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Abstract 

Melanoma will affect an estimated 73,000 new cases this year and result in 9,000 deaths, yet precise 
diagnosis remains a serious problem. Without early detection and preventative care, melanoma can quickly 
spread to become fatal (Stage IV 5-year survival rate is 20-10%) from a once localized skin lesion (Stage IA 5-
year survival rate is 97%). There is no biomarker for melanoma in clinical use, and the current diagnostic 
criteria for skin lesions remains subjective and imprecise. Accurate diagnosis of melanoma relies on a 
histopathologic gold standard; thus, aggressive excision of melanocytic skin lesions has been the mainstay of 
treatment. It is estimated that 36 biopsies are performed for every melanoma confirmed by pathology among 
excised lesions. There is significant morbidity in misdiagnosing melanoma such as progression of the disease 
for a false negative prediction vs the risks of unnecessary surgery for a false positive prediction. Every year, 
poor diagnostic precision adds an estimated $673 million in overall cost to manage the disease. 

Currently, manual dermatoscopic imaging is the standard of care in selecting atypical skin lesions for 
biopsy, and at best it achieves 90% sensitivity but only 59% specificity when performed by an expert 
dermatologist. Many computer vision (CV) algorithms perform better than dermatologists in classifying skin 
lesions although not significantly so in clinical practice. Meanwhile, open source deep learning (DL) techniques 
in CV have been gaining dominance since 2012 for image classification, and today DL can outperform humans 
in classifying millions of digital images with less than 5% error rates. Moreover, DL algorithms are readily run 
on commoditized hardware and have a strong online community of developers supporting their rapid adoption. 
In this work, we performed a successful pilot study to show proof of concept to DL skin pathology from images. 

However, DL algorithms must be trained on very large labelled datasets of images to achieve high 
accuracy. Here, we begin to assemble a large imageset of skin lesions from the UCSF and the San Francisco 
Veterans Affairs Medical Center (VAMC) dermatology clinics that are well characterized by their underlying 
pathology, on which to train DL algorithms. If trained on sufficient data, we hypothesize that our approach will 
significantly outperform general dermatologists in predicting skin lesion pathology. We posit that our work will 
allow for precision diagnosis of melanoma from widely available digital photography, which may optimize the 
management of the disease by decreasing unnecessary office visits and the significant morbidity and cost of 
melanoma misdiagnosis. 

Background and Significance 

Melanoma misdiagnosis is a significant public health problem 
Over the last two decades the number of patients in the United States diagnosed with melanoma has 

steadily risen to make it the fifth most common cancer in the nation. This year alone, an estimated 73,000 new 
cases and 9,000 deaths are expected to occur due to the disease 1.  Although early stages are highly 
survivable (Stage IA 5-year survival rate is 97%), without early detection and preventative care, melanoma can 
quickly spread and become fatal (Stage IV 5-year survival rate is 20-10%) 2,3. Poor diagnostic precision adds 
an estimated $673 million in overall cost to the management of the disease4–6 
Melanoma pathophysiology and staging 

Melanoma typically arises in pigment-producing cells known as melanocytes that have undergone 
adverse genetic mutation most frequently attributed to ultraviolet light (UV) radiation exposure 7–9. Aside from 
UV exposure, some rare hereditary mutations in genes such as CDKN2A, CDK4, and MC1R can also be good 
indicators for patients with high risk of developing familial melanoma (patients that have families with a history 
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of melanoma) 10.  The progression of the disease is best characterized both clinically and histopathologically, 
and it can rapidly progress from stage 0 (melanoma in situ) to stage 4 (metastatic melanoma) 11 without proper 
diagnosis and management. 
Accurate clinical diagnosis of melanoma can be challenging 

The ABCDE method for visually assessing pigmented skin lesions for malignancy 12 outlines 
Asymmetry, Border irregularity, Color variegation, Diameter (>6mm), and Evolution as clinical features to follow 
13. However, diagnostic accuracy of melanoma by the unaided eye is disappointing 14,15. The melanoma yield 
on biopsy of suspicious lesions is only 1 in 36 16.  Dermoscopy 17 facilitates visualization of morphological 
features which are not discernible by examination with the naked eye 18, and it enables better diagnosis as 
compared to unaided eye 19–21 with an improvement in diagnostic sensitivity of 10–30% 22. However, 
dermoscopy may actually lower the diagnostic accuracy in the hands of inexperienced dermatologists 23–26, 
since this method requires great deal of experience to differentiate skin lesions 27. Experts achieve 90% 
sensitivity and 59% specificity, while this performance significantly worsens with inexperience and drops to 
62%-63%for general practitioners 28,29. Currently available computer vision (CV) algorithms perform only 
marginally better in practice with no significant improvement in diagnosis relative to a dermatologist 30. 
Histopathology remains the gold standard for accurate melanoma diagnosis 31 although the rate of discordant 
readings between pathologists can be high: when 11 expert pathologists reviewed 37 ‘classic’ melanocytic 
lesions there was total agreement in only 30% of cases; other studies report up to a 50% discordance rate 
among pathologists 32–36. Thus the diagnostic accuracy of melanoma remains problematic independent of the 
method used for diagnosis. 
Deep learning is emerging because of Big Data  

Deep learning (DL) emerged from the traditional neural network paradigm of artificial intelligence that 
was developed in the 1980s to computationally model neuronal activity in the brain.  An artificial neuron is 
modeled to fire around an activation threshold (or bias) and differentially weighted inputs. However, to interpret 
complex signals and patterns requires sophisticated models of computational neurons that are chained 
together to propagate signals much like the visual system in brain interprets light signals with successive 
cognitive interpretation (retina, V1, V2, etc.) in order to classify objects.  Today, the most useful neural network 
models are composed of thousands of multi-layered artificial neurons that are parameterized by exponentially 
more biases and weights that require massive datasets to estimate.  However, once these networks are 
trained on sufficiently large high quality labeled datasets, they generally outperform other machine learning 
methods.  The computationally intensive process of accurately estimating their parameters by training on 
massive datasets constitutes the paradigm of DL.  Furthermore, 
the exponential growth in computational power and the recent 
emergence of GPU computation, together with the abundance 
of large data sets to train on makes DL application more 
practical now than ever before. 
Deep Learning facilitates the most accurate image 
classification  

Big data, cheap computation, and better algorithms are 
making breakthroughs in artificial intelligence such as deep 
learning (DL) more possible now than ever before 37. Today, DL 
is being applied to a variety of tasks with extraordinary results 
38–53, but the most remarkable progress has been made in the 
field of computer vision (CV). ImageNet holds an annual Large 
Scale Visual Recognition Challenge (ILSVRC) competition 54,55 
for teams to classify 1.2 million images of objects into 1,000 
categories ().  In 2010, all teams used traditional CV algorithms 
with accuracy rates <71.8%. Only Incremental progress was 

 
Figure 1: Deep Learning far outperforms traditional 
computer vision in image recognition.  The figure 
shows the relative performance improvement in error 
rates on ImageNet’s Large Scale Visual Recognition 
Challenge (ILSVRC) to classify one million images 
into one thousand categories 
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made until 2012 when Alex Krizhevsky et al. submitted the AlexNet 56 DL approach with a 83.6% accuracy rate 
that far outperformed the competition.  By ILSVRC 2013, all other participants embraced DL, and Google won 
ILSVRC 2014 with its original Inception model architecture 57.  Since then, Microsoft first outperformed humans 
with > 95% accuracy rates classifying the ImageNet dataset 58 and Google has subsequently leap-frogged to 
lead image classification performance with its latest open Inception v3 model 59 that achieves > 96.5% 
accuracy rates. This proposal is innovative because it leverages the impressive performance of general state-
of-the-art deep learning models to improve the current standards of digital mammography screening. 
Open source DL frameworks are becoming popular 

This project will utilize popular open source deep learning frameworks such as Caffe 60, Theano 61,62, 
and Torch 63. All of these frameworks have contributed to numerous publications and are implemented 
everywhere from academia to industry. Many of the state-of-
the-art algorithms that have won computer vision competitions 
in the past are published in public repositories tied to each of 
these frameworks. For example, Caffe, the deep learning 
framework developed out of the Berkeley Vision Lab, has their 
own “Model Zoo” where researchers and community members 
can publish and share pre-trained models. The repository not 
only includes the first model used to win ImageNet in 2012 58, 
but also the latest networks Google uses for their own large 
scale image classification tasks 57. The active community of 
developers that are supporting these open tools will be a 
valuable resource to fine-tuning pre-existing models as well as 
to build the novel DL architecture to accurately diagnose skin 
lesion pathology as we propose here. 

Results 

We performed a successful pilot study to show proof of 
concept of DL skin pathology from publically available images. 
Publically available digital images of skin lesions 

Google crawls the Internet to catalog every available 
image online, and we searched Google Images for 
“melanocytic skin lesion”.  The majority of images of 
melanocytic skin lesion came from DermNet Skin Atlas 64, the 
largest independent photo dermatology source dedicated to 
online medical education.  However only low resolution 
watermarked lesions (Figure 2) were freely available to 
download while high resolution images were available at $50 / 
image.  We scraped freely available low quality images from 
DermNet and labeled them with DermNet assigned diagnoses. 
In all we identified 275 images labeled by DermNet comprising 
170 atypical lesions (42 atypical nevi + 128 malignant 
melanoma) and 115 benign lesions (25 halo nevi + 80 
melanocytic nevi). 
Deep Learning features of digital images 

We utilized a type of algorithm called transfer learning 
to train a DL algorithm to classify skin lesions as typical or 
atypical.  Transfer learning is applicable to our limited dataset 
on standard personal computer hardware because it assumes 

 
Figure 2: Example Malignant melanoma photo from 
the DermNet Skin Atlas 
 

 
Figure 3: TSNE plot of 275 images 

 
 

 
Figure 4: Receiver operating curve for predicting skin 
pathology from 275 images with 10 fold cross 
validation. 
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a DL reference model for feature selection, with subsequent classification of this imageset by traditional 
machine learning algorithms. We utilized the BVLC AlexNet model from Caffe Model Zoo to reduce the pixels 
of each digital image to 4,096 features.  We used the Python programming language with scikit-learn open 
libraries to project the 4,096 features learned from the DL algorithm into 2 dimensions with the TSNE method 
in order to visualize the relationship among 275 images (Figure 3).  We found that even with the low quality 
watermarked DermNet images, were were able to identify structure in the relatedness of images.  Specifically, 
nevi clustered together as did images with hair, as well as different subsets of melanoma.  Finally, to assess 
the predictive power of the features extracted by DL, we used a support vector machine (SVM) classifier 
trained on the 275 DermNet images with parameter optimization by cross validation.  We found the area under 
the curve (AUC) of 0.83 after 10-fold cross validation of the SVM (Figure 4), and an AUC of of 0.80 to 0.90 
represents a “good” measure of accuracy by most standards.  We expect that 0.83 is the lower bound on the 
accuracy of our approach as we will increase our predictive power by training more sophisticated models with 
much more data.  
 
Conclusion 

At this time, computers cannot replace an experienced clinician’s intuition. However, with proficient 
training on sufficient high-quality data, CV algorithms will eventually match, if not exceed, clinical diagnostic 
accuracy of dermatologists. Applying DL to a large well-characterized prospectively collected clinical imagesets 
may indeed yield new diagnostic tools to more accurately diagnose skin cancer.  Precision diagnostics of 
melanoma may serve as a first step in significantly reducing the mortality rate and improving the overall 
management of the disease. 
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