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Abstract
Women with obesity who develop breast cancer have a worsened prognosis with diminished survival rates and increased 
rates of metastasis. Obesity is also associated with decreased breast cancer response to endocrine and chemotherapeutic 
treatments. Studies utilizing multiple in vivo models of obesity as well as human breast tumors have enhanced our under-
standing of how obesity alters the breast tumor microenvironment. Changes in the complement and function of adipocytes, 
adipose-derived stromal cells, immune cells, and endothelial cells and remodeling of the extracellular matrix all contribute 
to the rapid growth of breast tumors in the context of obesity. Interactions of these cells enhance secretion of cytokines and 
adipokines as well as local levels of estrogen within the breast tumor microenvironment that promote resistance to multiple 
therapies. In this review, we will discuss our current understanding of the impact of obesity on the breast tumor microenvi-
ronment, how obesity-induced changes in cellular interactions promote resistance to breast cancer treatments, and areas for 
development of treatment interventions for breast cancer patients with obesity.
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1 Introduction

Obesity is a global epidemic, with the World Health Organi-
zation estimating that worldwide adult obesity has nearly 
tripled since 1975 [1, 2]. In the USA, 70% of adults have a 
body mass index (BMI) classified as overweight or obese 
[3]. Obesity significantly increases the risk for developing 
postmenopausal breast cancer [4–6]. On average, women 

undergo menopause between the ages of 45 and 55 years 
old, and approximately 80% of women diagnosed with breast 
cancer are over the age of 50, and the median age at diag-
nosis is 62 years of age [7, 8]. Postmenopausal women are 
most frequently diagnosed with breast cancers that express 
estrogen receptor alpha (ERα) and progesterone receptor 
(PR), and risk for diagnosis with this type of breast cancer 
is strongly correlated with increasing BMI [9–12]. Women 
with obesity are more likely to develop tumors of the lumi-
nal B molecular subtype, which are characterized by higher 
proliferation rates and reduced relapse-free survival [13, 14]. 
This subtype includes ERα+ and  PR− tumors, in which 66% 
of patients fail to respond or develop early resistance to the 
selective ER modulator, tamoxifen [15, 16]. The association 
of obesity with other breast cancer subtypes in postmeno-
pausal women is less clear. Epidemiological studies examin-
ing the impact of obesity on the incidence of triple-negative 
breast cancers (TNBCs), which lack expression of ERα, PR, 
and HER2, have shown conflicting results [11, 12, 17, 18].

In contrast, epidemiological studies suggest that obe-
sity reduces breast cancer risk in the general population of 
women prior to menopause [5, 6, 12], suggesting a com-
plex interaction between obesity and breast cancer risk. 
Similarly, while obesity increases the risk of ERα+ breast 
cancer in postmenopausal women, premenopausal women 
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with obesity may have reduced risk for this breast cancer 
subtype [11, 19, 20]. However, the incidence of TNBC may 
be enhanced in younger women with obesity [17, 19–21]. 
Racial differences may also impact breast cancer risk in 
young women, as elevated BMI is correlated with increased 
breast cancer risk in premenopausal Asian women [22]. 
Obesity may also worsen the impact of other underlying 
risk factors for breast cancer including familial risk factors, 
leading to elevated breast cancer risk in selected groups of 
young women with obesity [17, 20, 21, 23, 24].

Regardless of age or menopausal status, breast cancer 
patients who are obese have a significantly worse overall and 
breast cancer-specific survival compared to patients with a 
BMI in the healthy range [9, 25–27]. At the time of diag-
nosis, breast cancer patients with obesity more frequently 
present with tumors of a higher grade, larger tumor size, and 
lymph node involvement compared to patients with a BMI 
in the healthy range [9, 25, 26, 28]. Long-term follow-up 
of breast cancer patients revealed that individuals who are 
obese also developed metastatic disease more rapidly after 
diagnosis with a higher frequency of distant recurrence than 
patients with a BMI in the healthy range (18.5–24.9 kg/m2) 
[25, 26, 28, 29]. Since obesity enhances progression, it has 
been hypothesized that increased tumor size and grade of 
the primary tumor at the time of diagnosis may contribute 
to the clinically observed increase in metastatic frequency 
[30, 31]. However, both clinical and pre-clinical studies 
have suggested that changes in the microenvironment of 
the tumor and surrounding breast tissue under conditions 
of obesity could promote expansion of metastasis-initiating 
cells, such as tumor cells that undergo a partial epithelial-to-
mesenchymal transition (EMT), whereby tumor cells express 
mixed epithelial and mesenchymal genes [32–37]. Further-
more, systemic factors secreted from adipose tissue under 
conditions of obesity in the presence of a primary breast 
tumor could also enhance metastasis through recruitment of 
immune cell populations to distal metastatic sites [38–41]. 
Together, these studies suggest that obesity-induced changes 
in the tumor microenvironment may enhance tumor growth 
and aggressive characteristics leading to the clinically 
observed increased metastasis and worsened breast cancer 
survival in patients who are obese.

In addition to the increased risk of disease progression, 
breast cancer patients with BMI in the obese range are more 
likely to develop resistance to endocrine therapies and chem-
otherapies than women with BMI in the healthy range [25]. 
Postmenopausal women with a BMI greater than 30 kg/m2 
and ERα+ breast cancers treated with aromatase inhibitors 
anastrozole or letrozole showed significantly decreased treat-
ment efficacy compared to breast cancer patients with BMI 
in the healthy range [29, 42–44], yet no difference has been 
observed in the efficacy of the hormone therapy tamoxifen 
in breast cancer patients with differing BMI [43, 45]. While 

it has been hypothesized that the observed decrease in treat-
ment efficacy of aromatase inhibitors in women with obe-
sity could be due to an inadequate suppression of aromatase 
within adipose tissue [46], pre-clinical models have also sug-
gested that alterations in the stroma within and surround-
ing breast tumors may also impact responsiveness [47, 48]. 
Obesity has also been associated with diminished efficacy 
of breast cancer chemotherapy [49–52], resulting in worse 
overall patient survival following treatment. Differences in 
response to chemotherapy may also be due in part to changes 
in the breast tumor microenvironment. Breast tumors from 
women with obesity have an elevated incidence of des-
moplasia [53]. Desmoplastic tumors, which are character-
ized by increased numbers of cancer-associated fibroblasts 
(CAFs) within the stroma as well as deposition of fibrillar 
collagens, are associated with diminished survival in breast 
cancer patients [54–57]. Furthermore, desmoplasia in TNBC 
is associated with reduced relapse-free survival following 
chemotherapy [55, 56, 58, 59]. While other aspects of the 
breast tumor microenvironment have been recently reviewed 
[60], in this review, we will examine how obesity alters the 
cellular and extracellular structure of the tumor microenvi-
ronment to promote the growth of aggressive, treatment-
resistant breast tumors.

2  Cancer‑associated fibroblasts 
and adipocytes

CAFs have diverse functions in the tumor microenvironment 
ranging from ECM deposition and remodeling to signal-
ing interactions with cancer cells and surrounding immune 
cells. Although CAFs in breast tumors have been tradition-
ally identified using the marker alpha-smooth muscle actin, 
CAFs are a heterogeneous population of cells that can be 
separated into subsets based on the expression of markers 
including fibroblast activation protein (FAP), fibroblast-
specific protein-1 (FSP-1/S100A4),  platelet-derived growth 
factor alpha (PDGFα) and PDGFβ [61–64]. CAFs have been 
suggested to originate from various sources, including resi-
dent fibroblasts, bone marrow-derived mesenchymal stem 
cells, pericytes, and tumor or endothelial cells that have 
undergone a mesenchymal transition [65, 66]. The impact 
of obesity on specific CAF populations within breast tumors 
is an emerging field. Obesity-induced changes in the func-
tion of stromal cells in the surrounding adipose tissue prior 
to tumor formation suggest that obesity could significantly 
alter the composition and function of CAF within the tumor 
stroma (Fig. 1).

Adipose tissue contains mesenchymal cells with the 
capacity for self-renewal and multipotent differentiation, 
including adipocytes, osteoblasts, and fibroblasts [67, 68]. 
Challenges exist in identifying and isolating adipose stem 
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cells from other stromal cells present within adipose tissue, 
and studies examining adipose stem cells within the mam-
mary gland frequently isolate a mixture of stromal cells, 
termed adipose-derived stromal cells. Adipose-derived stro-
mal cells have the potential to differentiate into CAF within 
the tumor microenvironment, leading to mammary tumor 
progression [69], and obesity has been shown to promote 
adipose-derived stromal cell differentiation into myofibro-
blasts within tumors [53, 70, 71]. Adipose-derived stromal 
cells are expanded in obesity and can traffic from white adi-
pose tissue into mammary tumors to promote growth [72]. 
Interestingly, obese breast cancer survivors have elevated 
circulating adipose-derived stromal cells compared to lean 
patients [73]. In pre-clinical models, increased numbers of 
these circulating cells play a role in distal metastases [72] 
through protection of circulating tumor cells from shear 
stress by enhancing cellular adhesions, preventing tumor cell 
apoptosis by activating cell survival pathways, and establish-
ing metastatic niches at distal sites [74, 75].

Several co-culture experiments have demonstrated adi-
pose-derived stromal cells from patients with obesity pro-
mote tumor cell migration, proliferation, and invasion [33, 
34, 37, 76]. After exposure to adipose-derived stromal cells 
isolated from patients with obesity, breast cancer cells dem-
onstrated increased ability to grow in suspension as tumor-
spheres, suggesting that the cancer cells had enhanced stem 
cell-like properties [34, 35, 37]. The increased invasive 
properties of tumor cells after exposure to adipose-derived 

stroma cells were abrogated by insulin-like growth factor-1 
(IGF-1) neutralizing antibodies [37]. In a C(3)-Tag mouse 
model of basal breast cancer, smooth muscle actin-express-
ing myofibroblasts isolated from the mammary glands of 
obese mice produced elevated levels of hepatocyte growth 
factor (HGF), which significantly enhanced cancer cell 
proliferation and migration [70]. Adipose-derived stromal 
cells may also enhance the growth of ERα+ tumors. Adi-
pose-derived stromal cells isolated from patients with obe-
sity promoted secretion of leptin to regulate ERα+ MCF-7 
tumor cell growth and aggressive tumor cell properties 
[33]. Silencing of leptin in adipose-derived stromal cells 
from patients with obesity led to reduced MCF-7 tumor cell 
expression of markers associated with EMT and reduced 
metastasis [33]. Additionally, adipose-derived stromal cells 
contribute to enhanced local levels of estrogen through 
expression of aromatase. Elevated levels of the inflamma-
tory cytokine prostaglandin E2 in obesity led to downregu-
lation of p53 in adipose-derived stromal cells resulting in 
increased aromatase expression and enhanced potential for 
ERα+ tumor formation [77]. Adipose-derived stromal cells 
may also contribute to treatment resistance within the breast 
tumor microenvironment. Adipose-derived stromal cells iso-
lated from breast tissue from patients with obesity led to 
reduced sensitivity to the aromatase inhibitor, anastrozole, 
when co-cultured with MCF-7 cells in a 3D organotypic 
breast cancer model compared to adipose-derived stromal 
cells isolated from women with a healthy range BMI [47].

Fig. 1  Breast tumors from patients with obesity demonstrate 
increased tumor desmoplasia. Under conditions of obesity, breast 
tumors have more aligned collagen within and surrounding the tumor 
as well as increased ECM components, including hyaluronan. CAFs 
from multiple sources, including resident fibroblasts, adipocyte-
derived fibroblasts, and adipose-derived stromal cells, are increased 
in the tumor microenvironment in obesity and promote aggressive 

cancer cell growth through secretion of growth factors, elevation of 
ECM remodeling enzymes, and local production of estrogen through 
aromatase activity. Adipocytes within the tumor microenvironment 
alter tumor cell metabolism by enhancing fatty acids, secretion of 
growth factors and adipokines, and further elevating local levels of 
estrogen. Together, these cells contribute to chemotherapy resistance 
and accelerated breast tumor growth observed in patients with obesity
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Breast adipose tissue exists adjacent to mammary ducts 
such that when breast tumors form, tumors are in close 
proximity to adipocytes. The proximity of cancer cells to 
adipocytes leads to the generation of fibroblast-like cells, 
termed adipocyte-derived fibroblasts, which may also be 
incorporated into the tumor stroma [78, 79]. Interestingly, 
adipocyte-derived fibroblasts do not express smooth mus-
cle actin [78], which may contribute to the heterogeneity of 
markers observed in breast CAF. Loss of lipid droplets in 
adipocytes may be mediated in part through expression of 
stromelysin-3, which was found to be highly expressed in 
adipocytes at the invasive border of human breast tumors 
and diminished adipocyte differentiation in vitro [80]. It 
remains to be determined how obesity may alter the behav-
ior of the adipocyte-derived fibroblasts within the tumor 
microenvironment.

Adipocytes have also been shown to enhance aggres-
sive characteristics of tumor cells, which may contribute 
to tumor progression and metastasis. Co-culture of mature 
adipocytes with breast cancer cells promoted tumor cell pro-
liferation [81–84], migration [81, 83, 85, 86], and invasion 
[83, 87]. When breast cancer cells were co-cultured with 
adipocytes isolated from patients with obesity, the capacity 
for tumor cell proliferation [32, 82], migration [32, 88], and 
invasion [88] was further increased. Numerous hypotheses 
have surfaced to delineate the mechanisms of how adipo-
cytes isolated under obese conditions promote these phe-
notypes, including increased production of proinflamma-
tory cytokines [87] and transcriptional regulation through 
microRNAs [83]. Balaban et al. demonstrated that breast 
cancer cells stimulated lipolysis of adipocytes isolated from 
obese patients in culture, leading cancer cells to accumulate 
adipocyte-derived fatty acids, which altered their cellular 
metabolism and induced proliferation and migration [32]. 
Obesity also regulates the expression of multiple adipokines 
through reduction of  p16INK4A in adipocytes [88]. Exposure 
of breast tumor cells to secretions of obesity-activated adipo-
cytes led to expression of EMT markers [88]. Promotion of 
breast cancer cell EMT has been associated with increased 
expression of forkhead box C2, twist-related protein-1, and 
N-cadherin, along with decreased expression of E-cadherin, 
in tumor cells [89]. Through changes in adipocytes induced 
by obesity, mature adipocytes may promote tumor cell 
motility and selection for tumor cells with more aggressive 
characteristics. Furthermore, adipocytes may play a critical 
role in promotion of the growth of ERα+ tumors through 
elevated aromatase expression, as differentiated adipocytes 
have fivefold higher aromatase activity than adipose-derived 
stromal cells [90].

Adipocytes may also contribute to diminished efficacy 
of endocrine and chemotherapy treatments. Crosstalk 
between breast cancer cells and adipocytes led to suppres-
sion of the anti-proliferative effect of tamoxifen through 

adipocyte-induced changes in cancer cell gene expression 
[84, 91]. Expression of fibroblast growth factor receptor-1 
(FGFR-1) on tumor cells is a known mediator of endocrine 
treatment resistance and is associated with poor breast can-
cer patient outcomes [92]. Adipocyte-mediated expression 
of FGF-1, the ligand for FGFR-1, is elevated under condi-
tions of obesity in mice and humans [92], suggesting that 
adipocytes may contribute to endocrine resistance through 
upregulation of FGF-1. In addition to endocrine therapy 
resistance, adipocytes from patients with obesity have been 
shown to promote doxorubicin chemotherapy resistance 
[93]. When co-culturing obese adipocytes with breast can-
cer cells, adipocytes promoted the production of cytoplasmic 
vesicles by cancer cells, which sequestered doxorubicin, and 
were then expelled in the extracellular space [93], result-
ing in chemotherapy resistance in the tumor cells. Together, 
these studies suggest that both CAF within tumors and sur-
rounding adipocytes may contribute both to the growth of 
aggressive breast tumors as well as resistance to treatment 
with multiple therapeutic agents.

3  Extracellular matrix

The extracellular matrix (ECM) provides structural and 
mechanical support for breast tumors, influences the migra-
tion of tumor and immune cells through its physical prop-
erties [94, 95], and is composed of a complex meshwork 
of collagen fibers, glycoproteins, and proteoglycans [96]. 
Accumulating evidence suggests that the tumor ECM may 
promote resistance to chemotherapy, either by providing 
a protective barrier that reduces the concentration of anti-
cancer drugs within tumors [97, 98] or by enhancing cancer 
cell survival [99]. Emerging evidence suggests that obesity 
significantly alters collagen alignment and ECM composi-
tion within breast tumors (Fig. 1). Collagen fibers, which 
are a major component of ECM, may impede tumor inva-
sion by acting as a barrier against migration [100] or facili-
tate tumor cell invasion by acting as a directional scaffold 
for cellular movement based on the fiber orientation [101]. 
Tumor-associated collagen signatures (TACSs) of collagen 
fiber organization and alignment were identified in human 
breast tumors as a predictive marker for tumor progression 
and invasiveness [102]. TACS-3, which is a signature that 
reflects high local collagen density and perpendicular align-
ment of collagen fibers to the tumor boundary, has been 
shown to be an independent prognostic indicator for disease-
free and disease-specific survival in breast cancer [103]. In 
breast tumors from women with obesity as well as mammary 
cell line-derived tumors in obese mice, collagen fibers were 
observed to be more aligned with each other within and sur-
rounding the tumors compared to those of women with a 
healthy range BMI and lean mice [53, 104]. This collagen 
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signature within breast tumors may also enhance metastasis, 
as breast tumor cells were observed migrating along aligned 
fibers and invading into the surrounding tissue [105]. Con-
sistent with these observations, in a model utilizing trans-
genic mice with stabilized collagen fibers, ERα+ mammary 
tumors demonstrated significantly increased numbers of cir-
culating tumor cells as well as increased metastasis [106]. 
Further studies are necessary to determine how targeting col-
lagen alignment and organization could decrease metastasis 
in pre-clinical models of obesity-associated breast cancer.

In addition to collagen fiber alignment, mouse studies 
suggest that elevated stiffness in tumors contributes to can-
cer cell aggression and compromises treatment efficacy 
[107]. In vitro, ECM deposited by adipose-derived stromal 
cells isolated from the mammary glands of obese mice was 
stiffer than ECM deposited by adipose-derived stromal cells 
of lean mice [53]. Furthermore, differences in ECM produc-
tion from adipose-derived stromal cells isolated from mam-
mary tissue of obese mice promoted proliferation and migra-
tion of cultured preneoplastic mammary epithelial cells [53]. 
One possibility for differences in stiffness of the ECM may 
be due to increased expression of the collagen-crosslinking 
enzyme lysyl oxidase (LOX), which is enhanced in obese 
adipose tissue of both rats and humans [108, 109]. LOX 
overexpression in mouse mammary glands increased tissue 
stiffness, collagen deposition, and linearity of collagen fib-
ers, while LOX inhibition resulted in less linear collagen 
fibers with decreased collagen deposition [107]. In a pre-
clinical model of breast cancer, enhanced collagen expres-
sion and stabilization by LOX led to elevated tumor hypoxia, 
malignant signaling, and dysregulated angiogenesis [110]. 
In contrast, targeting LOX in tumors diminished chemo-
therapy resistance [110, 111]. Microdissected stromal cells 
from human breast tumors expressed the highest levels of 
LOX, which was significantly correlated with disease-spe-
cific mortality [112]. Together, these studies suggest that 
targeting of LOX may be a novel strategy to reduce ECM 
stiffness and potentially improve outcomes in breast cancer 
patients with obesity.

Obesity has also been shown to alter the composition of 
the ECM in multiple organs, including adipose tissue [113, 
114]. Proteomics of the obese mammary gland and mam-
mary tumors derived from multiple cancer cell lines identi-
fied a common signature of nine matrisome proteins, which 
were upregulated in both tumor and the obese mammary 
gland ECM, including collagen VI, collagen XII, fibronec-
tin-1, laminin alpha subunit 5, vitronectin, tropoelastin, 
von Willebrand factor-1, galectin-1, and annexin A3 [115]. 
Increased deposition of collagen VI significantly enhanced 
the invasion of MDA-MB-231 and MDA-MB-468 TNBC 
cell lines [115]. Endotrophin, a cleavage product of collagen 
VI, promoted aggressive mammary tumors with high meta-
static growth [116]. Within the ECM, hyaluronan is a linear 

polysaccharide that was considered to be an inert structural 
component; however, hyaluronan has been shown to acti-
vate kinase cascades in fibroblasts and bind to cell surface 
receptors such as CD44, which is expressed on the surface 
of aggressive breast cancer cells [117–119]. Hyaluronan 
expression was also observed to be significantly elevated 
in breast tissue from women with obesity and correlated 
with poor survival in breast cancer patients [120]. Another 
ECM component, heparanase, which is the sole mamma-
lian endoglucuronidase that cleaves heparan sulfate in ECM, 
was identified as highly expressed in the ECM in obesity-
associated human breast tumors [121]. Elevated heparanase 
may enhance local production of aromatase, the rate-limit-
ing enzyme in estrogen biosynthesis through activation of 
inflammatory signaling in adipose tissue macrophages [121]. 
Changes in ECM composition surrounding breast tumors 
due to obesity could also impact the normal function of adi-
pocytes and macrophages leading to further promotion of 
breast cancer growth [122, 123].

Obesity-induced changes in the ECM may also enhance 
tumor growth through release of growth factors that impact 
the tumor microenvironment [124]. In obese adipose tissue, 
transforming growth factor beta-1 (TGFβ1) concentrations 
are significantly enhanced [125–127], and TGFβ1 has been 
recognized as the most potent inducer of transformation of 
normal fibroblasts to CAF [128, 129]. TGFβ1 is produced as 
an inactive, latent form which complexes with latent TGFβ1 
binding proteins as well as other matrix components includ-
ing matricellular protein decorin within the ECM [130, 131]. 
In a high-fat diet model of obesity in mice, both decorin and 
TGFβ1 were significantly enhanced in the ECM surrounding 
mammary epithelial cells, and complexes of decorin and 
latent TGFβ1 were identified in ECM isolated from breast 
tissue from women with obesity [132]. Decorin is also sig-
nificantly increased in the ECM of visceral and subcuta-
neous adipose tissue of obese patients [133]. Interestingly, 
loss of decorin within the ECM of ductal carcinoma in situ 
due to ECM remodeling is a marker for tumor progression 
and correlates with more aggressive disease [134, 135]. It 
is tempting to speculate that loss of decorin during tumor 
progression may increase TGFβ1 bioavailability in the tumor 
microenvironment. A number of growth factors, including 
IGF-1, FGF, and HGF, have also been found to associate 
with the ECM [136], and alterations in composition of the 
ECM due to obesity may alter the reservoir of growth factors 
stored in the ECM during tumor progression.

4  Immune cells

Obesity alters the compliment and function of multiple 
different immune cell types within adipose tissue, and 
many of these changes may also be reflected in the tumor 
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microenvironment, impacting the response of the tumor to 
therapy (Fig. 2). Tumor-associated macrophages (TAMs) 
have long been accepted as potent tumor promoters, act-
ing through a variety of mechanisms to enhance tumor cell 
proliferation and invasion [137, 138]. Multiple therapeutic 
strategies impacting TAM survival or function have moved 
to phase I and phase II clinical trials [139, 140]. While 
pre-clinical studies have shown promise for therapeutic 
efficacy, significant questions remain regarding identifi-
cation of patients that are most likely to respond to these 
therapies. Obesity is associated with chronic, macrophage-
driven inflammation in breast adipose tissue, and the pres-
ence of macrophages surrounding necrotic adipocytes to 
form crown-like structures is considered to be a hallmark of 
obesity [141–143]. Macrophages forming crown-like struc-
tures secrete inflammatory cytokines such as tumor necrosis 
factor alpha (TNFα), interleukin-1β (IL-1β), and IL-6 and 
express marker the CD11c [142, 143]. Macrophages have 
been classified into M1 and M2 categories based on expres-
sion of cytokines in response to ex vivo stimulation [144]. 
Recent transcriptomic and proteomic studies have suggested 
that there is a more complex range of macrophage activation 
states than those captured using the M1/M2 classification 
system [145]. Macrophages in mammary adipose tissue of 
obese mice also appear to have unique metabolic activa-
tion due to the uptake of fatty acids released by adipocytes, 

leading to a distinct proinflammatory phenotype [146–148]. 
These macrophages, termed metabolically activated mac-
rophages, have been shown to enhance markers of cancer 
stem-like cells in TNBC cell lines and have been identified 
within the breasts of women with obesity [146]. However, 
single cell sequencing of adipose tissue macrophages in 
obesity has revealed multiple distinct macrophage subtypes 
[149], and it is currently unclear whether these different sub-
types of macrophages are present and have divergent func-
tions in the breast tumors of women with obesity.

In mammary tumors of pre-clinical models, macrophages 
have been shown to promote cancer cells with cancer stem 
cell-like behavior, leading to increased metastasis and resist-
ance to treatment with chemotherapy [150, 151]. Serum con-
centrations of TNFα are elevated in individuals with obesity 
[152], and macrophages are thought to be the major source 
of TNFα in obesity [153]. Treatment of TNBC cell lines 
with exogenous TNFα enhanced proliferation [154], which 
is hypothesized to contribute to rapid tumor growth in vivo. 
Depletion of macrophages using anti-F4/80 antibodies in 
obese tumor-bearing mice resulted in diminished tumor 
growth compared to tumors from obese mice treated with 
IgG antibodies [155]. Although tumor size was decreased 
in macrophage-depleted obese mice, cancer stem-like cells 
remained unchanged from those of control obese mice [155]. 
These data suggest that other factors altered by obesity may 

Fig. 2  Obesity enhances myeloid-lineage cells within breast tumors 
and metastases. Chronic macrophage-driven inflammation within 
obese adipose tissue enhances circulating numbers of myeloid-lin-
eage cells. Within breast tumors under conditions of obesity, TAMs 
play multiple roles including enhanced secretion of tumor-promoting 
cytokines, collagen deposition and remodeling, and promotion of 
angiogenesis. MDSCs have immunosuppressive functions within the 
tumor microenvironment and are increased in obesity. Adipocytes 

further enhance angiogenesis within breast tumors through secre-
tion of VEGF and multiple cytokines and growth factors. Within 
surrounding adipose tissue, leptin increases PD-1 expression within 
CD8 + T cells and promotes an exhaustion phenotype. Within lung 
tissue of obese patients, macrophages, neutrophils, and MDSC 
are increased, leading to elevated extravasation of tumor cells and 
increased metastatic disease
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promote the accumulation of aggressive tumor cells, such as 
leptin secreted by adipocytes [35, 156]. Macrophages have 
also been associated with progression and early dissemi-
nation for metastasis in premalignant breast cancer lesions 
[157, 158]. However, depletion of macrophages early in 
tumor progression in obese mice in a p53-null model of 
mammary tumorigenesis led to increased DNA damage 
quantified in mammary epithelial cells [159], suggesting that 
macrophages may also serve numerous functions in the con-
text of obesity. Further studies are necessary to determine 
how the function of TAM changes in the context of obesity 
in the tumor microenvironment.

Macrophages are directly influenced by the ECM, and 
changes in the ECM as a consequence of obesity could alter 
TAM function in the tumor microenvironment. When cul-
tured on decellularized ECM isolated from adipose tissue 
of women with obesity, bone marrow-derived macrophages 
demonstrated a gene expression profile consistent with 
TAM expressing elevated transcripts of CD206 and argi-
nase-1 compared to macrophages cultured on ECM from 
women with a healthy range BMI [123]. In the presence of 
IL-6 and collagen within the tumor microenvironment, a 
subset of  FAP+ TAM expressed cytokines consistent with a 
wound healing response observed in macrophages isolated 
from wounded skin, and this gene expression profile was 
correlated with poor prognosis in breast cancer patients 
[160]. Given the elevated levels of collagen observed in 
breast tumors from women with obesity [53], it is possible 
that macrophages with this wound-healing signature could 
be similarly observed in breast tumors from women with 
obesity. In a pre-clinical model of breast cancer, the ECM 
component tenascin-C promoted an immunosuppressive 
TAM phenotype through toll-like receptor-4 (TLR4) sign-
aling [161]. Expression of both tenascin-C and TLR4 was 
significantly increased in visceral fat of obese mice [162], 
which may suggest that these changes could be observed in 
breast adipose tissue surrounding tumors under conditions 
of obesity.

In addition to signaling changes in response to the ECM, 
macrophages may contribute to deposition of ECM in the 
tumor microenvironment under conditions of obesity. In 
obese adipose tissue, upregulation of the chemokine CCL2 
led to chronic macrophage-driven inflammation [142, 163, 
164]. Overexpression of CCL2 in the tumor microenviron-
ment similarly led to increased TAM infiltration and colla-
gen deposition [165, 166], which was abrogated by depletion 
of  CD11b+ cells, including macrophages [166]. Further-
more, depletion of macrophages using clodronate-containing 
liposomes in mice bearing EO771 tumors resulted in altered 
collagen fibrillar microstructure as quantified using second 
harmonic generation imaging and immunofluorescence 
[167]. Together, these studies suggest that TAM can promote 
the organization and deposition of ECM within the tumor. In 

addition to exposure to tenascin-C altering the behavior of 
TAM to become more immunosuppressive [161], tenascin-
C within the ECM also promoted the generation of TAM 
that exhibited increased synthesis and phosphorylation of 
collagen family members [168]. TAMs within tumors have 
also been observed to reorganize the collagen fibers favor-
ing metastasis [167]. CCL5, another cytokine produced by 
adipocytes [169], has also been shown to enhance TAM 
recruitment into residual tumors in a conditional model of 
ErbB2 overexpression in mice, leading to increased collagen 
deposition within the tumor site and eventual recurrence of 
the tumor [170]. Together, these studies suggest that in obese 
patients, TAM may play a critical role in patients with obe-
sity in promoting tumor recurrence and metastasis through 
remodeling the ECM in the tumor microenvironment.

Neutrophils have been shown to have both growth-
promoting and growth inhibitory effects within the tumor 
microenvironment, which may be context-dependent [171]. 
In a retrospective study, a high circulating neutrophil-to-
lymphocyte ratio in breast cancer patients with obesity 
was associated with a worse breast cancer-specific survival 
[172], which could reflect immunosuppressive functions. 
Within mammary tumors from mice fed a high-fat diet to 
induce obesity, neutrophil recruitment and tumor size were 
significantly increased compared to tumors from control 
mice [36], suggesting neutrophils may not only influence 
tumor initiation but also aid in progression under conditions 
of obesity. In culture, human breast cancer cell migration 
was stimulated by neutrophil secretions [173]. Although the 
role of neutrophils within the tumor microenvironment in 
obesity is not well understood, the role of neutrophils in the 
promotion of metastatic growth in obesity has been recently 
explored. Neutrophils have been implicated in obesity-
associated lung metastasis by aiding in tumor cell seeding 
and growth through an IL-5 and granulocyte–macrophage-
colony stimulating factor (GM-CSF)-dependent mechanism 
[38]. In a high-fat diet mouse model of obesity, neutraliza-
tion of GM-CSF significantly decreased metastatic foci in 
lungs of obese tumor-bearing mice compared to lean mice 
[41]. This increased metastasis may occur in part through 
neutrophil-mediated impairment of vascular integrity under 
conditions of obesity, which enhanced cancer cell extravasa-
tion into the lung parenchyma [174]. Together, these results 
suggest that neutrophilia within the lungs induced by obe-
sity plays a significant role in enhancing metastatic growth 
(Fig. 2).

Myeloid-derived suppressor cells (MDSCs) are a het-
erogeneous population of myeloid progenitor cells whose 
normal maturation into macrophages, dendritic cells, and 
neutrophils is impaired in tumors [175, 176]. Due to a lack 
of specific markers to definitively separate neutrophils from 
some types of MDSC, questions remain about the distinc-
tive function of this group separate from neutrophils [171]. 
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MDSCs are rarely found in adipose tissue in homeostatic 
conditions [177], but increase under conditions of obesity 
[178–180]. Although MDSCs represent a low percentage 
in the total number of immune cells in tumors, these cells 
appear to play a vital role in immune surveillance. MDSCs 
act to suppress inflammation, inhibit  CD8+ T cell prolifera-
tion, and promote  CD8+ T cell apoptosis [181]. In obese 
mice bearing either EO771 or PY8119 mammary tumors, 
granulocytic MDSCs were significantly increased through 
a CXCR1-mediated pathway and promoted the apoptosis of 
 CD8+ T cells both in culture and in vivo [182]. Depletion of 
MDSC in mammary tumors of high-fat diet-fed mice signifi-
cantly increased  CD8+ T cell recruitment into tumors and 
decreased tumor volume [180]. Together, these data suggest 
that MDSC may promote tumor growth during obesity by 
impairing  CD8+ T cell response. Tumor-infiltrating MDSC 
also demonstrated increased fatty acid uptake and activated 
fatty acid oxidation [183], which enhanced the immuno-
suppressive characteristics of the MDSC [184]. Obesity 
may significantly increase both the number and function 
of MDSC within the tumor microenvironment, which has 
implications both for tumor progression as well as potential 
immunotherapy strategies.

T cells respond specifically to antigens expressed by 
tumor cells, leading to antitumor immunity. Obesity is 
associated with reduced dendritic cell function and anti-
gen presentation in mice [185], suggesting that obesity 
may diminish the responsiveness of the adaptive immune 
system to antigens from cancer cells.  CD8+ T cells are the 
primary cells that eliminate tumor cells, and high  CD8+ T 
cell infiltration into TNBC is associated with good clinical 
outcomes in breast cancer patients [186, 187]. However, 
when BMI is considered a variable, increased lympho-
cyte infiltration into tumors is not predictive for better 
survival in breast cancer patients with obesity [188]. In 
another study, obese breast cancer patients demonstrated 
lower total T cell infiltration within tumors prior to treat-
ment compared to women with a healthy range BMI [189]. 
Decreased T cell infiltration in mammary tumors has also 
been observed in pre-clinical models [155, 182, 190, 
191], which may suggest reduced immunosurveillance 
in tumors under conditions of obesity. In a pre-clinical 
model, treatment of mammary tumor-bearing mice with 
27-hydroxycholesterol resulted in fewer cytotoxic  CD8+ 
T lymphocytes within the tumor microenvironment [192]. 
These results suggest that elevated circulating levels of 
cholesterol could play a role in diminished  CD8+ T cell 
recruitment in obesity and are consistent with the observa-
tion that use of statins to decrease circulating cholesterol 
levels leads to diminished cancer mortality [193]. Obesity 
has also been associated with loss of T cell diversity and 
dysfunctional T cell responses to viruses and cancer [194, 
195]. One dysfunctional T cell state is exhaustion, which 

is characterized by distinct epigenetic and transcriptional 
phenotypes, loss of effector functions, and prolonged and 
increased expression of inhibitory markers, such as pro-
grammed cell death protein-1 (PD-1). T cell exhaustion is 
thought to occur due to chronic antigen stimulation [196, 
197]. While  CD8+ effector T cells are recruited to adipose 
tissue during the early stages of obesity [198, 199], recent 
studies have suggested that these cells also express PD-1 
and have diminished responses in the absence of tumors 
in obese mice [200]. These studies suggest that  CD8+ T 
cell dysfunction may occur prior to tumor formation in 
obesity. Within tumors of obese mice, excess production 
of leptin led to an increase in fatty acid oxidation in  CD8+ 
T cells and reduced interferon-gamma expression [201], 
which is an indicator of T cell exhaustion [202]. This data 
is supported by a study from Kado et al. which identi-
fied that obesity promoted a switch from non-exhausted 
PD-1 negative  CD8+ T cells to exhausted PD-1+  CD8+ 
T cells in mammary tumors from obese mice [203]. In 
addition, the exhausted PD-1+  CD8+ T cells demonstrated 
increased expression of osteopontin [203], which has pre-
viously been implicated in tumor progression by regulat-
ing multiple pathways [204]. Together, these studies sug-
gest that obesity diminishes both the number of  CD8+ T 
cells within the tumor microenvironment and inhibits their 
function.

In addition to  CD8+ T cells, obesity has been shown to 
impact other T cell subtypes which may promote breast 
cancer growth. Within obese adipose tissue, increased 
expression of TNFα has been shown to reduce  CD4+ T cell 
function [205], suggesting that obesity may also inhibit 
the function of  CD4+ T cells early during breast tumo-
rigenesis. Natural killer (NK) cells, which are a critical 
part of the innate immune system, are impaired in patients 
with obesity through elevated circulating levels of leptin 
[206–208]. A prospective study demonstrated that dys-
functional NK cells were associated with an increased 
breast cancer incidence [209]. Furthermore, lipid accu-
mulation in NK cells isolated from individuals with obe-
sity was associated with the loss of NK cell cytotoxic-
ity against tumor cells which could be restored through 
metabolic reprogramming [210], suggesting that changes 
in lipid metabolism associated with obesity may also alter 
the function of NK cells. Another T cell subtype which 
has innate immune cell function is γδ+ T cells. IL-17-se-
creting γδ+ T cells have been shown to promote primary 
tumor growth and metastasis, both in mice and in humans 
[211]. Pro-tumoral IL-17+ γδ+ T cells selectively showed 
high lipid uptake and intracellular lipid storage and were 
expanded in mammary tissue and tumors of obese mice 
[212]. Together, these studies suggest that obesity-induced 
changes in multiple immune cell populations enhance 
tumor growth and progression.
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5  Endothelium

Expansion of adipose tissue is coordinated with its vas-
cularization, and adipocytes secrete multiple pro-angi-
ogenic factors including vascular endothelial growth 
factor (VEGF), FGF-2, IL-6, CCL2, and leptin to coor-
dinate this process [213]. Increased levels of these pro-
angiogenic factors are found in circulation in women, rats 
and mice associated with obesity [214–216], which may 
cooperatively enhance angiogenesis within breast tumors. 
Increased microvascular density within breast cancer is 
correlated with progression, metastasis, and reduced over-
all survival in breast cancer patients [217, 218]. Elevated 
microvascular density has also been observed in obesity 
and associated with rapid tumor growth in canine mam-
mary cancer [219] as well as multiple pre-clinical models 
of obesity and breast cancer. In a mouse model of postmen-
opausal obesity, EO771 tumors in the mammary glands 
of obese ovariectomized mice demonstrated significantly 
increased blood vessel density mediated by elevated levels 
of VEGF secreted by surrounding adipocytes [220]. Simi-
larly, MMTV-PyMT transgenic mice fed a high-fat diet 
developed tumors with increased microvascular density 
and recruitment of macrophages through elevated levels 
of CCL2 [221]. In an isocaloric diet model, mice fed a diet 
high in cholesterol demonstrated the highest growth rate 
of MDA-MB-231 tumors, which had the highest microvas-
cular density [222], suggesting that elevated cholesterol 
levels could play a role in increased angiogenesis in obese 
individuals. In culture, leptin and IL-6 produced by obese 
adipocytes induced activation, proliferation, and migration 
of endothelial cells through upregulation of VEGF and 
VEGFR-2 [91, 223], suggesting that adipocytes secrete 
multiple factors that could enhance angiogenesis within 
the tumor microenvironment. While increased blood ves-
sel density and angiogenesis may suggest that individuals 
with obesity could be candidates for anti-angiogenic thera-
peutics, breast cancer patients with obesity treated with 
anti-VEGF antibodies were less sensitive to anti-VEGF 
treatment due to increased systemic concentrations of 
IL-6 and FGF-2, which compensated for VEGF inhibition 
[224]. Similarly, treatment of tumor-bearing obese mice 
with anti-mouse VEGF antibodies demonstrated reduced 
sensitivity to treatment, which was determined to be due 
to elevated body weight rather than diet [224]. Together, 
these studies suggest that anti-angiogenesis therapies in 
obese breast cancer patients may need to target multiple 
pathways due to the upregulation of multiple angiogenic 
factors secreted by obese adipocytes.

Macrophages recruited to the obese tumor microenvi-
ronment may further stimulate tumor angiogenesis by pro-
viding soluble growth factors, matrix remodeling enzymes, 

and other bioactive molecules that promote the growth 
and migration of endothelial cells. Macrophages have been 
shown to secrete multiple pro-angiogenic factors includ-
ing VEGF, TNFα, GM-CSF, and IL-6 [225]. Macrophages 
isolated from the mammary tumor microenvironment of 
obese mice demonstrated elevated tie-2 expression [226], 
which may suggest that obesity enriches for a subpopula-
tion of macrophages that are known to promote angiogen-
esis. In a humanized mouse model, elevated CCL2 within 
the mammary tumor microenvironment enhanced mac-
rophage recruitment, and depletion of macrophages led 
to decreased blood vessel density and diminished tumor 
growth [227]. Crosstalk between macrophages and adipo-
cytes may also contribute to the increased angiogenesis 
observed in obese breast cancer. Co-culture of breast adi-
pocytes with THP-1 macrophages stimulated expression 
of VEGF-A in macrophages [228]. In obese mice, IL-1β 
produced by macrophages enhanced expression of VEGF 
as well as angiopoietin-like 4 from adipocytes surround-
ing mammary tumors [229, 230]. Transplant of EO771 
tumor cells into the mammary glands of angiopoietin-like 
4-null mice resulted in significantly reduced tumor growth 
with limited blood vessel density [230]. Macrophages also 
express the receptor for leptin [231], and leptin secretion 
by adipocytes may enhance the angiogenic factors secreted 
by macrophages. Given the number of angiogenic factors 
that are produced by macrophages under conditions of 
obesity, therapeutically targeting macrophages rather than 
individual angiogenic factors may lead to improved anti-
angiogenic responses.

6  Opportunities to improve therapeutic 
outcomes

The effects of weight loss on the risk for breast cancer 
recurrence are currently under investigation in long-term, 
clinical trials [232]; however, little is known about how 
weight loss may impact the tumor microenvironment and 
response to therapies. Mammary glands of obese mice that 
underwent weight loss demonstrated global epigenetic 
programming more similar to adipose tissue from obese 
mice than lean controls [233], suggesting that weight loss 
is insufficient to revert hypermethylation of genes in the 
mammary gland during the weight loss period examined. 
In adipose-derived stromal cells isolated from formerly 
obese mice, some changes in proliferation and viability 
were improved compared to those isolated from obese 
mice; however, impaired oxidative respiration was still 
observed [234]. Together, these data suggest that some 
obesity-induced changes in adipose-derived stromal 
cells could be reversed with weight loss, but not others, 
which could impact stromal cells that contribute to the 
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formation of CAF. In obese mice, an 8-week weight loss 
period resulted in significantly decreased accumulation of 
macrophages in subcutaneous adipose tissue, suggesting 
that caloric restriction may resolve some inflammation 
associated with obesity [235]. Similarly, weight reduction 
significantly reduced the number of crown-like structures 
present within the mammary glands of formerly obese 
mice; however, expression of inflammatory molecules, 
including IL-6, TNF-α, and IL-1β, remained significantly 
elevated in the mammary glands of weight loss-induced 
mice relative to lean mice [236]. Elevated expression of 
inflammatory mediators within the mammary gland could 
still promote angiogenesis in the tumor microenvironment. 
More studies are necessary to understand how weight loss 
may impact the function of cell populations within the 
tumor microenvironment that contribute to tumor aggres-
siveness and therapeutic resistance. Weight loss leads to 
decreased recruitment of macrophages into obese adipose 
tissue concurrent with reduced circulating myeloid-lineage 
cells systemically. In a pre-clinical model, formerly obese 
mice demonstrated significantly reduced lung neutro-
philia, resulting in reduced mammary cancer metastatic 
foci within the lungs compared to obese mice [38]. Addi-
tional studies could shed light on how weight loss impacts 
breast cancer metastases at other sites, including bone, 
brain, and liver.

In addition to weight loss, other therapeutic strategies 
targeting the tumor microenvironment may be beneficial 
for obese breast cancer patients. Metformin is a commonly 
utilized drug in the treatment of type 2 diabetes and has 
limited toxicity when used in combination with other 
breast cancer therapies [237, 238]. In mammary tumor-
bearing obese mice, metformin treatment reduced obesity-
associated tumor growth and was associated with a marked 
decrease in angiogenesis within the tumor microenviron-
ment [229]. Similarly, treatment of obese/diabetic mice 
with metformin during EO771 tumor growth resulted in 
reduced tumor growth rates with less aligned collagen, 
decreased vascularity, reduced numbers of  CD206+ TAM, 
and diminished pulmonary metastasis [239]. Furthermore, 
treatment of ovariectomized rats with metformin decreased 
the growth of ERα+ mammary tumors and diminished aro-
matase expression in  CD68+ macrophages [240]. Together, 
these results suggest that metformin may have therapeu-
tic effects on multiple cell types within the breast tumor 
microenvironment. Multiple ongoing clinical trials are 
currently being conducted to assess the efficacy of met-
formin as an adjuvant therapy for early stage, invasive, and 
metastatic breast cancer. In the recent MA32-randomized 
breast cancer trial, patients with breast cancer treated with 
metformin resulted in mild weight reduction and improve-
ment in metabolic parameters compared to patients receiv-
ing placebo [241]. Further analysis of the trial is ongoing 

to assess breast cancer outcomes and potential impact on 
the tumor microenvironment.

Another potential target for therapy is the renin-angio-
tensin axis. Although most characterized for regulation of 
blood pressure, the renin-angiotensin system has also been 
recognized for its pathological role in obesity and breast 
cancer [242]. Angiotensin expression is enhanced in obese 
adipocytes and has been linked to elevated inflammation 
and metabolic disturbance [242]. In a mouse model of breast 
cancer, tumor desmoplasia was significantly reduced and 
chemotherapy outcome was improved after the administra-
tion of angiotensin receptor blockers conjugated to nanopo-
lymers that degraded selectively in the tumor microenviron-
ment [243]. Together, these results suggest that targeting this 
pathway may improve chemotherapeutic efficacy for women 
with obesity. Additionally, therapeutics targeting adipose-
derived stromal cells are being developed in pre-clinical 
models. Novel killer peptides, which target an adipose-
derived stromal cell-binding domain of decorin, demonstrate 
dose-dependent cytotoxic specificity for adipose-derived 
stromal cells [244, 245]. Su et al. demonstrated that when 
prostate cancer cells were xenografted into obese and lean 
mice, treatment with the killer peptide D-WAT significantly 
reduced prostate cancer cell invasion and tumor growth in 
obese mice compared to vehicle-treated obese and lean mice 
[246]. These results suggest that targeted reduction of adi-
pose-derived stromal cells in obese mice reduces aggressive 
characteristics of tumors, which may improve response to 
clinical treatments.

Multiple strategies have also emerged to therapeutically 
target TAM. As CCL2 upregulation in obesity promotes 
macrophage recruitment into adipose tissue [142, 163, 164], 
inhibitors of CCL2 have been developed to reduce TAM 
within the tumor microenvironment and at sites of metas-
tasis. In mice bearing late-stage MMTV-PyMT mammary 
tumors with spontaneous metastasis, treatment with CCL2 
inhibitors reduced metastasis through diminished recruit-
ment of metastasis-associated macrophages [247]. How-
ever, cessation of CCL2 therapy led to increased and rapid 
metastasis in multiple pre-clinical mammary tumor models 
through VEGF-mediated angiogenesis [248]. Elevated cir-
culating levels of CCL2 following treatment could poten-
tially be a significant problem in breast cancer patients with 
obesity. Colony-stimulating factor-1 (CSF-1) inhibitors have 
also been developed for clinical use and act to both diminish 
TAM recruitment as well as promote macrophage apoptosis 
[249]. The efficacy of this approach may be limited by CAF 
in the tumor microenvironment, which promoted an increase 
in MDSC within tumors in response to treatment with CSF-
1R inhibitors [250]. Since MDSCs are increased under 
conditions of obesity [178–180], the efficacy of CSF-1R 
inhibitors should be examined in obese pre-clinical models. 
Other strategies to alter the function of macrophages may 
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prove beneficial to breast cancer patients with obesity. In a 
model of pancreatic adenocarcinoma, PI3Kγ inhibition led 
to improved  CD8+ T cell responses, diminished tumor cell 
metastasis, and reduced desmoplasia [251]. However, PI3Kγ 
has been shown to regulate lipid metabolism in adipose tis-
sue macrophages, and downregulation of PI3K signaling 
may lead to elevated macrophage lipid burden and death 
and further contribute to metabolic pathogenesis in obesity 
[252].

Although obesity appears to have detrimental effects on 
the adaptive immune system, clinical studies have surpris-
ingly revealed increased responses to immunotherapies in 
obese cancer patients. Immune checkpoint inhibitors, par-
ticularly agents targeting PD-1 or its ligand PD-L1, have 
been approved for treatment of various cancers [253]. For 
breast cancer patients, treatment of metastatic, TNBC with 
PD-1 inhibitors is efficacious in approximately 18% of 
patients [254]. The mechanisms underlying these limited 
treatment responses are not clear, and biomarkers identify-
ing patients that may respond to these therapies have not 
been delineated. In a cohort of cancer patients treated with 
anti-PD-L1 therapy, a larger percentage of patients with a 
BMI greater than 30 kg/m2 had increased progression-free 
survival and overall survival compared to patients with 
a BMI less than 30 kg/m2 [255]. This trend for increased 
efficacy of immunotherapy observed in multiple types of 
solid tumors could also apply to TNBC patients with obe-
sity [256], and recent studies have demonstrated improved 
immunotherapy responses in pre-clinical models of breast 
cancer in obesity [257]. The chronic inflammation observed 
in the mammary gland and tumor microenvironment as a 
consequence of obesity and resulting T cell exhaustion may 
lead to a microenvironment with greater responsiveness 
to treatment with checkpoint inhibitors. However, there is 
also evidence that patients with obesity have an increased 
incidence of immune-related adverse events when treated 
with PD-1 therapy that result in discontinuation of treat-
ment [258]. Further clinical trials are necessary to determine 
how obesity impacts response to immunotherapy in breast 
cancer. Pre-clinical studies in this area will help guide new 
therapeutics for targeting the immune response to improve 
cancer outcomes for patients with obesity.

7  Conclusions

The tumor microenvironment is complex, with interactions 
among different cell types supporting the growth and malig-
nancy of tumor cells. Obesity alters the function of multiple 
cell types within the tumor microenvironment, leading to 
the growth of breast tumors with increased propensity for 
therapy resistance and recurrence. While we are beginning 
to uncover how obesity shapes individual cell types within 

the tumor microenvironment, there is much to be discovered 
in how these cell types interact and are further modified by 
the hormonal changes of menopause. Furthermore, breast 
cancer is made up of multiple subtypes, each with distinct 
differences in the cell populations that make up the tumor 
microenvironment. Continued refinement of pre-clinical 
models to examine how obesity alters the function of stromal 
cells within different breast cancer subtypes is necessary to 
improve treatment responses for patients with obesity and 
identify potential targets for the development of new thera-
peutic interventions.
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