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Abstract

Background

Preeclampsia (PE) is a life-threatening hypertensive pathology of pregnancy affecting
3-5% of all pregnancies. To date, PE has no cure, early detection markers, or effective
treatments short of the removal of what is thought to be the causative organ, the placenta,
which may necessitate a preterm delivery. Additionally, numerous small placental microar-
ray studies attempting to identify “PE-specific’ genes have yielded inconsistent results. We
therefore hypothesize that preeclampsia is a multifactorial disease encompassing several
pathology subclasses, and that large cohort placental gene expression analysis will reveal
these groups.

Results

To address our hypothesis, we utilized known bioinformatic methods to aggregate 7 micro-
array data sets across multiple platforms in order to generate a large data set of 173 patient
samples, including 77 with preeclampsia. Unsupervised clustering of these patient samples
revealed three distinct molecular subclasses of PE. This included a “canonical” PE subclass
demonstrating elevated expression of known PE markers and genes associated with poor
oxygenation and increased secretion, as well as two other subclasses potentially represent-
ing a poor maternal response to pregnancy and an immunological presentation

of preeclampsia.

Conclusion

Our analysis sheds new light on the heterogeneity of PE patients, and offers up additional
avenues for future investigation. Hopefully, our subclassification of preeclampsia based on
molecular diversity will finally lead to the development of robust diagnostics and patient-
based treatments for this disorder.
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Background

Preeclampsia (PE) is a multi-system disorder of pregnancy defined by the onset of maternal hy-
pertension and proteinuria in the latter half of gestation. This pathology affects 3-5% of all
pregnancies and is responsible for 63,000 maternal deaths worldwide each year [1]. To date, PE
has no cure short of the removal of the causative organ, the placenta, which may necessitate a
preterm delivery and result in both acute and chronic health risks to the child. The incidence of
PE has raised relentlessly [2] and effective screening tools and/or treatments have yet to be dis-
covered. While a correlation is observed between elevated levels of various placental proteins in
maternal blood serum (ex. sFLT1, sSENG and PGF) in early pregnancy and the prediction of fu-
ture PE development [3], the false negative detection rates are too high for clinical use [4]. Ad-
ditionally, the employment of clinical biometrics, as well as Doppler ultrasound measurements,
typically yield similar results [5].

These challenges have led researchers to apply genome-wide profiling techniques, such as
microarray analysis, in cases of PE in order to better understand the etiology of placental dys-
function in this disorder. The primary anticipated outcome of all microarray studies performed
to date was the identification of differentially expressed genes in the PE placentae, as a cohesive
group, compared to a control group. However, in the largest study performed [6] (N =23 PE
patients), considerable variability was observed and ~80% of the gene expression variance in
the data set could not be explained by the binary clinical classification of “control” versus “PE”
and other covariates. A similar observation is also inferred from two recent meta-analyses of
PE placental microarray data sets that found few significant genes in common [7,8]. This has
led us [9] and others [10-12] to hypothesize that preeclampsia is a spectral disorder driven by
the deregulation of different molecular pathways.

Previous large-scale microarray analysis (N>70) in other multi-factorial, heterogeneous dis-
eases, such as cancer [13,14], has been very beneficial for discovering molecular subclassifica-
tions of patients. Furthermore, statistical methods now exist to merge smaller microarray data
sets into larger aggregate data sets [15]. These methods utilize normalization of data ranges
and batch correction to enable the comparison of gene expression values across different plat-
forms. We therefore chose to test our hypothesis using a bioinformatics approach of aggregat-
ing several previously published placental microarray data sets into a single large data set with
sufficient sample size to identify PE subclasses. This was done using unsupervised clustering
techniques, which blindly group samples without knowledge of their pathology status, and is
fundamentally different from a meta-analysis where each study is assigned a weight and an av-
erage is taken over all studies to identify genes with significance. The outcome of our analysis
will be the molecular-based classification of patients into distinct pathology groups, leading to
improved patient categorization prior to treatment or clinical trial inclusion.

Results
Assembly of the aggregate data set

Our literature search identified 38 previously published microarray studies examining gene ex-
pression within the PE placenta (as of March 2013), seven of which were found to meet our in-
clusion and exclusion criteria [6,16-21] (see Methods) (Table 1). Importantly, these studies
spanned several geographic regions including Asia, Europe and North America. As these stud-
ies utilized different array platforms and sample preparation methods, they could not be direct-
ly compared. We therefore selected an empirical Bayes method of normalization and batch
correction to combine the seven selected data sets into a virtual microarray of genes with
probes found on all array platforms used in the original studies. After merging, the aggregate
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Table 1. The 7 previously published PE-associated placental microarray studies found to meet our inclusion and exclusion criteria (see

Methods).

GEO ID

GSE30186
GSE10588
GSE24129
GSE25906
GSE43942
GSE4707
GSE44711
TOTAL:

Platform PE Controls Total Samples
lllumina HumanHT-12 V4.0 expression beadchip 6 6 12
AGI Human Genome Survey Microarray Version 2 17 26 43
Affymetrix Human Gene 1.0 ST Array 8 8 16
lllumina human-6 v2.0 expression beadchip 23 37 60
NimbleGen Homo sapiens HG18 090828 opt expr HX12 5 7 12
Agilent-012391 Whole Human Genome Oligo Microarray G4112A 10 4 14
lllumina HumanHT-12 V4.0 expression beadchip 8 8 16
77 96 173

doi:10.1371/journal.pone.0116508.t001

data set contained 173 samples (77 PE and 96 controls) with expression values for 14,653
genes, making this the largest data set of PE samples ever assembled. In genome wide expres-
sion analyses, most genes are invariable across the samples. These genes are usually removed
by subjectively selecting those with highly variable differences between the known treatment
groups. This introduces a bias in the genes in favour of those differentially expressed between
phenotypes and prevents the discovery of novel subgroups. To avoid this, we removed invari-
ant genes using an unbiased filtering for those with expression variance in the top quartile, re-
ducing the number of genes utilized for sample clustering to 3,663.

Clustering and covariate analysis

The combined set of PE samples and controls was treated as a single large data set and analyzed
by unsupervised multivariate model-based clustering. This method employs the Bayesian In-
formation Criterion to allow for the identification of an optimal number of sample clusters
based solely on observed patterns of gene expression, independent of official clinical diagnosis,
while preventing over fitting or under fitting of the data. In this case, clustering with the opti-
mal model (VEL: diagonal, equal shape) revealed three distinct molecular groups of placental
gene expression (Fig. 1a). Significantly, cluster 2 was composed entirely of preeclamptic pa-
tients (Fig. 1b, c). Surprisingly, the controls split between clusters 1 and 3, and each of these
control subclasses co-clustered with PE samples, indicating the existence of at least three sub-
classes of preeclampsia.

Differences in covariates may explain these unexpected results, as it has been reported that
the occurrence of labor and fetal sex may alter placental gene expression [22,23]. We observed
no associations between cluster membership and nationality, occurrence of labor, original
study membership, or fetal sex, as statistically supported by chi-squared analysis (Table 2,

S1 Fig.). This is an important finding as it indicates that our observation of considerable hetero-
geneity amongst PE samples is a global phenomenon evident in all data sets and is independent
of fetal sex or labor. Additionally, although the aggregated data set contained several known
late-onset PE samples, there was no differential segregation of these patients compared to the
remaining early-onset preeclamptics (Fig. 2a). We did note a modest correlation between gesta-
tional age (GA) and cluster membership, with younger samples generally gravitating towards
clusters 2 and 3, and older samples often found in cluster 1 (Fig. 2b). To better understand the
effect of covariates and our novel subgroups on gene expression, we subjected the full set of
preeclamptic and control samples to principal variance component analysis (PVCA). This
analysis indicated that the covariates were responsible for very little of the transcriptional
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Fig 1. Unsupervised multivariate model-based clustering of the aggregate data set of 77 preeclamptics and 96 controls. (A) The Mclust model VEI
(diagonal, equal shape) gave the best performance based on the Bayesian Information Criterion (BIC; y-axis) and an optimal cluster number of 3 was
selected (clusters; x-axis). (B) Cluster 2 was composed entirely of PE samples while the remaining two clusters consisted of a mixture of preeclamptic and
control samples. (C) Principal component analysis (PCA) was performed on the data to allow for cluster visualization in component space. Under PCA,
samples closer together demonstrate higher similarity in gene expression. PC1-3 are principal components 1-3, respectively, while colours indicate cluster
membership (1, Blue; 2, Red; 3, Green), with light shades denoting controls and dark shades indicating preeclamptics.

doi:10.1371/journal.pone.0116508.9001

variation within the data (Fig. 2¢c), supporting our chi-squared results. The exception was clus-
ter membership, which was found to account for more than twice the variability of gene expres-
sion in the samples than the phenotypes of PE and control (12.4% versus 4.9%). This indicates
that cluster membership better explains differences in gene expression among the samples than
binary clinical classification. Overall, the unsupervised clustering, chi-squared and PVCA re-
sults all support the existence of multiple distinct molecular forms of PE, as well as indicate the
possibility of two subclasses of controls.

Table 2. Potential effect of covariates on cluster membership by chi-squared analysis.

Variable Chi-squared df P-value
Phenotype?® 43.464 2 3.647e-10
Original Study”® 10.381 12 0.5826
Fetal Sex°® 2.550 2 0.2794
Nationality® 4.202 8 0.8385
Gestational Age® 21.409 6 0.0015
Occurrence of Labor’ 1.597 4 0.8094

2 PE or control

b GSE30186, GSE10588, GSE24129, GSE25906, GSE43942, GSE4707, or GSE44711

¢ Male or female (predicted based on the expression of two Y-chromosome genes: UTY and USP9Y)
9 Canada, China, Finland, Japan, or USA

¢ As bins of 25-30 weeks, 31-33 weeks, 34—36 weeks, or 37-40 weeks

fYes, no, or unknown.

doi:10.1371/journal.pone.0116508.t002
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Fig 2. Potential confounding factors of clustering. (A) No differential segregation of late-onset PE samples was observed compared to the remaining
early-onset preeclamptics. Molecular cluster members are identified by color-coded circles (cluster 1—blue, cluster 2—red, cluster 3—green). (B) The few
identified preterm controls (<34 weeks) were found in cluster 3 (circled in green). The youngest identified PE samples (<30 weeks) were in cluster 2 (circled
in red) while the oldest PE samples (>37 weeks) belonged to cluster 1 (circled in blue). (C) Principal variance component analysis (PVCA) on the full data set
of preeclamptics and controls was performed to quantify the effect of each factor (and pairwise interactions between factors) on the gene expression
variability within the data set. Minimal contributions were observed from the covariates and most pairwise interactions. Importantly, however, cluster
membership was found to be responsible for more than twice the transcriptional variation than the clinical diagnosis (12.4% versus 4.9%), indicating a
diversity of molecular groups with common clinical presentation. The residual variability observed (59%) was likely due to additional covariates that could not
be accounted for as well as underlying non-pathological heterogeneity amongst the human samples. Although this value is still high, it is significantly reduced
compared to a previously published PVCA interrogation of placental gene expression (residual: 86%) [6], employing a binary clinical classification.

doi:10.1371/journal.pone.0116508.g002

Investigation into the splitting of the control samples

To determine why the control samples split into two clusters, we first tested for sampling bias
in the placental biopsies themselves. The placenta is not a homogeneous structure and single
samples may not accurately reflect the mean gene expression of the tissue [24,25]. Given that
several of the included studies reported the collection of a single placental villus biopsy per pa-
tient, this could have led to the spurious splitting of the controls into clusters 1 and 3. Based
on sets of genes previously established as enriched to either trophoblast or endothelial cells [9]
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Fig 3. Investigation into the splitting of the control samples. (A) The possible existence of a sampling bias was explored using a heatmap of the mean
expression of 35 known endothelial-enriched genes and the mean expression of 20 known trophoblast-enriched genes. Samples with high gene expression
are coloured red, with a gradient of decreasing expression down to white. We observed a general up-regulation of trophoblast marker expression (top panel)
in cluster 1 controls (blue), and an increased expression of endothelial genes (bottom panel) in controls belonging to cluster 3 (green), implying that a mild
sampling bias may be involved in the formation of the two control subclasses. A heatmap with the expression pattern of each individual gene can be found in
S2 Fig. (B) The controls in clusters 1 and 3 were compared by gene-set enrichment analysis (GSEA). Results were visualized in Cytoscape and networks of
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related ontologies (shown as coloured nodes connected by grey edges, representing common genes between gene sets) were circled and assigned a group
label. Ontologies labeled as “miscellaneous” did not share genes with any of the networks. Cluster 1 controls (C1) revealed a significant over-representation
of genes generally involved in pregnancy and normal pregnancy processes (blue), while cluster 3 controls (C3) demonstrated an increase in genes related to
organ development and extracellular matrix structure (green), as well as an abundance of terms associated with immune response. (C) Enlargement of the
immune response network enriched to cluster 3 controls with individual gene sets labelled. Therefore, the controls are most likely splitting because the
placentas found in cluster 1 were involved in fairly “normal” pregnancies, while those belonging to cluster 3 experienced a strong immunological response
during gestation, significantly affecting their gene expression.

doi:10.1371/journal.pone.0116508.g003

(S1 Table), we observed a general up-regulation of trophoblast marker expression in cluster 1
controls, compared to an increased expression of endothelial genes in controls belonging to
cluster 3 (Fig. 3a, S2 Fig.). This was also consistent with a statistically significant difference in
the expression of GCM1, a known regulator of vascular formation in mouse and human pla-
centas [26,27], between cluster 1 and cluster 3 controls (8.81 versus 8.52, p-value < 0.01). We
concluded that a mild sampling bias may be involved in the formation of the two control sub-
classes, although the observed difference in gestational age between clusters 1 and 3 (Fig. 2b)
could also explain this disparity in the proportions of trophoblast and endothelial cells.

As sample bias seems to have played only a minor role in driving the control samples into
two clusters, we next tested if these non-preeclamptic samples demonstrated underlying physi-
ological or pathological differences. To assess this, we compared the controls in clusters 1 and 3
by gene-set enrichment analysis (GSEA). By assembling genes together into functional path-
ways, GSEA is capable of identifying potentially important collections of molecular changes
(gene sets) that affect each group. This investigation revealed an over-representation of genes
generally involved in reproduction and pregnancy in cluster 1 controls, along with genes asso-
ciated with normal pregnancy processes such as intracellular transport, organelle function, and
protein modification and activity (Fig. 3b, S2 Table). In contrast, cluster 3 controls demonstrat-
ed an abundance of genes involved in specific signalling and metabolic pathways, as well as
terms related to homeostasis, organ development, and extracellular matrix structure (Fig. 3b,
S3 Table). However, the most surprising finding was a significant enrichment of immune re-
sponse terms to cluster 3 controls, including inflammatory response, defense response, cyto-
kine activity, and response to wounding. Further investigation into this over-representation of
immune terms revealed an enrichment of genes associated with graft-versus-host disease and
allograft rejection in cluster 3 controls, many of which belong to HLA class II (S3 Table). These
results therefore indicate that the controls split into two subclasses due to an underlying pa-
thology difference: cluster 1 controls had fairly “normal” pregnancies, while cluster 3 samples
experienced a strong immunological response, which significantly affected their placental gene
expression, despite successfully avoiding the development preeclampsia.

Assessment of known PE markers

There is great interest in the identification of biomarkers to predict preeclampsia prior to the
onset of clinical symptoms. Several candidates have been proposed but all of these suffer from
low sensitivity, in that not all PE patients are readily identified [4,7]. On the basis of the results
described above, we hypothesized that previous poor biomarker performance [4] may have
been due to the existence of these different subclasses of PE. To investigate this, we first as-
sessed the expression of the two most frequently studied markers of preeclampsia, soluble
FLT1 (sFLT1) and soluble ENG (sENG), produced in the placenta and found elevated in the
maternal serum early in pregnancy [3]. The samples in the PE-enriched cluster 2 demonstrated
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Fig 4. Biomarkers of preeclampsia. (A) Only the samples in the PE-enriched cluster 2 (circled in red)
demonstrated increased expression of the two most frequently studied markers of PE, sFLT1 and SENG
(pink), while the remaining preeclamptics in clusters 1 (circled in blue) and 3 (circled in green) displayed low
levels of both of these markers (green), in line with control values of expression. (B) Density plots of the mean
expression of the top 10 genes significantly elevated in the preeclamptics compared to the controls (LEP,
HTRA4, FSTL3, LHB, TREM1, ENG, PAPPA2, FLT1, INHBA, and INHA). Considerable overlap in
expression was observed between the controls (dashed pink) and the preeclamptics as a cohesive group
(dashed purple). However, when the preeclamptic placentas were split into their three subclasses, cluster 2
PE samples (PE2; solid red) were easily separated from the controls, while the preeclamptics in clusters 1
(PE1; solid blue) and 3 (PE3; solid green) still demonstrated considerable overlap. (C) Naive Bayes
classification using these 10 PE markers was able to distinguish >95% of the PE samples in cluster 2 (PE2;
red) from the controls at a 5% false positive rate (dashed black line), while only ~50% and ~40% of the
preeclamptics in clusters 1 (PE1; blue) and 3 (PE3; green), respectively, could be correctly categorized. This
led to an overall ability of these markers to correctly identify approximately 70% of all the PE samples as
preeclamptic (purple), as has been published. This analysis indicates that poor biomarker performance is
likely due to molecular heterogeneity resulting from different etiological origins of preeclampsia.

doi:10.1371/journal.pone.0116508.9004

increased expression of both of these common markers, while the remaining two clusters dis-
played much lower levels, in line with control values of expression (Fig. 4a).

Encouraged by this result, we next investigated the ability of PE markers to distinguish be-
tween the controls and the preeclamptic samples as a cohesive group, as well as split into PE
subclasses. Using a subjective binary comparison employed by most typical analyses of this dis-
ease, we obtained a list of the top 10 genes with increased expression in the preeclamptics com-
pared to the controls, all of which had been previously identified as potential markers of PE
[8], including FLT1 and ENG (S4 Table). Visualization of the mean expression value of these
10 genes in control samples revealed a normal distribution (Fig. 4b). In contrast, the PE
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samples showed a higher mean expression and a bimodal distribution. When the mean expres-
sion was plotted for the preeclamptic placentas split into their three subclasses, the PE-enriched
cluster 2 had the highest expression and was well separated from the controls, while the PE
samples in clusters 1 and 3 displayed somewhat higher but strongly overlapping expression
with the controls. These results indicate that through inclusion of all three subclasses of pree-
clamptics, the true gene expression differences are underestimated. Furthermore, using only
the expression values of these 10 markers, Naive Bayes methods of classification and prediction
was able to correctly separate more than 95% of the cluster 2 PE samples from the controls at a
5% false positive rate (FPR) (Fig. 4c). In contrast, only ~50% and ~40% of the preeclamptics in
clusters 1 and 3, respectively, could be accurately categorized at this FPR. Combining all sam-
ples, these markers have a general ability to correctly identify 70% of all the PE samples as pre-
eclamptic. Overall, these results indicate that current PE biomarkers very accurately identify
cluster 2 preeclamptics, while the PE patients of subclasses 1 and 3 are not readily distinguish-
able from controls.

Identification of novel PE molecular subclasses

In the absence of detailed patient and placental data, we used gene set enrichment analysis
(GSEA) to characterize the differences in molecular pathology between the three subclasses of
PE patients (Fig. 5).

Compared to cluster 2 and cluster 3 PE samples, the preeclamptics in cluster 1 were found
to be enriched in very few gene sets, most of which were related to organelle membranes and
envelopes, as well as protein catabolism (Fig. 5, S5 Table). Down-regulated were ontologies in-
volved in immune response, cell signalling, and tissue development and structure (S5 Table).
Overall, these PE samples in cluster 1 do not demonstrate a significant enrichment in ontolo-
gies thought to be associated with a preeclamptic pathology, such as hypoxia and
vascular development.

On the other hand, the preeclamptics in cluster 2 displayed an over-representation of genes
involved in feeding behaviour, B-cell activation, interferon-gamma production, and hormone
activity and secretion, as well as an under-representation of genes associated with oxidative
phosphorylation (Fig. 5, S6 Table). Additional enrichments to this PE subclass were the hypox-
ia-inducible factor-1 (HIF-1) and-2 (HIF-2) pathways (56 Table), which were largely driven by
the up-regulation of known PE markers, such as ENG (HIF-1 pathway) and FLT1 (HIF-2 path-
way). Together, this presents an injured tissue in a hypoxic environment, secreting increased
amounts of placental products into the maternal compartment. These functional molecular
phenotypes fit with the classical understanding of PE [28-31], which, along with the increased
expression of known PE markers in this group (Fig. 4), diagnoses this subclass with
“canonical” preeclampsia.

Cluster 3 PE samples demonstrated an up-regulation of genes involved in homeostasis,
organ development, and extracellular matrix structure, as well as numerous terms associated
with immune response, such as inflammatory response, defense response, cytokine activity,
and response to wounding (Fig. 5, S7 Table). Further investigation also revealed an over-repre-
sentation of genes linked to graft-versus-host disease and allograft rejection, which was driven,
once again, by the up-regulation of HLA class II genes (S7 Table). Gene sets specific to the PE
samples of cluster 3 were DNA damage response signal transduction resulting in induction of
apoptosis, response to other organism, and response to virus, which imply a potential pathogenic
source of placental damage, and perhaps even preeclampsia, in this subclass. Down-regulated
ontologies were involved in female pregnancy, organelle function and membranes, and intra-
cellular transport (S7 Table).
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PLOS ONE | DOI:10.1371/journal.pone.0116508 February 13,2015 10/21



@'PLOS ‘ ONE

Distinct Molecular Classes of Human Preeclampsia

as well as numerous terms associated with immune response. (B) Enlargement of the immune response network, including the response to virus ontology,
enriched to cluster 3 PE samples with individual gene sets labelled. Overall, cluster 1 PE samples do not appear to demonstrate an overt PE pathology; the
enrichments observed in cluster 2 PE samples fit with our canonical understanding of preeclampsia; and the PE samples in cluster 3 exhibit a potential

pathogenic etiology of preeclampsia.

doi:10.1371/journal.pone.0116508.g005

Comparison of co-clustering controls and PE samples

Lastly, we decided to investigate whether the preeclamptic samples in clusters 1 and 3 could be
separated from their co-clustered controls. Initial assessment of differential gene expression re-
vealed very few genes (6 and 15 genes for clusters 1 and 3, respectively) reaching statistical sig-
nificance (adjusted p-value < 0.01) in the preeclamptic samples compared to the control
samples in both clusters (Table 3, S8 Table). This was in contrast to the large number of genes
(nearly 3000) significantly differentially expressed in the cluster 2 PE placentas compared to
both the cluster 1 and cluster 3 controls. Additionally, visualization of the mean expression of
the top 5 genes up-regulated in the cluster 1 and cluster 3 preeclamptics compared to their co-
clustered controls revealed significant overlap in expression between the two phenotypes

(S3 Fig.), similar to the overlap observed with the known PE markers (Fig. 4b). Cluster 2 PE
samples, on the other hand, demonstrated markedly superior separation from both subclasses
of controls, likely due to greater fold-change differences in expression levels. This was further
confirmed with Naive Bayes methods of classification and prediction which revealed that only
~60% of the cluster 1 and cluster 3 PE samples, compared to almost 100% of the cluster 2 PE
samples, could be accurately segregated from controls at a 5% FPR using their respective set of
top 5 differentially expressed genes (S3 Fig.). These results therefore imply that despite the exis-
tence of a few genes that achieve statistical significance, and have mild predictive power, be-
tween the preeclamptics and controls in clusters 1 and 3, these genes are not nearly as robust as
cluster 2 PE markers, and are thus not sufficient for the identification of these non-canonical
PE subclasses.

It is possible that subtle, pathway-level gene expression differences exist between the PE
samples and controls in clusters 1 and 3. In order to assess this, we compared the two pheno-
types in each cluster by GSEA. No gene sets were found to be significant between the pree-
clamptics and controls in cluster 1 at a false discovery rate (FDR) of 25% (S9 Table). On the
contrary, 8 gene sets were over-represented in a comparison of the PE and control samples of
cluster 3 at this same FDR (S10 Table). This included regulation of hormone secretion and feed-
ing behaviour, which are terms previously observed as enriched to the PE samples in cluster 2
(Fig. 5). However, as expected from the GSEA results described above (Fig. 3b, Fig. 5), the pree-
clamptics in cluster 3 also exhibited elevated expression of genes involved in the response to a
virus, in contrast to controls. This indicates that while cluster 3 in general demonstrates an ele-
vated immune response, the PE samples have an additional immune response, possibility a
pathogenic cause of preeclampsia. The 20 significant genes annotated to this viral gene set are
listed in Table 4.

Table 3. The number of genes found to be up- and down-regulated in the preeclamptics of each
cluster compared to the controls (adjusted p-value < 0.01).

PE1 vs C1 PE3 vs C3 PE2 vs C1 and C3
Number of up-regulated genes 5 7 1327
Number of down-regulated genes 1 8 1661

doi:10.1371/journal.pone.0116508.t003
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Table 4. The list of 20 genes annotated to the GO ontology response to virus and found to be up-
regulated in the preeclamptics of cluster 3 compared to their co-clustered controls.

Gene? Protein Expression in Trophoblast® Cell Component

ABCE1 High Cytoplasm, membrane, mitochondria
BNIP3 Medium Mitochondrial membrane

BNIP3L Medium Endoplasmic reticulum, mitochondrial membrane
CCL8 — Secreted

CREBZF None Nucleus

FGR Low Plasma membrane

IF144 Low Cytoplasm

IFNAR1 Low Plasma membrane

IFNAR2 High Plasma membrane

IFNGR1 Medium Plasma membrane

IFNGR2 Medium Plasma membrane

IFNWA1 — Secreted

IRF7 High Nucleus

1ISG20 — Nucleus

PTPRC None Plasma membrane

RSAD2 Low Endoplasmic reticulum

SPACA3 None Extracellular region, secretory granule, lysosome
TLR8 None Membranes

TNF — Secreted

TRIM22 Medium Cytoplasm

2The genes in bold were also enriched in comparison to the other PE subclasses.
PAs detected by antibody staining of term placenta histology samples on Human Protein Atlas. A dashed
line indicates that no trophoblast expression results were available for this gene.

doi:10.1371/journal.pone.0116508.t004

Discussion

We hypothesized that previously observed heterogeneity in preeclampsia, leading to a lack of
robust predictive biomarkers and effective treatments for this disorder, was due to the existence
of multiple molecular forms of PE. The considerable differences between these masked molecu-
lar groups have made the identification of biomarkers difficult, as there is low correlation be-
tween gene expression and the clinical symptoms of hypertension and proteinuria.
Additionally, the failure of large scale randomized controlled trials [32,33] aimed at preventing
PE was likely due to their treatment of these molecular subclasses as a single entity. To investi-
gate this, we performed an aggregate analysis on 7 previously published PE microarray data-
sets, and clustered the samples based on gene expression alone, without accounting for clinical
diagnosis. This unbiased approach led to the discovery of three patient clusters, all of which
contained PE samples, thus supporting our hypothesis.

The surprising observation in our analysis was the discovery of both PE and control samples
in clusters 1 and 3. The overarching question remains then: why are these PE patients and con-
trols co-clustering? Genetically, these samples are grouping because they have very similar pat-
terns of gene expression. Consequently, attempts at finding markers to separate the two
phenotypes in each cluster identified very few genes with differential expression, while compar-
isons between clusters by GSEA unveiled comparable enrichments to the cluster 1 controls and
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PE samples (organelle membranes and function, and protein modification and activity) and to
the cluster 3 controls and PE samples (extracellular matrix structure, immune response, and al-
lograft rejection). We therefore propose the following potential explanations that, when com-
bined, may account for this unexpected finding:

First, it is possible that some of the PE patients, particularly in cluster 1, may have been mis-
diagnosed as preeclamptic, and were really afflicted with another maternal hypertensive disor-
der, such as gestational hypertension or chronic hypertension [34]. This is supported by the
GSEA and gestational age comparisons, which indicate that cluster 1 is largely composed of the
healthiest term placentas in this data set. Furthermore, it is known that gestational hyperten-
sion does not cause the same increases in SENG and sFLT1 levels as PE [3,35], and that affected
placentas are more histologically normal as compared to PE, specifically demonstrating lower
fibrin deposits and syncytial knots [36]. Therefore, it is also anticipated that their placental
gene expression would have more similarities with the healthy controls of cluster 1 than the
“canonical” preeclamptics of cluster 2.

An additional explanation is poor or advantageous maternal adaptation to pregnancy. Preg-
nancy leads to many physiological changes in the mother [37], such as reduced vascular resis-
tance and increased insulin resistance. A failure of the mother’s adaptive processes could result
in the symptoms of PE despite a normal placenta, which would also explain the co-clustering
of the cluster 1 PE samples with the healthy controls. The converse could also occur where the
mother adapts to an abnormal placenta, reducing the severity of the symptoms and improving
the outcome. This is likely the case for the controls in cluster 3, where an earlier poor placental
event may have been resolved or compensated for by the maternal immune system but left a
mark of increased immune response.

Lastly, and with the strongest argument for the phenotype mixture in cluster 3, is the likeli-
hood that despite the aggregation of 7 microarray data sets, our final sample size of 173 may
still be too underpowered to identify all existing clusters. Evidence for this explanation is the
cluster 2 PE-related gene sets found to be significantly enriched to the PE samples in cluster 3
compared to their co-clustered controls. This overlap may be anticipated from the PCA plot of
cluster membership as most of the PE cluster 3 samples are near the border of cluster 2 while
the control samples are farther away. Therefore, a further increase in sample size may allow for
cluster 3 to resolve into a control subgroup and a preeclampsia subgroup, demonstrating a
mild but still existent PE phenotype. Additional support for this theory exists in the enrichment
of viral response genes to the cluster 3 PE samples only.

Of the 20 significant genes annotated to this response to virus ontology, most are known to
be expressed in the placental trophoblast based on Protein Atlas database records [38]

(Table 4), and form a contiguous cellular pathway, spanning the plasma membrane, cytoplasm,
and nucleus based on Entrez annotation [38,39]. The inclusion of 4 genes usually not expressed
in healthy placentas may indicate either immune cell invasion or aberrant ectopic expression.
Additionally, these 20 genes appear to be involved in a general viral response, associated with a
range of different viruses, and not specific to any single infectious entity, based on Entrez anno-
tation [39]. This indicates the possibility of a plurality of viral infection types occurring among
the cluster 3 PE samples, such that responses to specific viruses are not apparent. Potential cul-
prits are cytomegalovirus (CMV) [40], human papilloma virus (HPV) [41,42], and adeno-
associated virus-2 (AAV-2) [43], as these are all known to be capable of infecting placental tro-
phoblasts and have been observed to be associated with PE [42,44].

Furthermore, we found that cluster 3 samples demonstrated an over-representation of
genes associated with allograft rejection and graft-versus-host disease (GVHD), compared to
the samples in clusters 1 and 2. These ontologies have been previously linked to poor pregnan-
cy outcome and the development of preeclampsia [45,46]. However, the majority of the
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significant genes annotated to these gene sets, including the HLA class I molecules, are not
usually expressed in placental cells [47-49]. This enrichment is therefore likely due to an in-
creased infiltration of maternal immune cells, which do express these genes, into the placenta.
Although this may simply be a component of the GVHD response, maternal leukocyte infiltra-
tion can also occur in the placental response to a virus [50,51]. Additionally, viral infection and
specific combinations of HLA isotypes have been shown to have compounding effects on preg-
nancy outcome, including preeclampsia development [52]. Therefore, while it is evident that
the PE samples in cluster 3 demonstrate a heightened immune response relative to the remain-
ing samples, it is unclear if this is a true viral infection or multiple, potentially compounded,
immunologically regulated events. Regrettably, as we do not have direct access to alternate
preparations of patient samples, it is not possible to investigate these theories, or any of our re-
sults, with histological examinations or targeted assays.

Regardless, our observation of multiple molecular PE subclasses is significant as it confirms
that standard clinical tests for preeclampsia are not sufficient to distinguish these different
groups. Specifically, we have demonstrated that current PE biomarkers are excellent at identify-
ing cluster 2 patients, but are inadequate for the recognition of cluster 1 and cluster 3 PE sam-
ples. Additionally, each of these subclasses display different previously published phenotypes
of PE: cluster 2 PE samples demonstrate an over-representation of genes associated with HIF
signalling, and hormone production and secretion; PE samples of cluster 3 are enriched in
genes related to immune response; and cluster 1 PE samples likely represent a poor maternal
response to pregnancy that presents without overt placental pathology, a group that is often
overlooked in the literature [10,53]. What is unique about our study is that these subclasses
have clustered apart from each other, strongly indicating the existence of multiple causative
sources of preeclampsia, and revealing molecular pathways that mark each group.

Unfortunately, the delivered placenta samples used in this analysis represent end stage dis-
ease and cannot directly identify the origin of pathology. This is a common issue to many dis-
eased states, such as cancer, where the study of a tumour does not immediately inform the
tumour-initiating event. Nevertheless, tumour analysis has led to great advances in identifying
diagnostic and prognostic markers of cancer, and importantly, the identification of molecular
heterogeneity of tumours has led to optimized treatment strategies. Discovering the true cause
of a disease will require the creation of cellular and animal models, which are informed by un-
biased genome wide analysis. Future work will determine if our observation of multiple out-
comes (clusters) is really due to multiple initial causative insults or one insult that is modified
by maternal and environmental agents to different end stages. Thus, while our results do not
definitively solve PE, they do present a new path towards its solution using molecular ap-
proaches and individualized medicine.

Although the use of deposited and archived gene expression data is an excellent resource,
our analysis also highlights the necessity of having detailed clinical records available for all
human patient studies such that a more complete covariate examination can be performed and
gene to phenotype relationships can be tested. Additionally, given the mild sampling bias ob-
served within the control placentas, this work emphasizes the importance of obtaining multiple
biopsies per placenta in order to control for the high degree of variability in gene expression
frequently observed across the same tissue [25]. Finally, our study also indicates the necessity
of having sufficient sample size in order to be able to distinguish biologically meaningful sub-
groups within a heterogeneous human population. While this is the largest data set of PE sam-
ples analyzed to date, it is highly probable that a further increase in placental number would
identify additional clusters, likely demonstrating rarer but important pathological and
physiological characteristics.
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Conclusion

Opverall, our analysis represents a significant advancement towards understanding the underly-
ing molecular heterogeneity of preeclampsia. Similar large-scale approaches could also be
taken for other major pathologies of pregnancy, such as intra-uterine growth restriction and
gestational diabetes myelitis. Moving forward, it will be essential to confirm and expand on
these results with additional large-scale studies, an effort under way in our groups. Future em-
phasis should be on linking histopathology with gene expression data, and identifying and clas-
sifying patients early in diagnosis, likely through testing serum samples for panels of genes
unique to each cluster. It is likely that current molecular diagnostics, such as sFLT1 and sENG,
may efficiently select the “canonical” PE subclass. There is therefore a need to focus on the
other two clusters, as placental gene expression cannot readily separate the preeclamptics

from controls.

Methods
Study selection

Previously published preeclampsia-associated placental gene expression data sets were re-
viewed using a set of inclusion and exclusion criteria. Exclusion criteria were sampling at earlier
stages of gestation (1st trimester), sampling of non-placental tissue, or sample set redundancy.
While early sampling may reveal molecular origins, without longitudinal samples of the same
patient over time, a correlation cannot be made between early gene expression patterns and
end-stage expression patterns. Inclusion criteria were a minimum of three or more patient
samples of a preeclamptic pathology (both early and late onset types), an array platform with
more than 15,000 gene features, and the availability of raw data tables. A diagnosis of pre-
eclampsia was defined as two or more episodes of hypertension (>140/90 mmHg) with pro-
teinuria after the 20™ week of pregnancy. Proteinuria was not consistently defined between
studies; values ranged from 300mg-2g of protein in a 24 hour period or >2+ on a dipstick test.
As all the patient data was de-identified and obtained from previously published reports, the
authors obtained an ethics waiver from the University of Toronto Office of Research Ethics.

Assembly of the aggregate data set

The placental microarray data sets were loaded into R 3.0.1 from NCBI’s Gene Expression Om-
nibus (GEO) [54] using the GEOquery library. Gene expression values were extracted from
each GEO series and converted into log2 intensities. For most arrays, the deposited annotation
files could be used with the exception of three studies (GSE10588, GSE43942 and GSE4707)
where the files were built using the annotationforge package from Bioconductor. The
GSE25906 data set was batch corrected for the two indicated batches in the supplied annotation
files, and 8 samples with fetal growth restriction (FGR) were removed from the GSE24129 data
set. The individual sample sets were then aggregated into one array using the virtualArray
package [15] (Bioconductor), which combines the compatible rows of the expression matrices
and performs empirical Bayes methods of normalization and batch correction for the different
original data sets. Finally, the merged data set was filtered for genes with expression variance in
the top quartile. This cut-off was chosen to select for those genes with the highest potential in-
formation content for clustering patients.

Clustering and co-variate analysis

The control and PE samples were treated as a single dataset and subjected to unsupervised mul-
tivariate model-based clustering, using the mclust [55] package from CRAN. The optimal
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number of clusters was selected based on the information obtained from the Bayesian Informa-
tion Criterion. Principal component analysis (PCA) was performed on the transpose of the ex-
pression matrix, which allowed for the visualization of the clusters in component space using
the rgl library. Information about the clinical phenotype (PE or control), gestational age (25-40
weeks; binned), nationality (Canada, China, Finland, Japan, or USA), and occurrence of labor
(yes, no, or unknown) was added to the array for each sample. Fetal sex was typically not re-
ported but was predicted based on the expression of two Y-chromosome genes: UTY and
USP9Y. Chi-squared analysis was employed to test the significance of these patient variables
on cluster membership. Lastly, principal variance component analysis (PVCA), using the pvca
library, was performed on the full aggregate data set in order to determine the main sources of
variability within the data.

Investigation into the splitting of the control samples

Given that many of the original studies reported obtaining their placenta samples from a single
biopsy, the possible existence of a sampling bias was investigated as a possible cause for the
splitting of the controls. This was done by calculating the mean expression of 35 genes known
to be significantly up-regulated in endothelial cells as well as the mean expression of 20 genes
significantly enriched in trophoblasts, across each of the controls. A scaled (0 mean and 1 vari-
ance) heatmap of these mean expression values was then produced using the heatmap function
and reversed heat colours such that the sample with the lowest mean endothelial-enriched or
trophoblast-enriched expression value was coloured white and the sample with the highest
value in each was coloured red. This was also done for each gene individually. Further inquiry
into the splitting of the control samples was performed using the Molecular Signatures Data-
base (MsigDB) collections associated with GSEA v2.1.0 [56] against a background model of the
14,653 genes found in common across all original microarray platforms. All C5 GO gene sets
(v4.0) with 10-1000 members were assessed, which includes those annotated to Biological Pro-
cess, Cellular Component, and Molecular Function, as well as C2 Canonical Pathways gene
sets (v4.0), which includes KEGG, Protein Interaction Database, and Reactome collections,
among others. The recommended number of permutations (1000) was performed using the
less stringent (gene set) permutation type. GSEA GO results were visualized in Cytoscape
v2.8.3 using the two-colour Enrichment Map plugin [57], with a p-value cutoff of 0.01, a cor-
rected false discovery rate (FDR) g-value cutoff of 25%, and an overlap coefficient of 0.5. Final-
ly, nodes were re-coloured to reflect the control subclass in question, and networks of related
ontologies were circled and assigned a group label.

Assessment of known PE markers

The differential expression of FLT1 and ENG was visualized with a 3-dimensional PCA plot,
using colour gradients to demonstrate increasing expression of FLT1 (green to orange) and
ENG (green to blue). Samples with low levels of both markers were therefore colored green,
while those with elevated expression of both colored pink. A list of the top 10 genes with signif-
icantly increased expression in the PE samples compared to the controls was obtained from
limma [58](Bioconductor). The mean expression of the 10 PE markers was calculated across
each sample and a density plot of these values was produced using the sm.density.compare
function from the sm library, split by phenotype as well as PE subclass. The WEKA machine
learning software package [59] was then employed to evaluate the ability of these 10 genes to
discriminate all PE samples from controls, and each PE subclass from controls, using a Naive
Bayes classifier and 10-fold cross-validation. Marker performance was assessed by plots of the
classifiers’ receiver operator characteristic (ROC) for the PE samples only.
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Identification of novel PE molecular subclasses

The three PE subclasses were compared to each other in a triangular fashion in GSEA, using
the same settings described above in the assessment of the splitting of the controls, to produce
three sets of GSEA results. Two out of three of these result sets were loaded into Cytoscape at a
time, depending on which PE subclass was under investigation (ex. the PE1 vs PE2 results and
the PEI vs PE3 results were used to study enrichments to PE1). Two data set, two-colour en-
richment maps were employed to simultaneously determine gene sets over- and under-
represented in a given PE subclass compared to both remaining PE subclasses. Nodes were re-
coloured to reflect the PE subclass in question, and networks of related ontologies were circled
and assigned a group label.

Comparison of co-clustering controls and PE samples

Lists of differentially expressed genes between the preeclamptics and controls in each of clus-
ters 1 and 3 were obtained from limma, with an adjusted p-value cut-off of 0.01. The PE sam-
ples in cluster 2 were compared to both subclasses of controls simultaneously using limma, and
only genes demonstrating adjusted p-values < 0.01 and the same direction of differential ex-
pression (either up- or down-regulated) in both comparisons were deemed significant. The
mean expression of the top 5 genes up-regulated in each PE subclass, compared to either their
co-clustered controls or all controls, was calculated across each sample involved in the original
comparison and 3 density plots of these values were produced using the sm.density.compare
function. The WEKA machine learning software package was also used to evaluate the ability
of these three sets of 5 genes to discriminate the PE subclasses from either their co-clustered
controls or all controls, using a Naive Bayes classifier and 10-fold cross-validation. Marker per-
formance was assessed by ROC plots for the PE samples only. Additionally, GSEA was em-
ployed to investigate pathway-level differences between the co-clustering preeclamptics and
controls, using the same settings described above in the assessment of the splitting of the con-
trols. Placental trophoblast expression for each gene found to be significantly enriched to the
response to virus GO ontology was assessed using Human Protein Atlas [38], and the cell com-
ponent(s) of expression was/were determined from the information contained in NCBI’s
Entrez Gene database [39].
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S3 Fig. Density plots of the mean expression of, and receiver operator characteristic curves
using, the top 5 genes significantly upregulated in each PE subclass compared to either
their co-clustered controls or all controls.
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S1 Table. Genes previously identified as enriched to either trophoblast or endothelial cells,
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