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Abstract: Background: Previous research has explored associations between accelerometry and
Global Navigation Satellite System (GNSS) derived loads. However, to our knowledge, no study
has investigated the relationship between these measures and a known distance. Thus, the current
study aimed to assess and compare the ability of four accelerometry based metrics and GNSS to
predict known distance completed using different movement constraints. Method: A correlational
design study was used to evaluate the association between the dependent and independent variables.
A total of 30 physically active college students participated. Participants were asked to walk two
different known distances (DIST) around a 2 m diameter circle (small circle) and a different distance
around an 8 m diameter circle (large circle). Each distance completed around the small circle by one
participant was completed around the large circle by a different participant. The same 30 distances
were completed around each circle and ranged from 12.57 to 376.99 m. Instrumentation: Acceleration
data was collected via a tri-axial accelerometer sampling at 100 Hz. Accelerometry derived measures
included the sum of the absolute values of acceleration (SUM), the square root of the sum of squared
accelerations (MAG), Player Load (PL), and Impulse Load (IL). Distance (GNSSD) was measured
from positional data collected using a triple GNSS unit sampling at 10 Hz. Results: Separate simple
linear regression models were created to assess the ability of each independent variable to predict
DIST. The results indicate that all regression models performed well (R = 0.960–0.999, R2 = 0.922–0.999;
RMSE = 0.047–0.242, p < 0.001), while GNSSD (small circle, R = 0.999, R2 = 0.997, RMSE = 0.047
p < 0.001; large circle, R = 0.999, R2 = 0.999, RMSE = 0.027, p < 0.001) and the accelerometry derived
metric MAG (small circle, R = 0.992, R2 = 0.983, RMSE = 0.112, p < 0.001; large circle, R = 0.997,
R2 = 0.995, RMSE = 0.064, p < 0.001) performed best among all models. Conclusions: This research
illustrates that both GNSS and accelerometry may be used to indicate total distance completed
while walking.

Keywords: wearable technologies; accelerometers; GNSS; GPS; monitoring; training load;
physical activity
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1. Introduction

Wearable technologies have become popular tools used in team and individual sports.
Tracking player activity using these microtechnologies is an essential component of load
monitoring [1]. Accelerometers and Global Navigation Satellite System (GNSS) devices
have become some of the dominant wearable technologies used to monitor training-load in
sport [2]. These technologies can be integrated or used separately to provide an indicator of
the external work performed by athletes; consequently, practitioners may be better able to
manage fatigue and direct adaptation. GNSS primarily measures horizontal displacement,
while accelerometers primarily measure acceleration in single or multiple axes. The role
of accelerometers and GNSS in load monitoring has received increased attention across
a number of sports in recent years [3,4]. Despite this, the relationship between both
technologies to quantify the same load is not well established.

Accelerometers are responsive motion sensors that measure the magnitude of acceler-
ation in one or more axes. Accelerometers are valid and reliable instruments to measure
training load in the field and in laboratory environments [5–7]. There is a growing body
of literature that recognizes the ability of accelerometers to quantify the external demand
of team and individual sports. For instance, the within and between device reliability
of accelerometers has been established across a variety of movement demands in both
laboratory and on-field conditions in Australian football [8]. Gentles et al. [9] found strong
to nearly perfect correlations between accelerometry derived training load and session
rating of perceived exertion (sRPE) (r = 0.84; p < 0.001) and total distance measured using
GPS (r = 0.95; p < 0.001) among NCAA women’s soccer players [9]. Accelerometers have
also been used to illustrate the differences in the activity profile between single and double
match play in tennis [10]. In rugby, accelerometers outperformed GPS in quantifying posi-
tional (backs vs. forward) and halves (1st vs. 2nd) differences in player maximum mean
movement [11]. Moreover, accelerometry has also been shown to be a valid assessment of a
test designed to simulate basketball play, suggesting that accelerometers can be used to
quantify the external demand of basketball [12].

Many accelerometry derived metrics have been used in the literature to quantify
training load, including Body Load [13], Player Load [8], Force Load [14], Dynamic Stress
Load [15], and Impulse Load [9]. Although Player Load is the most commonly reported
measure in the literature [16], its potential to monitor training load has been questioned [17].
Player Load is the sum of the square root of the sum of absolute differences of acceleration
divided by the device sampling frequency [17]. Therefore, Player Load does not represent
the sum of all accelerations, and of the available accelerometry derived measures, it may
not best represent training load [17]. Additionally, training-load could be misrepresented
due to the inclusion of non-locomotor activities in Player Load [14]. Interestingly, different
equations and descriptions for Player Load have also been reported in the literature [8,11,18].
Player Load has also been described as Body Load [13] and Acceleration Load [19]. To
our knowledge, no study has compared different accelerometry derived measures when
assessing training load, indicating a need for further investigation of accelerometry based
measures of training load.

GNSS is an umbrella term that includes several different satellite networks including
Global Positioning System (GPS), Global Navigation Satellite System (GLONASS), Galileo,
and BeiDou. In sport, GNSS networks are used to provide information about a player’s
position, velocity, and movement patterns on the field. Total distance and distance in speed
zones are common variables used to monitor training loads. GNSS networks such as GPS
have been shown to be valid indicators of distances of 40 m completed during different
movement patterns but may not be a valid measure of shorter distances (less than 20 m)
completed during high speed running, sprinting, and change of direction [20]. Higher
sampling frequencies (5–10 Hz) have been shown to improve the accuracy of GPS [20,21],
although some evidence suggests that increasing sampling frequency to 15 Hz does not
improve accuracy when assessing distance completed during unstructured movements [22].
Assessing player position using GNSS networks may be influenced dramatically by the
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number and separation of satellites that are connected to the receiver. GNSS enables
receivers to acquire signals from multiple satellite networks (e.g., GPS, GLONASS, Galileo,
and BeiDou), increasing the number of available satellites. Combined satellite systems
improve satellite geometry and resulting precision [23]. Dilution of Precision (DOP) is a
description of satellite geometry. DOP is composed of two elements: horizontal dilution of
precision (HDOP) and vertical dilution of precision (VDOP) (for more detail about DOP,
see [23]). HDOP is one indicator of GNSS accuracy and is influenced by the separation of
the satellites. HDOP values range from 0 to 50, with a value of less than 1 considered the
ideal distribution of satellites. HDOP is low and precision is excellent when substantial
distance exists between satellites, while HDOP is high and precision is poor when satellites
are in close proximity. Additionally, indoor fields, stadiums with high walls or roofs, and
cloudy weather are factors that can reduce the quality of GNSS data [4].

Recently, receivers capable of acquiring signals from multiple GNSS networks simulta-
neously (e.g., GPS, GLONASS, Galileo, and BeiDou) have enhanced the availability and
signal strength of surrounding satellites [24]. Beato et al. [25] suggested that using multiple
GNSS networks could explain the smaller bias (2.3 ± 1.1%) when measuring total distance
during a sport-specific movement protocol [25] compared to the author’s previous research
that used only GPS to detect total distance in a shuttle run over 5–20 m (2.53 ± 6.03%) [26].
Future research should compare the quality of data from single and multiple satellite
systems in sport.

To date, several investigations have assessed the relationship between accelerometry
and GNSS derived measures. A study by Polglaze et al. [27] found large to very large corre-
lations between Player Load and total distance accumulated during men’s hockey practice
(r = 0.742; p < 0.00001) and competition (r = 0.868; p < 0.00001) [27]. Additionally, a strong
correlation was found between Player Load and total distance completed in men’s soccer
training (r = 0.70; p < 0.01) [28], and a nearly perfect correlation (r = 0.95; p < 0.001) was
found between Impulse Load and total distance in women’s soccer matches [9]. However,
to our knowledge, no study has investigated the relationship between different accelerome-
try based metrics and GNSS with a known distance. Therefore, this study aimed to assess
and compare the ability of four different accelerometry derived metrics and a triple GNSS
to predict known distance completed under different movement constraints.

2. Materials and Methods
2.1. Experimental Approach for the Problem

A correlational design was used to assess the relationship between known distance
(DIST) and total distance measured via GNSS and four accelerometry derived metrics. DIST
was completed under two different movement constraints. Two courses, a small circle and a
large circle, were designed on a grass field. Table 1 details the dimensions of each circle, and
Figure 1 illustrates the course design. A measuring tape was used to measure the diameter
of each circle, which was subsequently used to calculate circumference. Both circles were
marked by flags to guide the walking path for subjects. Flags were approximately 5 cm in
height to minimize interference with walking. Circles were used to limit the influence of
initiating movement and braking associated with changing direction.

Table 1. Dimensions of the small and large circles.

Small Circle Large Circle

Diameter 2 m 8 m
Circumference 6.28 m 25.13 m

Distance 2× laps = 12.56 m Half-lap = 12.56 m
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Figure 1. Design of the small and large circles.

2.2. Participants

Thirty participants (height 176.8 ± 6.1 cm, weight 82.3 ± 12.8 kg) volunteered to
participate in this study. All participants engaged in physical activity at least three times
a week. This study was approved by the universities’ Institutional Review Board, and
participants provided written consent for their involvement and video recording.

2.3. Procedures

Prior to beginning each course, participants were informed of the number of laps
they were to complete around each course; participants also performed a familiarization
trial prior to completing their trials. Following familiarization, each participant walked
two different known distances (DIST), one distance around the small circle and a different
distance around the large circle. Each distance completed around the small circle by one
participant was completed around the large circle by a different participant. The same thirty
distances were completed around each circle and ranged from 12.57 to 376.99 m. Table 2
details the number of laps and the total distance each participant completed. Participants
were directed to walk at their normal speed and keep the flags between their feet during
the walk to ensure each course was completed accurately. Laps were counted loudly by a
research assistant during the trials. Each participant also wore a triaxial accelerometer and
a triple GNSS sensor.

Table 2. Number of laps and distance traveled around the small and large circles.

Participants Large Circle Known Distance/m Small Circle Known Distance/m

1 0.5 12.57 60 376.99
2 1 25.13 58 364.43
3 1.5 37.70 56 351.86
4 2 50.27 54 339.29
5 2.5 62.83 52 326.73
6 3 75.40 50 314.16
7 3.5 87.96 48 301.59
8 4 100.53 46 289.03
9 4.5 113.10 44 276.46

10 5 125.66 42 263.89
11 5.5 138.23 40 251.33
12 6 150.80 38 238.76
13 6.5 163.36 36 226.19
14 7 175.93 34 213.63
15 7.5 188.50 32 201.06
16 8 201.06 30 188.50
17 8.5 213.63 28 175.93
18 9 226.19 26 163.36
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Table 2. Cont.

Participants Large Circle Known Distance/m Small Circle Known Distance/m

19 9.5 238.76 24 150.80
20 10 251.33 22 138.23
21 10.5 263.89 20 125.66
22 11 276.46 18 113.10
23 11.5 289.03 16 100.53
24 12 301.59 14 87.96
25 12.5 314.16 12 75.40
26 13 326.73 10 62.83
27 13.5 339.29 8 50.27
28 14 351.86 6 37.70
29 14.5 364.42 4 25.13
30 15 376.99 2 12.57

2.4. Instrumentation

Acceleration data were collected via a tri-axial accelerometer measuring the magnitude
of acceleration in the three axes (x = anterior–posterior, y = medial–lateral, z = vertical)
and sampling at 100 Hz (ZephyrTM BioHarness v3, Zephyr Technology Corp., Annapolis,
MD, USA). Using the chest strap provided by the manufacturer, the accelerometer was
securely placed at the level of the xiphoid process, along the midsternal line. The sensor
calibration and error model of the sensor is propriety to the manufacturer and has not
been described by ZephyrTM. Four accelerometry derived metrics were used in this study;
the formula for each accelerometry based metric is described in Table 3. To expedite data
analysis, the beginning and end of each trial were marked by the participant tapping on
the accelerometer four times.

Table 3. Formula for each accelerometry based metric.

Metric Definition and Formula *

SUM SUM =
n
∑

s=1

√
x2

s +
√

y2
s +

√
z2

s

MAG MAG =
n
∑

s=1

√
x2

s + y2
s + z2

s

Impulse Load ** IL =
n
∑

s=1

√
x2

s+y2
s+z2

s
9.8067

Player Load PL =
n
∑

s=1

√
(xs=i+1−xs=i)

2+(ys=i+1−ys=i)
2+(zs=i+1−zs=i)

2

100

* In the formulas above, x = forward and backward acceleration, y = lateral acceleration and z = vertical acceleration.
** IL is propriety to the manufacturer and is only associated with locomotor events that are detected by Zephyr
(e.g., walking, running, bounding, jumping).

A triple GNSS sensor sampling at 10 Hz and acquiring signals from GPS, GLONASS,
and Galileo networks (Titan Sensors 2, Houston, TX, USA) was used to measure the distance
covered by each participant (GNSSD). All trials were performed on an outside field, clear
of large buildings, and with a clear sky to enhance satellite acquisitions. The number of
satellites connected to the receiver during the trials ranged between 19–26. A previous
study that used GNSS reported the horizontal dilution of precision (HDOP) 0.4 ± 0, while
the satellites connected held between 18–20 [25]. The GNSS unit was activated 10–15 min
prior to data collection and securely fixed to clothing on the back of participants at the
base of the cervical spine between scapulae. Video was recorded (iPhone 6; 1080 p at
30 fps, Cupertino, CA, USA) and synced with GNSS data to verify the beginning and end
of each trial.
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2.5. Statistical Analyses

GNSS data and recorded video were uploaded and analyzed using Titan Sensors
software (Titan Sync 3.0.0, 2019 and Titan Video 3.7.0, 2019). Accelerometry data were
downloaded to OmniSenseTM Analysis (version 4.1.4; Zephyr Technology Corporation,
Annapolis, MD, USA), then exported to Microsoft Excel 2019 (Microsoft Corporation,
Redmond, WA, USA) for analysis. Data were log transformed using the natural logarithms
(LN) of DIST, SUM, MAG, PL, IL, and GNSSD to reduce the nonuniformity of error [29].
Ten simple linear regression models were created to assess the ability of each independent
variable (SUM, MAG, PL, IL, and GNSSD) to predict DIST completed during the small
circle and large circle. Residual and Q-Q plots were used to ensure the assumptions of
homoscedasticity and normality were not violated. All data were analyzed using the
statistical software JASP (JASP, Version 0.12.2, Amsterdam, The Netherlands).

3. Results

All linear regression models performed well for both movement constraints
(R = 0.960–0.999, R2 = 0.922–0.999; Root-mean-square error (RMSE) = 0.047–0.242,
p < 0.001). The results of all linear regression models are detailed in Table 4, and each model
is illustrated in Figures 2–6. GNSSD (small circle, R = 0.999, R2 = 0.997, RMSE = 0.047,
p < 0.001; large circle, R = 0.999, R2 = 0.999, RMSE = 0.027, p < 0.001) and the accelerometry
derived metric MAG (small circle, R = 0.992, R2 = 0.983, RMSE = 0.112, p < 0.001; large
circle, R = 0.997, R2 = 0.995, RMSE = 0.064, p < 0.001) performed best among all models.
Table 5 (small circle) and Table 6 (large circle) provide details for each trial and includes
laps and known distance completed, GNSS measured distance, and all accelerometry
derived metrics.

Table 4. Summary of linear regression models.

Independent
Variable

Small Circle Large Circle

R R2 RMSE p R R2 RMSE p

GNSSD 0.999 0.997 0.047 <0.001 0.999 0.999 0.027 <0.001
Impulse Load 0.960 0.922 0.242 <0.001 0.976 0.952 0.189 <0.001

MAG 0.992 0.983 0.112 <0.001 0.997 0.995 0.064 <0.001
SUM 0.992 0.984 0.109 <0.001 0.992 0.983 0.112 <0.001

Player Load 0.994 0.987 0.098 <0.001 0987 0.973 0.141 <0.001
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3 56 351.86 324.4 2018.93 1006.59 59,245.55 21.07 

4 54 339.29 306.7 1584.19 868.55 45,124.71 19.57 

5 52 326.73 277.1 1504.79 776.3 43,471.19 18.62 

6 50 314.16 288.4 1835.24 976.83 46,687.57 19.11 

7 48 301.59 229.4 987.58 698.06 40,605.42 18.43 

8 46 289.03 263.3 644.4 541.58 43,342.69 17.32 

9 44 276.46 242.3 1433.89 741.05 32,156.7 16 

10 42 263.89 233.8 1108.26 636.97 32,585 12.68 

11 40 251.33 229.8 1100.13 674.37 39,186.64 13.02 

12 38 238.76 217.3 700.67 511.39 43,028.1 14.51 

13 36 226.19 199.3 795.85 588.16 33,025.3 13.83 

14 34 213.63 182.6 930.75 514.36 27,075.45 10.49 

15 32 201.06 174.4 1373.54 551.03 29,721.93 12 

16 30 188.5 176.1 797.74 457.17 25,862.01 10.09 

17 28 175.93 149.6 961.1 435.61 20,382.67 9.64 

18 26 163.36 149.6 583.73 407.22 22,577.47 7.82 

19 24 150.8 135.2 479.04 306.43 20,562.16 8.15 

20 22 138.23 125.5 725.24 385.17 19,100.84 8 

21 20 125.66 110.2 385.47 250.08 16,287.71 8.58 

22 18 113.1 99.7 491.59 285.11 15,775.49 6.05 

23 16 100.53 90.1 399.75 241.1 16,023.39 5.35 

24 14 87.96 78.2 355.25 196.18 10,961.84 4.77 

25 12 75.4 61.1 328.71 174.47 8617.43 4.7 

26 10 62.83 58.8 257.96 170.54 8207.35 4.06 

27 8 50.27 46.7 193.38 128.41 7337.94 2.49 

28 6 37.7 34.1 188.47 84.5 4987.59 1.86 
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Figure 6. The relationship between log transformed DIST and PL around the small circle and the
large circle. SC = small circle, LC = large circle.
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Table 5. Details for each trial include laps and known distance completed around the small circle
course, GNSS measured distance, and all accelerometry derived metrics.

Participant
Small Circle

Number of Laps Known Distance/m GNSSD/m Impulse Load MAG SUM Player Load

1 60 376.99 339.6 1234.76 848.23 57,277.7 17.36
2 58 364.43 322.7 1285.58 846.6 46,164.84 22.06
3 56 351.86 324.4 2018.93 1006.59 59,245.55 21.07
4 54 339.29 306.7 1584.19 868.55 45,124.71 19.57
5 52 326.73 277.1 1504.79 776.3 43,471.19 18.62
6 50 314.16 288.4 1835.24 976.83 46,687.57 19.11
7 48 301.59 229.4 987.58 698.06 40,605.42 18.43
8 46 289.03 263.3 644.4 541.58 43,342.69 17.32
9 44 276.46 242.3 1433.89 741.05 32,156.7 16

10 42 263.89 233.8 1108.26 636.97 32,585 12.68
11 40 251.33 229.8 1100.13 674.37 39,186.64 13.02
12 38 238.76 217.3 700.67 511.39 43,028.1 14.51
13 36 226.19 199.3 795.85 588.16 33,025.3 13.83
14 34 213.63 182.6 930.75 514.36 27,075.45 10.49
15 32 201.06 174.4 1373.54 551.03 29,721.93 12
16 30 188.5 176.1 797.74 457.17 25,862.01 10.09
17 28 175.93 149.6 961.1 435.61 20,382.67 9.64
18 26 163.36 149.6 583.73 407.22 22,577.47 7.82
19 24 150.8 135.2 479.04 306.43 20,562.16 8.15
20 22 138.23 125.5 725.24 385.17 19,100.84 8
21 20 125.66 110.2 385.47 250.08 16,287.71 8.58
22 18 113.1 99.7 491.59 285.11 15,775.49 6.05
23 16 100.53 90.1 399.75 241.1 16,023.39 5.35
24 14 87.96 78.2 355.25 196.18 10,961.84 4.77
25 12 75.4 61.1 328.71 174.47 8617.43 4.7
26 10 62.83 58.8 257.96 170.54 8207.35 4.06
27 8 50.27 46.7 193.38 128.41 7337.94 2.49
28 6 37.7 34.1 188.47 84.5 4987.59 1.86
29 4 25.13 20.3 117.37 63.33 2904.64 1.51
30 2 376.99 11.2 66.64 33.08 1916.23 0.67

Table 6. Details for each trial include laps and known distance completed around the large circle
course, GNSS measured distance, and all accelerometry derived metrics.

Participant
Large Circle

Number of Laps Known Distance/m GNSSD/m Impulse Load MAG SUM Player Load

1 0.5 12.57 12.3 35.95 25.49 1615.13 0.48
2 1 25.13 25.2 103.53 57.66 2789.17 1.88
3 1.5 37.70 36.6 198.92 90.43 4607.63 2.59
4 2 50.27 45.5 274.39 117.24 5121.1 2.86
5 2.5 62.83 61.3 297.61 126.21 6540.61 3.2
6 3 75.40 75.2 229.65 172.02 8491.27 3.9
7 3.5 87.96 82.1 374.6 185.52 9026.94 5.23
8 4 100.53 97.8 390.72 213.75 9869.57 4.98
9 4.5 113.10 109.4 598.23 235.34 10,437.65 5.88

10 5 125.66 122.9 597.66 264.97 11,826.61 5.94
11 5.5 138.23 131.6 439.48 311.61 16,615.76 6.93
12 6 150.80 148.8 471.66 350.42 18,919.17 8.81
13 6.5 163.36 158.5 719.49 358.9 18,218.36 7.93
14 7 175.93 172.4 895.41 399.65 17,302.98 9.91
15 7.5 188.50 174 1071.26 418.64 23,473.34 10.5
16 8 201.06 192.5 999.68 437.84 22,546.53 9.62
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Table 6. Cont.

Participant
Large Circle

Number of Laps Known Distance/m GNSSD/m Impulse Load MAG SUM Player Load

17 8.5 213.63 205.1 1154.62 420.24 19,031.75 11.63
18 9 226.19 222.1 1006.09 488.78 24,166.76 10.03
19 9.5 238.76 233.9 819.64 514.5 27,886.33 11.93
20 10 251.33 249.4 1238.42 669.27 28,285.3 15.27
21 10.5 263.89 259.9 1215.66 560.68 26,430.16 16.72
22 11 276.46 273.9 981.49 648.91 32,951.12 13.32
23 11.5 289.03 283.3 1073.9 641.12 37,486.39 14.05
24 12 301.59 300.9 1081.76 646.01 31,967.92 15.82
25 12.5 314.16 288.1 1460.79 631.2 27,005.63 19.97
26 13 326.73 312.3 1364.23 680.51 32,644.37 17.12
27 13.5 339.29 338.1 1223.83 709.73 35,287.43 14.34
28 14 351.86 347.1 1833.86 767.71 35,025.29 18.75
29 14.5 364.42 344.6 1631.2 796.79 35,797.69 20.84
30 15 376.99 381.3 2339.7 881.78 45,740.11 20.47

4. Discussion

The purpose of this study was to assess and compare the ability of four different
accelerometry derived metrics (IL, MAG, SUM, PL) and GNSS to predict a known distance
completed using two movement constraints. A primary finding is that both GNSS and
accelerometry derived measures are valid indicators of total distance when walking is
performed around a small circle and a large circle. This may also suggest that both GNSS
and accelerometry are similarly capable of quantifying the distance associated with sport-
related training and competition under the current experimental conditions. The results of
the study are demonstrated and summarized in Figure 7.

While all accelerometer derived measures performed well, MAG (small circle,
R = 0.992, R2 = 0.983, RMSE = 0.112, p < 0.001; large circle, R = 0.997, R2 = 0.995, RMSE = 0.064,
p < 0.001) and SUM (small circle, R = 0.992, R2 = 0.984, RMSE = 0.109, p < 0.001; large circle,
R = 0.992, R2 = 0.983, RMSE = 0.112, p < 0.001) performed best among all accelerometry
models. MAG and SUM include locomotor and non-locomotor activities. This outcome is
contrary to Buchheit and Simpson [14], who proposed that using accelerometer-derived
measures that exclude non-locomotor activities may be more useful [14]. However, this
discrepancy could be attributed to the fact that little to no non-locomotor activity was
included in this study, where sport includes a substantial quantity of both locomotive
and non-locomotive activity. Our findings agree with previous suggestions that differ-
ent accelerometry based metrics will not equally quantify training loads in sport-related
events [17]. Further research is needed to determine which accelerometry derived metrics
best quantify training load in sport. It is certainly possible that the simultaneous use of
multiple accelerometry based load assessments is advantageous.

Unlike GNSS, accelerometers can be influenced by between-subjects’ variability in
loading patterns (e.g., stride characteristics) [30]. However, in this study and others [9,27,28],
strong relationships have been found between accelerometry derived loads and total
distance, despite different participants completing various distances. Much of the criticism
that PL has attracted relates to calculating workloads by summing the rate of change in
accelerations instead of the absolute value of accelerations [17]. However, in this study,
although PL did not perform best among the accelerometry derived measures, its potential
to detect training load was encouraging (small circle, R = 0.994, R2 = 0.987, RMSE = 0.098,
p < 0.001; large circle, R = 0.987, R2 = 0.973, RMSE = 0.141, p < 0.001). Nonetheless, it may
be important to address how PL would perform if repeated changes of direction were
included, given that PL only increases with changes in acceleration. In accordance with
the present results, a previous study demonstrated that the accelerometry derived metric
average force (the product of the participant’s body mass and MAG) was a better indicator
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of running demands compared to PL [12]. Future studies should investigate what, if any,
advantages MAG or other accelerometry based measures may provide compared to PL.
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Previous research has indicated that, independent of movement velocity (i.e., walk, jog,
run, sprint), rapid directional change degrades GNSS accuracy. For instance, GNSS may
underestimate distance during shuttle trials (−2.16± 3.84%) and overestimate distance dur-
ing exercise completed on curvilinear tracks (2.99± 2.96%) [31]. However, the development
of multiple GNSS technology may explain the high level of accuracy found in this study,
which included two different curvilinear conditions (small circle, R = 0.999, R2 = 0.997,
RMSE = 0.047, p < 0.001; large circle, R = 0.999, R2 = 0.999, RMSE = 0.027, p < 0.001). Despite
these promising results, questions remain about multiple GNSS system accuracy when
measuring the distance completed in sport-related movements, where many changes of
direction are required, and movement velocity is often higher than that used in this study.

This investigation demonstrates that multiple GNSS systems and several accelerometry
derived metrics can indicate total distance completed while walking. However, a host of
questions remain regarding the potential advantages associated with these technologies
to quantify training loads and detect events (e.g., contact, jumps, sprinting) in sport. In
this study, total distance was the only load accounted for, and only locomotor movements
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were included. Of course, in sport, different factors can influence training loads (e.g.,
acceleration, deceleration, jumping), and locomotor and non-locomotor movements will be
performed. More broadly, further investigation is needed to assess the ability of GNSS and
accelerometry derived metrics to measure training loads that include different movements
and events such as running, sprinting, change of direction, jumping, collision, and kicking.

Although this study demonstrated that GNSS and accelerometry derived measures
are valid indicators of total distance, three important limitations to this study should be
considered. First, while walking was performed around circles to limit the influence of
initiating movement and braking associated with changing direction and total distance
was the only variable assessed, caution should be used when applying the current results
to other activities. Second, participants were asked to walk at their natural pace, and no
method has been used to standardize the walking speed, in which differences in the velocity
rate between participants might induce some variation. Third, while the investigators were
precise during course set-up and the participants followed the instructions closely, the actual
distances completed by the participants were likely different than planned; albeit these
differences were probably very small. Future research should investigate whether training-
load quantification is enhanced using a combination of GNSS and accelerometry, or whether
a single sensor, GNSS, or accelerometer is adequate to quantify training loads in sports that
often include changes of direction, jumping, contact, and straight-line movement.

5. Conclusions

This is the first study to investigate the ability of four different accelerometry derived
metrics and a triple GNSS to predict known distance. Linear regression analysis revealed
that GNSSD, IL, MAG, SUM, and PL could indicate total distance completed while walking.
The findings will be of interest to researchers and sports scientists to investigate whether
GNSS and accelerometry are equally capable of quantifying training loads associated with
sport-related training and competition. More research using controlled trials are needed
to compare these technologies to detect sports events (e.g., contact, jumps, sprinting) and
quantify training loads associated with acceleration, deceleration, and directional change,
which are considered crucial characteristics of match play in some sports. Another possible
area of future research would be to investigate whether training-load quantification is
enhanced using a combination of GNSS and accelerometry, or whether a single sensor,
GNSS, or accelerometer is adequate to quantify training loads in sports, considering that
not all teams can afford the high-cost of both technologies.

6. Practical Application

GNSS and accelerometers seem similarly capable of quantifying distance while walk-
ing. This may have implications for sport-related training and competition, but future
research should investigate whether both sensor types perform comparably well during
sport related activities that include mixed movement types (i.e., changes of direction, run-
ning, jumping, etc.). While sport coaches and athletes should use caution when predicting
distance from accelerometry derived metrics, accelerometers are also capable of identifying
and quantifying a variety of locomotor events including steps, jumps, bounds, and im-
pacts, among others. Since GNSS is limited to measures related to horizontal position (i.e.,
speed and distance), if accelerometers can also be used to estimate distance in mixed type
activities such as sport, given their ability to quantify a variety of sport related movements,
accelerometers may provide advantages compared to GNSS.
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