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Abstract

Serum biomarkers are associated with hemorrhagic transformation and brain edema after

cerebral infarction. However, whether serum biomarkers predict hemorrhagic transforma-

tion in large vessel occlusion stroke even after mechanical thrombectomy, which has

become widely used, remains uncertain. In this prospective study, we enrolled patients with

large vessel occlusion stroke in the anterior circulation. We analyzed 91 patients with serum

samples obtained on admission. The levels of matrix metalloproteinase-9 (MMP-9), amyloid

precursor protein (APP) 770, endothelin-1, S100B, and claudin-5 were measured. We

examined the association between serum biomarkers and hemorrhagic transformation

within one week. Fifty-four patients underwent mechanical thrombectomy, and 17 patients

developed relevant hemorrhagic transformation (rHT, defined as hemorrhagic changes�

hemorrhagic infarction type 2). Neither MMP-9 (no rHT: 46 ± 48 vs. rHT: 15 ± 4 ng/mL, P =

0.30), APP770 (80 ± 31 vs. 85 ± 8 ng/mL, P = 0.53), endothelin-1 (7.0 ± 25.7 vs. 2.0 ± 2.1

pg/mL, P = 0.42), S100B (13 ± 42 vs. 12 ± 15 pg/mL, P = 0.97), nor claudin-5 (1.7 ± 2.3 vs.

1.9 ± 1.5 ng/mL, P = 0.68) levels on admission were associated with subsequent rHT. When

limited to patients who underwent mechanical thrombectomy, the level of claudin-5 was

higher in patients with rHT than in those without (1.2 ± 1.0 vs. 2.1 ± 1.7 ng/mL, P = 0.0181).

APP770 levels were marginally higher in patients with a midline shift� 5 mm than in those

without (79 ± 29 vs. 97 ± 41 ng/mL, P = 0.084). The predictive role of serum biomarkers has

to be reexamined in the mechanical thrombectomy era because some previously reported

serum biomarkers may not predict hemorrhagic transformation, whereas the level of

APP770 may be useful for predicting brain edema.

Introduction

Reperfusion therapy such as intravenous recombinant tissue plasminogen activator (rt-PA)

and mechanical thrombectomy improves the outcome of patients with acute ischemic stroke

[1–3]. However, it is also known that reperfusion therapies may worsen the hemorrhagic
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transformation [3]. In addition, reperfusion injury may augment brain edema [4, 5], although

several studies on the association between brain edema and reperfusion show conflicting

results [6, 7]. Once severe hemorrhagic transformation or edema has developed, the prognosis

is often not favorable [8, 9]. Therefore, the ability to rapidly identify patients who are at higher

risk of hemorrhagic transformation and brain edema is necessary.

Hemorrhagic transformation and edema after cerebral infarction mainly result from dis-

ruption of the blood brain barrier (BBB) and increased vascular permeability due to injury

and/or remodeling of cerebral vessels [10]. Several studies have previously revealed that bio-

markers using peripheral blood are useful for predicting hemorrhagic transformation and

brain edema [11–16]. For example, elevated matrix metalloproteinase-9 (MMP-9) levels are

associated with hemorrhagic transformation [13], and elevated levels of endothelin-1 predict

severe cerebral edema in stroke patients treated with rt-PA. However, these findings were

obtained before mechanical thrombectomy became widely used, and whether these biomark-

ers predict hemorrhagic transformation and brain edema in the era of mechanical thrombect-

omy remains unclear.

In this prospective study, we examined whether these serum biomarkers were associated

with the development of hemorrhagic transformation or brain edema in patients with large-

vessel occlusion stroke in the anterior circulation. Furthermore, we investigated the associa-

tion between biomarkers and functional outcomes.

Materials and methods

This study complied with the Declaration of Helsinki, and the retrospective study protocol was

approved by the institutional ethics committee of Kawasaki Medical School.

Subjects

This was a single-center, prospective, observational study. We enrolled patients with acute

ischemic stroke with internal carotid artery (ICA) or middle cerebral artery (MCA) occlusion

who were admitted to Kawasaki Medical School Hospital within 24 hours of onset since June

2016. Patients aged 20 years or older who provided written informed consent were registered,

and there was no upper age limit or minimum Alberta Stroke Program Early CT Score

(ASPECTS) [17]. The study aimed to enroll 100 patients, and recruitment was censored in

February 2020.

Data collection

Data, including age, sex, medical history, pre-stroke modified Rankin scale (mRS) score [18],

stroke subtype [19], National Institutes of Health Stroke Scale (NIHSS) score, sites of occluded

vessels, laboratory findings, and ASPECTS [17], which were determined based on computed

tomography (CT) and magnetic resonance imaging (MRI) at admission, and the use of intra-

venous recombinant tissue plasminogen activator (rt-PA), were acquired from the patients’

medical records. If both CT and MRI were performed, MRI findings were prioritized to deter-

mine the ASPECTS value.

Reperfusion was evaluated at the end of the endovascular procedures and/or 24 ± 12 h after

admission using magnetic resonance angiography (MRA). Successful angiographic reperfu-

sion was identified based on grade 2b or greater using the expanded thrombolysis in cerebral

infarction (eTICI) system in digital subtraction angiography [20], and grade 2 or greater using

modified Mori grade in MRA [21].

Mechanical thrombectomy was defined as a procedure with arterial catheterization with a

stent retriever or catheter aspiration, or both, with or without the delivery of a thrombolytic
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agent. The decision on whether to perform endovascular treatment and the type of treatment

for each patient was left to the discretion of the attending physicians. The total number of

device passes attempted before angiographic reperfusion or at the end of the procedure was

reviewed for each patient. We classified the techniques as follows: “catheter aspiration,” “stent

retriever,” and “combined”.

Outcomes

The primary outcome of this study was hemorrhagic transformation within a week of admis-

sion. The secondary outcomes were the development of malignant edema, neurological deteri-

oration, and functional outcomes at three months after stroke onset. CT or MRI scans were

performed 72 ± 12 h after admission to evaluate hemorrhagic transformation and edema. In

addition, evaluations were performed in accordance with clinical necessity. According to the

European-Australasian Acute Stroke Study II definitions [22], hemorrhagic transformation

was classified as hemorrhagic infarction type 1 (HI1) or type 2 (HI2), and parenchymal hema-

toma, as type 1, type 2, or remote parenchymal hematoma. As reported previously, relevant

hemorrhagic transformation was defined as HI2 and any type of PH [13]. Malignant edema

was defined as the presence of midline shift� 5 mm [23, 24]. All brain images were evaluated

by an experienced neurologist (T.K.) who was blinded to the levels of serum biomarkers and

functional outcomes. Neurological deterioration was defined as an increase of�4 points in the

NIHSS score within a week of admission. Functional outcome scores based on mRS were col-

lected three months after stroke onset. The patient follow-up method has been described previ-

ously [25].

Serum biomarker measurement

Serum samples were taken immediately upon admission at the emergency department before

rt-PA administration or endovascular therapy and stored at< -80˚C. Serum biomarker levels

were determined using commercially available quantitative ELISA kits as follows: MMP-9,

human ELISA kits for MMP-9 (PK-EL-64106, PromoCell, Heidelberg, Germany), amyloid

precursor protein (APP) 770, Human ELISA kit of APP770 (#27736, Immuno-Biological Lab-

oratories, Fujioka, Japan); endothelin-1, endothelin-1 ELISA kit (ADI-900-020A, EnzoLi-

fescience, Lausen, Switzerland); S100B, Human ELISA kit of S100B (DY1820-05, DRG

MedTek, Warsaw, Poland); and claudin-5, human claudin-5 ELISA kit (NBP2-75332, Novus

Biologicals, CO, USA).

Statistical analysis

Serum biomarker levels were compared according to hemorrhagic transformation type, pres-

ence or absence of midline shift, and neurologic deterioration. In addition, the association

between serum biomarker levels and baseline characteristics such as age, NIHSS score, and

ASPECTS was evaluated. Finally, we evaluated the association between serum biomarker levels

and functional outcomes. Additionally, we analyzed the association between serum biomark-

ers and favorable outcome (mRS� 2).

Continuous variables were reported as means and standard deviations or medians and

interquartile ranges, while categorical variables were reported as numbers and percentages.

Continuous variables were compared using t-tests. Correlations were tested using the Pearson

correlation coefficient. Statistical significance was set at P<0.05. All analyses were performed

using SAS on demand (SAS 9.4, SAS Institute Inc., Cary, NC, USA).
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Results

Patients characteristics

A total of 258 patients underwent screening. Among them, 96 patients with serum samples

provided written informed consent. Four patients were excluded because they did not have

ICA or MCA occlusion but other vessel occlusion, and one patient was excluded because of

poor imaging quality. As a result, 91 patients were included in this study (Fig 1).

Baseline patient characteristics are shown in Table 1. The mean age was 77 years, and 60%

of the patients were men. The mean NIHSS score was 18. The most frequently occluded vessel

was the horizontal segment of the MCA (62%), followed by the intracranial ICA (27%) and the

insular segment of the MCA (6%). Intravenous rt-PA was administered to 28 (31%) patients,

Fig 1. Patient selection. LVO, large vessel occlusion.

https://doi.org/10.1371/journal.pone.0256170.g001
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and 54 (59%) patients underwent mechanical thrombectomy. As the first attempt, stent

retriever was used in 18 (33%) patients, catheter aspiration in 20 (37%), and the combination

of both in 16 (30%). Reperfusion was obtained within 36 h of admission in 67 patients (77%).

Primary outcome

Relevant hemorrhagic transformation was observed in 17 (19%) patients, and parenchymal

hematoma, 4 (4%) patients. The levels of serum biomarkers according to the hemorrhagic

transformation type are shown in Fig 2. MMP-9 (no hemorrhagic transformation or HI1:

46 ± 48 vs. relevant hemorrhagic transformation: 15 ± 4 ng/mL, P = 0.30), APP770 (80 ± 31 vs.

85 ± 8 ng/mL, P = 0.53), endothelin-1 (7.0 ± 25.7 vs. 2.0 ± 2.1 pg/mL, P = 0.42), S100B (13 ± 42

Table 1. Baseline patient characteristics.

Characteristics n = 91

Age, years 77 ± 11

Male sex 55 (60%)

Hypertension 60 (66%)

Diabetes 21 (23%)

Dyslipidemia 33 (36%)

Atrial fibrillation 45 (49%)

Antiplatelet use 20 (22%)

Anticoagulant use 17 (19%)

Modified Rankin Scale 0 (0–3)

NIHSS score 18 ± 8

Stroke subtype

Cardioembolic 59 (65)

Large artery atherosclerosis 12 (13)

Other� 20 (22)

Leukocyte count, /μL 7,882 ± 2794

Platelet count, ×103/μL 208 ± 100

PT-INR 0.99 (0.94–1.06)

ASPECTS 7 (4–9)

Occluded vessels

Extracranial internal carotid artery 4 (4)

Intracranial internal carotid artery 25 (27)

The horizontal segment of MCA 56 (62)

The insular segment of MCA 6 (6)

Intravenous alteplase 28 (31)

Mechanical thrombectomy 54 (59%)

Onset-to-door time, min 155 (72–412)

Onset-to-puncture time, min† 204 (149–311)

Door-to-reperfusion time, min† 143 (108–185)

Puncture-to-reperfusion time, min† 70 (49–98)

Reperfusion within 36h of admission 67 (77%)

Data are presented as median (interquartile range), mean ± standard deviation, or number (percentage).

ASPECTS = Alberta Stroke Programme Early CT Score; MCA = middle cerebral artery; NIHSS = National Institutes

of Health Stroke Scale.

�Other causes and undetermined etiology.

†Only among patients who underwent mechanical thrombectomy.

https://doi.org/10.1371/journal.pone.0256170.t001
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vs. 12 ± 15 pg/mL, P = 0.97), and claudin-5 (1.7 ± 2.3 vs. 1.9 ± 1.5 ng/mL, P = 0.68) levels on

admission were not associated with the development of relevant hemorrhagic transformation.

Moreover, neither MMP-9 (44 ± 44 vs. 33 ± 12 ng/mL, P = 0.62), APP770 (81 ± 32 vs. 93 ± 8

ng/mL, P = 0.44), endothelin-1 (6.3 ± 23.7 vs. 0.4 ± 0.6 pg/mL, P = 0.62), S100B (13 ± 39 vs.

14 ± 20 pg/mL, P = 0.96), nor claudin-5 (1.7 ± 2.2 vs. 1.5 ± 1.1 ng/mL, P = 0.82) levels were

associated with parenchymal hematoma. In patients who underwent mechanical thrombect-

omy, the level of claudin-5 was higher in patients with relevant hemorrhagic transformation

than those without (1.2 ± 1.0 vs. 2.1 ± 1.7 ng/mL, P = 0.0181, S1 Fig).

There was no significant association between the distribution of the techniques used as the

first pass and hemorrhagic transformation (P = 0.64). On the contrary, patients who under-

went�3 passes had more relevant hemorrhagic transformation than those with<3 passes

(44% vs. 8%, P = 0.004, S2 Fig).

Secondary outcomes

Malignant edema, defined as the presence of midline shift� 5 mm, was observed in 10 (11%)

patients. The levels of serum biomarkers according to the presence or absence of a midline

shift are shown in Fig 3. Neither MMP-9 (without midline shift: 44 ± 45 vs. with midline shift:

46 ± 29 ng/mL, P = 0.92), endothelin-1 (6.5 ± 2.6 vs. 2.4 ± 3.1 pg/mL, P = 0.59), S100B (13 ± 40

vs. 12 ± 16 pg/mL, P = 0.93), nor claudin-5 (1.8 ± 2.3 vs. 1.2 ± 0.9 ng/mL, P = 0.45) levels on

admission predicted the development of midline shift, while the APP770 level was marginally

higher in patients with midline shift than those without (79 ± 29 vs. 97 ± 41 ng/mL, P = 0.084).

Among patients who achieved successful reperfusion, the levels of APP770 were higher in

patients with midline shift than in those without (75 ± 26 vs. 118 ± 41 ng/mL, P = 0.003, S3

Fig). The association between baseline characteristics and APP770 levels is shown in S4 Fig.

The levels of APP770 were negatively correlated with age (r = -0.32, P = 0.002); however, there

was no significant association between the levels of APP770 and NIHSS score (r = -0.05,

P = 0.62) or ASPECTS (r = -0.05, P = 0.63).

Neurological deterioration was observed in 8 (9%) patients. The levels of serum biomarkers

according to the presence or absence of neurological deterioration are shown in Fig 4. Neither

MMP-9 (45 ± 45 vs. 36 ± 21 ng/mL, P = 0.61), APP770 (82 ± 32 vs. 76 ± 28 ng/mL, P = 0.59),

endothelin-1 (6.4 ± 24.2 vs. 3.1 ± 5.2 pg/mL, P = 0.70), S100B (13 ± 40 vs. 7 ± 15 pg/mL,

Fig 2. Association between hemorrhagic transformation and biomarkers. There was no significant association between hemorrhagic transformation type and

serum biomarker levels. APP, amyloid precursor protein; HI, hemorrhagic infarction; HT, hemorrhagic transformation; MMP-9, matrix metalloproteinase-9; PH,

parenchymal hematoma; RHT, relevant hemorrhagic transformation.

https://doi.org/10.1371/journal.pone.0256170.g002
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P = 0.69), nor claudin-5 (1.8 ± 2.3 vs. 1.1 ± 1.3 ng/mL, P = 0.45) levels on admission was associ-

ated with neurological deterioration.

The association between the modified Rankin Scale score and serum biomarkers is shown

in Fig 5. Neither MMP-9 (r = 0.09, P = 0.42), APP770 (r = -0.06, P = 0.60), endothelin-1

(r = 0.07, P = 0.51), S100B (r = 0.07, P = 0.52), nor claudin-5 (r = 0.04, P = 0.75) levels on

admission were associated with functional outcomes. There was no significant association

between serum biomarkers and favorable outcome (S1 Table).

Discussion

In this single-center prospective study, we examined whether the levels of serum MMP-9,

APP770, endothelin-1, S100B, and claudin-5 predict the development of hemorrhagic trans-

formation after large vessel occlusion stroke. Contrary to our expectation, none of these bio-

markers were significantly associated with hemorrhagic transformation in our entire cohort,

except that the level of claudin-5 was higher in patients with relevant hemorrhagic transforma-

tion than in those without when limited to patients who underwent mechanical

Fig 3. Association between brain edema and biomarkers. APP770 levels were marginally higher in patients with a midline shift� 5 mm than in those without

(79 ± 29 vs. 97 ± 41 ng/mL, P = 0.084). APP for amyloid precursor protein; MMP-9, matrix metalloproteinase-9.

https://doi.org/10.1371/journal.pone.0256170.g003

Fig 4. Association between neurological deterioration and biomarkers. There was no significant association between neurological deterioration and the levels of

serum biomarkers. APP for amyloid precursor protein; MMP-9, matrix metalloproteinase-9.

https://doi.org/10.1371/journal.pone.0256170.g004
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thrombectomy. The levels of APP770 were marginally associated with severe brain edema.

Our study also revealed that none of these biomarkers was associated with functional

outcomes.

The usefulness of serum biomarkers for predicting hemorrhagic transformation and edema

has been previously reported [11–16]. MMP-9 is a proteolytic enzyme that degrades the endo-

thelial basal lamina and plays a key role in producing edema and hemorrhagic transformation

[26–28]. The overexpression of the vasoconstrictor endothelin-1 leads to brain edema, and is a

possible biomarker of BBB disruption [15, 29]. S100B is a calcium-binding protein, and it is

known that the elevation of serum S100B level reflects BBB damage because the concentration

of the protein is much lower than that of cerebrospinal fluid [30, 31]. Claudin-5 is a tight junc-

tion protein, and is one of the structural components of the BBB [11]. It seems reasonable that

these biomarkers are associated with the course after cerebral infarction. However, except for

Claudin-5, we failed to demonstrate the predictive role of these serum biomarkers for hemor-

rhagic transformation in the era of mechanical thrombectomy. There are several reasons for

this. Among patients who underwent mechanical thrombectomy, the degree of direct vessel

wall damage by endovascular procedures may be more important than BBB damage due to

ischemia in this context; more than three passes of stent retriever predict parenchymal hema-

toma [32], and the rate of symptomatic intracranial hemorrhage or parenchymal hematoma

exponentially increases with the elapsed time after puncture [33]. Also, the relatively low num-

ber of patients who received intravenous rt-PA may have affected the results, because rt-PA is

known to activate MMP-9 [34].

In the present study, the levels of APP770 were marginally higher among patients with a

midline shift than in those without. APP770 is a different APP isoform than the neuronal

APP695. APP770 is secreted by inflamed endothelial cells and activated platelets [35]. Among

patients with small subcortical infarcts, we have previously reported that APP770 levels are

higher in patients with progressive neurological deficits than in those without, suggesting that

APP770 might be a biomarker of cerebral small vessel disease [36]. We measured APP770 lev-

els in patients with large vessel occlusion with the assumption that they reflect endothelial dys-

function. Our findings suggest that the levels of APP770 on admission may predict the extent

of reperfusion injury, as the association between APP770 and brain edema was stronger in

patients who achieved successful reperfusion than in those who did not.

Space-occupying cerebral edema subsequent to a large infarction can lead to neurologic

deterioration and brain herniation. The natural course in patients with malignant edema is

disastrous, with mortality rates up to 80% [37]. Reperfusion, especially when late, may aug-

ment brain edema [4, 5]. Therefore, predicting brain edema may help to decide who should

not undergo reperfusion therapy. In addition, as early decompressive surgery has been shown

to reduce mortality and disability in patients with malignant edema, it is important to identify

patients who are at risk for developing malignant edema. Further studies are needed to deter-

mine the predictive value of serum APP770 levels for brain edema in patients with large vessel

occlusion stroke.

Some serum biomarkers have been reported in patients who do not undergo mechanical

thrombectomy, but they were not evaluated in the present study. Cellular fibronectin and

platelet-derived growth factor-CC are known predictors of hemorrhagic transformation [13,

38]. However, we were unable to measure them appropriately. A high serum homocysteine

level and low Caveolin-1 level have been reported as independent predictors of hemorrhagic

Fig 5. Association between functional outcome and biomarkers. There was no significant association between the

modified Rankin Scale score at three months after stroke and serum biomarker levels.

https://doi.org/10.1371/journal.pone.0256170.g005
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transformation [39]. Furthermore, some non-serologic biomarkers have been reported in

patients who undergo mechanical thrombectomy. For example, a high admission neutrophil-

to-lymphocyte ratio has been reported as an independent predictor of symptomatic intracra-

nial hemorrhage after mechanical thrombectomy [40, 41]. In addition, patient age, smoking,

ASPECTS, general anesthesia, and embolization in a new territory are reportedly associated

with hemorrhagic transformation [9]. Poor collateral status is also associated with hemor-

rhagic transformation [9, 42]. Using serum biomarkers in combination with these biomarkers

may contribute to accurate prediction of patients who are at a higher risk of hemorrhagic

transformation.

This study has several limitations. First, the number of patients from whom informed con-

sent was obtained was lower than to those who were screened. This is due to the difficulty in

obtaining written informed consent in hyperacute situations. Selection bias may have affected

our findings. Second, we did not evaluate the correlation between serum biomarkers and per-

fusion imaging, although perfusion status is reported to be associated with hemorrhagic trans-

formation [43]. Finally, this study may be underpowered, and multivariate analysis could not

be performed due to the limited sample size.

Conclusions

Previously reported serum biomarkers did not predict hemorrhagic transformation in this

cohort of patients with large vessel occlusion stroke, except that the level of claudin-5 was

higher in patients with relevant hemorrhagic transformation than in those without in the sub-

population who underwent mechanical thrombectomy. On the other hand, the levels of

APP770 were marginally associated with brain edema. Further studies are needed to identify

the best biomarker for hemorrhagic transformation in the era of mechanical thrombectomy.
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