used in our

clinic for lung treatments. Our dose boosting scheme, which can

potentially be executed within 1 s, will significantly improve the dose

calculation efficiency.

In this study, we trained, validated, and tested a voxel‐wise dose

boosting model on 120 in‐house lung cancer patient cases using a

Hierarchically Dense U‐Net. Visual comparisons of dose differences

showed major improvements in the boosted AAA doses, for areas

both within the tissues and along tissue interfaces (Fig. 2). In com-

parison, the original AAA lacks accuracy in calculating doses at multi-

ple regions, where electron densities are changing rapidly and

invalidate the kernel scaling approach it applied to account for tissue

inhomogeneity. Gamma index distribution maps shown in Fig. 3 also

confirmed the improvement of accuracy in boosted AAA doses. The

structural‐specific DVH curves and dosimetric endpoints also demon-

strated that the boosted AAA doses matched well with the AXB

doses (Fig. 4; Table 2), and provided more accurate target coverage

and OAR sparing information. In general, the conversion model

yielded ~98% gamma passing rate between the boosted AAA and

the AXB doses for 1%/1mm gamma analysis and ~100% gamma

passing rate for 2%/2 mm gamma analysis, showing almost perfect

match. In comparison, the corresponding results were only ~88%

and ~98% for the original AAA doses (Table 1).

In our developed network, we used both CT images and a low‐
accuracy dose map as input to derive a high‐accuracy dose map. We

also evaluated the feasibility of directly using the low‐accuracy dose

map (w/o CT) to correlate with the high‐accuracy dose map for dose

boosting (Table 1). It can be observed that the network without

using CT as input also helps to boost the AAA dose to match better

with the AXB dose than the original AAA dose. However, it is also

evident that the boosted AAA dose with CT as input has its accuracy

best matched with the AXB dose. With the CT images providing

electron density information, the HD U‐Net will be better informed

of potential inaccuracies in the original AAA dose maps through

interpreting the CT density information, to further improve the accu-

racy of dose boosting.

In current clinical practice, convolution/superposition algorithms

like AAA remain the main dose calculation engine for clinical TPS. To

improve the dose calculation accuracy, AXB has been introduced

into clinics as an alternative to full Monte‐Carlo simulation, but its

clinical use is still limited. Potential hurdles include the acquisition

TAB L E 1 Quantitative comparisons between the original
anisotropic‐analytic‐algorithm (AAA) and the Acuros XB (AXB) doses,
and between the boosted AAA (w/ and w/o computed tomography
(CT) as input) and the AXB doses. MSE: mean squared error. RX:
prescription. The results of the 30 testing patient cases were
included in the analysis.

Dose
maps

Gamma passing rates
(%)

MSE of vox-
els with
dose > 5%
RX dose

% of voxels with
dose devia-
tions > 3% RX
dose2 mm/2%

1 mm/
1%

Original

AAA vs

AXB

98.4 ± 1.5 87.8 ± 9.0 0.31 ± 0.21 2.01 ± 1.19

Boosted

AAA w/
o CT vs

AXB

99.3 ± 0.7 94.6 ± 2.8 0.15 ± 0.10 0.85 ± 0.53

Boosted

AAA vs

AXB

99.8 ± 0.4 97.6 ± 2.4 0.11 ± 0.05 0.46 ± 0.46

TAB L E 2 Comparisons between the original AAA, AXB, and boosted AAA doses in terms of D95 of PTV, V100 of PTV, Dmean of lungs, and
V20Gy of lungs. The results of the 30 testing patient cases were included in the analysis.

D95 (Gy) V100

Original AAA AXB Boosted AAA Original AAA AXB Boosted AAA

PTV

Mean 45.00 44.43 44.40 94.48% 89.40% 89.71%

s.d. 7.82 7.94 7.84 0.98% 10.73% 8.50%

Dmean (Gy) V20Gy

Original AAA AXB Boosted AAA Original AAA AXB Boosted AAA

Lungs

Mean 4.49 4.42 4.41 5.89% 5.84% 5.85%

s.d. 2.61 2.57 2.58 4.43% 4.37% 4.39%
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cost, the lack of resources, the lack of experience to commission a

new AXB engine, and, often, the physicians' familiarity and reliance

with AAA doses upon which the clinical experience was accumu-

lated. However, it is always highly desirable to use the most accurate

dose distribution to correlate with clinical outcomes, in order to

derive a reliable and reproducible dose–outcome relationship to ben-

efit and guide future practices. The dose boosting model developed

by us can contribute to this goal, as it could be easily adopted by

clinics to prospectively/retrospectively convert the original AAA

doses into AXB‐quality doses. The potential fast‐speed conversion

(within seconds) introduces minimal interference toward current clin-

ical workflow. The model could be incorporated into the TPS’s appli-

cation programming interface (API) (e.g., ESAPI),40 to enable direct

dose conversion with a one‐click solution to allow physicians to eval-

uate and compare the original AAA and the boosted AAA doses side

by side. Currently, our model is built and run on Python, an inter-

preted, general‐purpose programming language. To run our model in

Eclipse, one way is to compile our Python code into an executable,

and call the executable from within Eclipse using scripts. There are

also ongoing developments on a Python interface for ESAPI, which

could make an alternative path to run our model within Eclipse. The

model could also be run in batch in the background to accumulate

boosted AAA data for further dose–clinical outcome analysis. The

dose conversion model also does not incur costs associated with

proprietary dose calculation algorithms, which can potentially benefit

less resourceful, underserved cancer centers. We believe the accu-

racy and convenience offered by the dose map conversion frame-

work will help physicians to make a more informed decision when

evaluating treatment plans, and ultimately benefit the current radio-

therapy practice with more accurate dose calculations especially in

heterogeneous regions.41

In this study, all the evaluated patient data sets are acquired

from our institution. The developed model needs to be further eval-

uated on patient data sets from other institutions to assess its trans-

ferability. Although no substantial model adjustments are expected,

some slight model tweaking might be needed to accommodate the

interinstitutional variations. Transfer learning, an artificial intelligence

technique that allows easy model adaptation based on limited new

data samples, may help in the case.28 Similarly, all our data are cur-

rently trained on lung cancer patients, other clinical scenarios where

the inhomogeneity might affect the dose accuracy, such as larynx

and pelvis,42 also warrant additional model evaluation and potential

model fine‐tuning.
In addition to our study, there are other groups working on pro-

jects to uncover the potential of deep learning in dose accuracy

enhancement. A recent work by Ref. [43] uses parallel U‐Net

branches to boost Monte‐Carlo dose calculation accuracy. However,

this method is currently limited to boosting doses calculated by a

single beamlet, as compared to the full 3D dose map boost achieved

by our method. In addition, the network developed by Ref. [43]

works by boosting low‐accuracy Monte‐Carlo doses (fewer events:

faster calculation, more noise, and more uncertainty) to high‐accu-
racy Monte‐Carlo doses (more events: slower calculation, less noise,

and less uncertainty), essentially an intra‐algorithm conversion (be-

tween same Monte‐Carlo type algorithms). In comparison, our

method can boost the doses from one type of algorithm to another

(AAA to AXB in our study), allowing interalgorithm conversion.

Another study by Ref. [44] is also converting between low‐accuracy
and high‐accuracy Monte‐Carlo doses for de‐noising, which may not

be readily applicable to non‐Monte‐Carlo–based dose calculation

algorithms which are dominant in current clinical TPSs.

In summary, it is shown in this study that with the power of

deep learning, we can uncover a mapping scheme between low‐ac-
curacy and high‐accuracy dose maps, using patient anatomical struc-

ture maps and intensity distributions from CT as guidance. The “low”

and “high” are defined only relatively in the context of the two algo-

rithms under study, and should not be interpreted in an absolute

fashion. We tested this hypothesis through developing and evaluat-

ing a dose boosting framework between AAA and AXB dose maps.

This framework can be readily extended to other potential pairs of

dose maps, the relative accuracy difference of which may be more

pronounced. The relative accuracy levels of different algorithms can

be determined through the four types of algorithms defined in the

AAPM Task Report No. 85,1 or the “a” to “c” categories stratified by

Ref. [45]. It will be of interest to test the framework in boosting

pencil‐beam convolution doses to Monte‐Carlo doses, which might

have a positive impact on treatment plan optimization as less‐accu-
rate pencil‐beam convolution‐type calculations are usually used

within optimization to promote efficiency. It also remains to be

investigated how robust the current framework will be to boost a

rudimentary algorithm (such as the correction‐based dose calculation

algorithm) to a high‐accuracy algorithm like Monte Carlo. Additional

information, like the treatment plan itself, could be potentially fed

into the AI framework to improve the dose boosting accuracy if

needed.

5 | CONCLUSIONS

A deep learning‐based framework was developed to convert dose

maps to boost their accuracy toward the AXB level in a time frame

of seconds. The developed method allows dose computation with

both high efficiency and high accuracy, potentially benefiting other

applications including retrospective dose analysis (especially for

heterogeneous regions), fast plan optimization, and secondary dose

calculations and plan checks. Future studies involving other dose

algorithms, anatomical sites, and treatment centers are warranted to

further evaluate the efficacy and robustness of the developed frame-

work.
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