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Abstract: PLATO (Polypharmacology pLATform predictiOn) is an easy-to-use drug discovery web
platform, which has been designed with a two-fold objective: to fish putative protein drug targets and
to compute bioactivity values of small molecules. Predictions are based on the similarity principle,
through a reverse ligand-based screening, based on a collection of 632,119 compounds known to
be experimentally active on 6004 protein targets. An efficient backend implementation allows to
speed-up the process that returns results for query in less than 20 s. The graphical user interface is
intuitive to give practitioners easy input and transparent output, which is available as a standard
report in portable document format. PLATO has been validated on thousands of external data,
with performances better than those of other parallel approaches. PLATO is available free of charge
(http://plato.uniba.it/ accessed on 13 April 2022).
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1. Introduction

Reducing attrition in the early stage of drug discovery is of utmost importance to
prevent expensive flops of improperly designed late-stage products [1] whose fiasco is
often due to the inaccurate identification of drug targets with real therapeutic potential.
On the other hand, the drug target prediction, also named target fishing, is paramount not
only for addressing the design of new active molecules but also for repurposing known
drugs and even for optimizing their side effects. Target fishing methods can employ ligand-
based and structure-based approaches [2]. The former has returned higher accuracy in
prediction as well as quicker results [3]. The basic assumption is that if a pool of molecules
is known to bind a given protein drug target, other similar molecules are expected to do
the same [4]. Rooted on this idea, we have also conceived and deployed a new statistical
method for the quantitative prediction of the bioactivity values of new molecules, that is
the bioactivity profiling.

Available for free on the web, PLATO (standing for Polypharmacology pLATform
predictiOn) is a technological tool to perform ligand-based protein target fishing and
quantitative bioactivity prediction of small molecules. The graphical user interface is
intuitive and friendly enough to avoid pitfalls to non-experts. On the other hand, skilled
users can interrogate PLATO by getting a wealth of highly structured information.

As in-depth detailed elsewhere [5–7], PLATO is based on two predictive algorithms
specifically designed for target fishing and bioactivity profiling. Both the algorithms share
13 molecular fingerprints (that are: PubChem, graph, pattern, substructure, cdk_maccs,
featmfp1, fp2, rdkit7, klekota_roth, hybridization, mfp1, ap_bits, tt_bits) to compute the
2D Tanimoto similarities on a set of 632,119 compounds having experimentally measured
bioactivity data for 6004 protein targets. This amount of data was retrieved from ChEMBL
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release 30 according to a set of specific filtering rules [8,9]. The interested reader can retrieve
more details about molecular fingerprints in our previous published papers [5–7].

The present report details how to practically use PLATO. Remarkably, PLATO returns
a standard report in portable document format, which includes the list of the top-ranked
solutions as well as a wealth of additional information for each single result regarding
the ligand chemical structure, the protein drug target and the bioactivity values. The
standard report includes hyperlinks to redirect users to ChEMBL for further and deeper
investigations. An online tutorial is also available. PLATO is free of charge and available at
http://plato.uniba.it (accessed on 13 April 2022).

2. Materials and Methods
2.1. Technologies

The predictive algorithms behind PLATO are written in Haskell language. Along
with a clear and concise algorithm representation, this implementation allows keeping the
relevant activity data and several more molecular features in memory, limiting database
access and table translation to the initialization phase of the program. PLATO has the
capability to treat more than 20 queries per minute and this paves the way to large-
scale applications of the method. On demand, virtual reverse screening campaigns of
large compound collections can be performed in batch mode through mail requests to
the authors.

The fingerprints for all the 632,119 filtered ligands are pre-computed and stored in
memory. The fingerprints for the query are computed on request by the frontend. The
fingerprints are made available by the RDKit, CDK and OpenBabel libraries through their
python bindings [10–12].

The web frontend of PLATO was designed to allow both user and programmatic
data retrieving through POST requests. The POST form requires only three fields: the
SMILES code, the type of computation and the output format. The currently available
output formats are pdf report and json encoded data. The web frontend is written in python
using the Flask web framework and the Jinja2 templating libraries [13]. A graphical widget,
whose aim is to allow users to draw molecules or entering them in various alternative
formats (SDF, MOL and InChI key) is featured on the prediction interface; it is made
available by the JSME open-source project [14].

The frontend is compatible with any browser and even usable through line commands
like curl or wget. As the drawing molecule option might be unusable on very ancient
browsers, a text input for the SMILES code is also provided.

2.2. Data and Models

Overall, PLATO makes use of a dedicated dataset stored in four tables listing properties
and values for targets, ligands, bioactivities and fingerprints.

The dataset is updated frequently and is currently extracted from ChEMBL version
30, based on the application of the following criteria: (i) target filter: “target_type: Single
protein | Protein complex”; (ii) ligand filter: “molecule_type: Small_molecule”; “prodrug:
not 1”; and (iii) activity record filters: “confidence_score: >5”; “standard_relation: =”;
“standard_type: IC50|EC50|Ki|Kd”; “standard_units: nM”; “no comment inherent
to inactivity”.

At the time of writing, the dataset consists of 632,119 ligands and 6004 targets, linked
by 1,111,534 activity records. All numbers, broken down by species, are given in Table 1.
The list of targets is updated and made available in the “DATA” tab of the web site.

http://plato.uniba.it
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Table 1. Volumes of data extracted from ChEMBL version 30 for target fishing and bioactivity profiling.

Homo Sapiens Rattus Norvegicus Mus Musculus Other

Number of targets 2840 736 645 1783
Number of interactions 866,306 95,545 30,030 119,653

2.3. Input

The “Prediction” tab contains a user-friendly interface to interrogate the PLATO
platform. Users can submit the input query through a graphical widget, either by drawing
the 2D structure or by pasting the SMILES notation; MOL and SDF formats are also
supported: right-click on the widget to access the relevant menu. The user can then choose
the algorithm to employ by flagging “bioactivity profiling” or “target fishing” options.
Furthermore, expert users can choose the output format as a json file, by flagging “json
data”. Calculations take about 2 to 20 s for each query molecule. All the steps concerning
with PLATO “Prediction” are summarized in Figure 1. For completeness, several menu
items are also provided in the upper banner including information concerning the quality
of data filtered from ChEMBL release 30 (i.e., “DATA” from the menu toolbar). For ease of
reference, we report a prediction exercise by employing as a query the chemical structure
of a real Cannabinoid Receptor 1 (CBR1) antagonist published only two months ago and
thus not yet covered in ChEMBL [15].
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Figure 1. PLATO “Prediction” page. The query molecule is entered either as SMILES or by using the
JSME sketcher for opening, importing or modifying a molecular structure. If the query is sketched,
the user must click “Convert the picture to the SMILES query” button to translate the 2D structure in
SMILES format (1a,b), Otherwise, MOL and SDF formats are also supported by right clicking on the
widget to access the relevant menu. The user can then choose the output format (2) as well as the
prediction method, which can be the ‘Target fishing’ or the “Bioactivity profiling” (3). The “Get a
response” button is used to launch the PLATO prediction (4).

2.4. Output

PLATO returns as output a standard report in portable document format, which
includes the list of the top-scored solutions as well as a wealth of additional information
for each single result regarding the ligand chemical structure, the protein drug target
and the bioactivity values. The standard report includes hyperlinks to redirect users
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to ChEMBL for further and deeper investigations. Optionally, predictions can also be
retrieved as a json file, containing further details of the computation and suitable for
automatic data extraction. Interestingly, a downloadable pdf output is returned based on
our multifingerprint similarity algorithms.

2.4.1. Target Fishing Output

As far as the target fishing algorithm is concerned, the query chemical structure
and SMILES notation are reported. By default, the output consists of a table containing
information about at least 30 predicted targets. However, all the targets predicted as reliable
are always shown.

For each predicted target, three main fields are reported as columns:

• The first column is headed as “Target” and reports the name of the protein target. It
can redirect the user to a wealth of additional information;

• The second column is headed as “score” and reports the value, ranging from 0 to
13, to assess the overall similarity compared to known bioactive ligands for a given
protein target;

• The third column is headed as “reliable” and can return as output “yes” or “not” to
indicate if a prediction is accurate or inaccurate.

By clicking on each predicted target, the user is forwarded to a table reporting the
most similar bioactive ligands to the query along with the best activity experimental values
reported in ChEMBL.

2.4.2. Bioactivity Profiling Output

Likewise for the target fishing, the first page shows the chemical structure and SMILES
notation of the query molecule. Moreover, the bioactivity profiling report contains a
“summary table” listing five main fields, reported as columns:

• The first column is headed as ”Target” and reports the name of the protein target. It
can redirect the user to a wealth of additional information;

• Columns 2 to 5 are headed as “IC50”, “EC50”, “Ki”, and “Kd” and report the corre-
sponding predicted bioactivity values;

• The sixth column is headed as “σp” and reports the best calculated variance for the
predicted bioactivity type.

For the bioactivity profiling algorithm, the table reports for each predicted target the
most similar known ligands along with the experimental activity values (i.e., IC50, Ki, EC50
or Kd) and is organized as follows:

• The Target ChEMBL ID can be clicked to automatically open the Target Report Card
available in ChEMBL database;

• The “Structure” column with the ChEMBL identifiers is directed to the corresponding
Compound Report Card page, where physiochemical or biological information can
be found;

• The τ value is a precision measure of the predicted bioactivity values.

3. Explicative Case Study

An antagonist of the cannabinoid receptor type 1 receptor (CB1R) published just
two months ago [15] has been used as a query to practically show how to challenge
the predictive potential of PLATO. Noteworthy, CB1R is mostly expressed in the central
nervous system and also in peripheral tissues such as pancreas, lungs, liver and ileum,
where its inhibition results effective in reducing weight and insulin resistance [16]. The
design of this CB1R antagonist was inspired to the structure of the Ibipinabant, a well-
known selective CB1R inverse agonist, by replacing the arylsulphonyl and methylamino
groups with alkylaminosulphonyl and amidine moieties, respectively, in order to enhance
potency and peripheral restriction [17]. Satisfactorily, as shown in Figures 2 and 3, PLATO
provided accurate predictions in agreement with the experimental data. Specifically, the
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target fishing method returned the CB1R as the first reliable target and, on the other
hand, the bioactivity profiling predicted an IC50 value equal to 65.6 nM, thus providing
a good estimate of the experimental measure, which is equal to 1.2 nM. Furthermore,
an additional case study concerning with the design of new aromatase inhibitors [18]
was provided as Supplementary Materials (see files “Target_Fishing_Case_study_2.pdf”
and “Bioactivity_Profiling_Case_study_2.pdf” for outputs of target fishing and bioactivity
profiling predictions, respectively). PLATO, again, returned a correct prediction for both
methods, identifying the CYP45019A1 as first target, and predicting an IC50 value equal to
0.59 µM, very close to the experimental data, equal to 0.86 µM.
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Figure 2. Target fishing output page. (A) First page output: the chemical structure and the SMILES
of the query. (B) Second page output. A table lists the predicted protein targets found by the target
fishing algorithm for the given query molecule. By default, protein targets are ranked according to
the descending score values (ranging from 0 to 13) to quantify the overall similarity compared to
known bioactive ligands for the given protein target. A reliability flag is also returned to indicate if a
prediction is accurate or inaccurate. (C) Other pages. Each predicted protein target is redirected to the
“similarity analysis” page. For each target, the Target ID and the associated ChEMBL Target Report
Card are provided; a table reports the most similar known ligands along with the best experimental
bioactivity value and the Tanimoto similarity values based on 13 molecular fingerprints. A green/red
flag indicates over/under-threshold similarity values. Hyperlinks to the ChEMBL Compound Report
Card for each similar known ligand are also provided.
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Figure 3. Bioactivity profiling output page. (A) First page. The chemical structure and the SMILES
of the query. (B) The second page. A table lists the predicted protein targets found by bioactivity
profiling algorithm for the given query molecule. The predicted bioactivity values are expressed as
IC50, EC50, Ki and Kd. By default, target proteins are ranked according to the σp value, which is the
best variance for the reported predicted bioactivity types. (C) Other pages. Each predicted protein
target is redirected to the ”similarity analysis” page. For each target, the Target ID and the associated
ChEMBL Target Report Card are provided; a table reports the most similar known ligands with the
best experimental bioactivity values along with the τ value that is a measure of precision. Hyperlinks
to the ChEMBL Compound Report Card for each similar known ligand are also provided.

4. Ligand-Based Reverse Screening

Alongside the graphical interface, PLATO also includes an Application Programming
Interface (API) that can be interrogated for the screening large pool of compounds provided
as a SMILES list. Specifically, by means of in-house python scripts, the user can choose to
carry out the predictions towards all the targets stored in the database, or to constrain the
prediction towards a specific target. The obtained outputs are stored in a json format. The
ligand-based reverse screening is available on demand.

5. Conclusions and Outlook

PLATO provides quick and cheap methods for target fishing and bioactivity profiling
and is thus of utmost importance in several applications of drug discovery. At the best of
our knowledge, PLATO is the first web platform able to perform bioactivity prediction;
noteworthily, the performance of target fishing is parallel or even better than that obtained
by other popular webservers [7,19,20]. Noteworthily, PLATO can be effective: (1) for
drug repurposing and further optimization studies [21]; (2) to shed light on the mode of
action of compounds whose biological counterparts are still unknown; (3) to facilitate the
identification of off-targets, thus preventing the occurrence of undesired side effects [22];
and (4) in combination with docking and de novo design studies [23]. At present tailored
for small molecules, PLATO could be properly tuned also for dealing with peptide-like
compounds and thus opening attractive perspectives for new therapeutic approaches [24].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23095245/s1.
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