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Abstract
Covid-19 has to date infected a confirmed 275 million people with 5.4 million, now dead, with the count rising every day. 
Although the virus, SARS-CoV2, causing Covid-19 infects many cells in the body, its infection of the upper and lower res-
piratory tract (upper airway epithelia and pulmonary alveolar pneumocytes and macrophages) causing what is now called 
a cytokine storm in the lungs is the major cause of morbidity and mortality. This results from a dysregulation of the innate 
immune system with an outpouring of proinflammatory cytokines and chemokines leading to abnormal activation of the 
adaptive immune pathway. Airway epithelia constitutively expresses CYP27B1, the enzyme producing the active vitamin 
D metabolite, 1,25(OH)2D, and the vitamin D receptor (VDR) for which 1,25(OH)2D is the ligand. Pulmonary alveolar 
macrophages, on the other hand, are induced to express both CYP27B1 and VDR by various pathogens including viruses 
and cytokines released from infected epithelia and other immune cells. Although not demonstrated for corona viruses like 
SARS-CoV2, for other viruses and other respiratory pathogens activation of innate immunity leading to increased local 
1,25(OH)2D production has been shown to enhance viral neutralization and clearance while modulating the subsequent pro-
inflammatory response. Whether such will be the case for SARS-CoV2 remains to be seen, but is currently being proposed 
and investigated. This mini review will discuss some of the mechanisms by which vitamin D may help reduce morbidity and 
mortality in this devastating pandemic.
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1  Introduction

At the time of writing (June 1, 2021) SARS-CoV2, the virus 
causing the Covid-19 pandemic has infected nearly 275 mil-
lion people causing approximately 5.4 million deaths world 
wide, with more each day. Because testing and/or reporting 
is spotty in a number of countries, the likely count is much 
higher. The clinical and immunologic features of Covid-19 
are only recently being examined given its recent appearance 
[1], but the findings bear close resemblance to the SARS-
CoV1 epidemic from 2002–2003, about which more is 
known. SARS-CoV1 and 2 share approximately 80% homol-
ogy [2]. Therefore, it is useful to review the immunologic 
consequences of the better studied SARs-CoV1 infection, 

primarily from animal studies, as a background for examin-
ing how vitamin D signaling might play a role in the current 
epidemic. That said Chu et al. [3] noted in bronchial pulmo-
nary lavage material from patients with either SARS-CoV1 
or SARS-CoV2 that the SARS-CoV2 virus infected and rep-
licated faster in alveolar pneumocytes and macrophages than 
did SARS-CoV1 but did not induce interferons and other 
proinflammatory cytokines as well, perhaps accounting for 
its overall greater infectivity but lower mortality.

The SARS-CoV2 virus enters the cell via its spike pro-
tein, which has two functional subunits. The S1 subunit 
binds the receptor, the enzyme ACE2 (angiotensin convert-
ing enzyme 2). The other subunit, S2, promotes the fusion 
of the viral and host membrane leading to its internalization. 
Epithelial cells of the upper airway have the highest con-
centration of ACE2, but those of the lower airway (alveolar 
pneumocytes) do as well [4, 5]. Thus, if the infection is con-
fined to the upper airways the subject may remain asympto-
matic although infectious. Moreover, the lower expression 
of ACE2 in the nasal epithelium of younger children has 
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been postulated as a reason for their decreased infection rate 
compared to older children and adults [6, 7]. In addition to 
ACE2, the serine protease TMPRSS2 also appears necessary 
to cleave the SARS-CoV2 protein enabling its membrane 
fusion and endocytosis. Co-expression of both ACE2 and 
TMPRSS2 is found in only a small percentage of epithe-
lial cells in both the upper and lower respiratory tract [4, 
8]. However, ACE2 also serves a protective role. It cleaves 
angiotensin II to angiotensin 1–7, limiting renin angiotensin 
system (RAS), which can suppress inflammation and fibro-
sis while increasing vasodilatation by binding to the MAS 
receptor. Mice lacking ACE2 undergo severe lung injury [9]. 
SARS-CoV2 infection reduces ACE2 levels [10], possibly 
contributing to its inflammatory capacity. On the other hand 
vitamin D increases ACE2 expression while inhibiting the 
RAS system [11] thought to contribute to its role in prevent-
ing lung injury during viral infections. Therefore, the jury 
is out regarding the role of ACE2 levels in SARS-CoV2 
infections, and its role may differ between the upper and 
lower respiratory tract.

The serious damage caused by coronaviruses such as 
SARS-CoV1 and 2 is due to their infection of the lower 
airways with rapid virus replication, massive inflammatory 
cell infiltration producing a huge increase in proinflamma-
tory cytokines and chemokines leading to acute respiratory 
distress syndrome (ARDS), the major cause of morbidity 
and mortality [12]. The initial infection of the airway epi-
thelium leads to rapid viral replication [13, 14] complicated 
by a virus induced delayed increase in class 1 interferon 
(IFNα/β) expression in dendritic cells (DC) that would nor-
mally block viral replication and enhance viral clearance by 
CD8 T cells [15]. The delayed expression of IFNα/β sub-
sequently increases recruitment of proinflammatory cells, 
contributing to the problem. These infected airway epithelial 
cells then secrete a number of proinflammatory cytokines/
chemokines that further dysregulate the innate immune 
response and attract the influx of inflammatory cells includ-
ing neutrophils, monocytes and macrophages while sensitiz-
ing T cells to apoptosis [16]. The consequences include a 
breakdown in the microvascular and alveolar epithelial bar-
rier from apoptosis of the lung epithelium and endothelium 
resulting in vascular leakage and alveolar edema. The T cell 
response required for viral clearance is blunted [17], and 
their role in dampening the cytokine storm is reduced. How-
ever, recent studies evaluating cells from bronchopulmonary 
lavage (BAL) of patients infected with SARS-CoV2 vs other 
organisms using single cell RNA-seq to define the different 
cell populations and what they expressed observed that in 
severe SARS-CoV2 pneumonia there was a high number 
of T cells thought to be recruited by infected macrophages 
expressing cytokines and chemokines such as CCL4 and 
CXCL10 that in turn expressed proinflammatory cytokines 
such as interferon-gamma (IFNγ) that further stimulated the 

inflammatory macrophages [18, 19]. Moreover, SARS-CoV2 
infection increases the numbers of myeloid derived suppres-
sor cells in the lungs that could contribute to suppression 
of the immune response to the initial infection allowing the 
infection to spread [20]. So where does vitamin D fit in?

2 � Vitamin D and viral respiratory tract 
infections

Vitamin D insufficiency has been linked to increased risk of 
respiratory tract infections including SARS-CoV2 in a large 
number of association studies [21–29], whereas vitamin D 
supplementation appears to be protective especially in those 
with low levels of 25OHD at baseline and treated with mod-
est doses at daily or weekly intervals [28, 30, 31]. Similarly, 
certain vitamin D receptor (VDR) polymorphisms have been 
associated with increased risk of acute lower respiratory 
tract infections [32]. However, the results from randomized 
clinical trials (RCTs) examining the ability of vitamin D  
supplementation to limit viral infections have been mixed, as  
recently reviewed [28, 33]. Vitamin D insufficiency has also 
been associated with a large number of other viral infections 
including EBV, VZV, CMV, RSV, HIV, HCV, HBV, HPV, 
Dengue [33, 34], but until RCTs determine whether the lower 
levels of 25OHD (marker of vitamin D insufficiency) are 
causal vs consequential (reverse causality), the role of vita-
min D in these diseases remains uncertain. To this point, a 
mendelian randomization study which attempted to circum-
vent the problem of reverse causality by evaluating whether 
single nucleotide polymorphisms (SNPs) associated with 
25OHD levels in genome wide association studies (GWAS) 
differed between patients infected with SARS-CoV2 and the 
general population did not find a correlation between those 
SNPs associated with 25OHD levels and infection rates [35].

3 � Pulmonary immune defense mechanisms 
and their regulation by vitamin D 
signaling

The respiratory tract has a large surface area (approximately 
70m2) in contact with the environment. Thus it provides a 
major site for invasion by pathogenic organisms, against 
which it must defend. The defense mechanism is comprised 
of both innate and adaptive immunity. Activation of the 
innate immune system drives activation of the long term 
adaptive immune system [36]. The principal cells involved 
are the airway epithelia, alveolar macrophages, and dendritic 
cells (DC). All of these cells express CYP27B1, the enzyme 
producing 1,25(OH)2D, the active metabolite of vitamin D, 
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as well as the vitamin D receptor (VDR) [37–39]. Expres-
sion of CYP27B1 is constitutive in airway epithelial cells 
[37], although it can be further increased by some types of 
viral infection [40]. The 1,25(OH)2D produced by these cells 
promotes alveolar epithelial cell proliferation and reduces 
their apoptosis after an inflammatory challenge [41]. Dele-
tion of VDR from these cells leads to loss of integrity of the 
epithelium [42]. On the other hand CYP27B1 is induced in 
alveolar macrophages by toll like receptor (TLR) ligands 
for TLR1/2 (such as the lipopeptide from mycobacterium 
tuberculosis), interferonγ (IFNγ), and LPS [43, 44], and in 
DC by TNFα, IFNγ, polyI:C, and LPS [45–47]. Moreover, 
these cells all express pattern recognition receptors (PRRs) 
of which TLRs are a major component and by which viral 
RNAs are recognized [48].

Innate immune response  The innate immune response is 
initiated with the activation of PRRs in the cells of the res-
piratory tract. There are 10 functional TLRs in human cells 
(of 11 known mammalian TLRs). TLRs are an extended 
family of host noncatalytic transmembrane PRRs that inter-
act with specific membrane patterns (PAMP) shed by infec-
tious agents such as viruses that trigger the innate immune 
response in the host. A number of these TLRs signal through 
adapter molecules such as myeloid differentiation factor-88 
(MyD88) and the TIR-domain containing adapter inducing 
IFN-β (TRIF). MyD88 signaling includes translocation of 
NFĸB to the nucleus, leading to the production and secre-
tion of a number of inflammatory cytokines. Indeed one of 
the anti-inflammatory actions of 1,25(OH)2D is to block 
NFĸB translocation to the nucleus where it would other-
wise induce a panel of proinflammatory cytokines. This is 
achieved in part by inducing the inhibitor for NFĸB trans-
location, IĸBα, that binds NFĸB and keeps it in the cyto-
plasm [49]. This effect of 1,25(OH)2D does not deter its 
influence on viral clearance [50]. TRIF signaling leads to 
the activation of interferon regulatory factor-3 (IRF-3) and 
the induction of type 1 interferons such as IFNα/β. MyD88 
mediates signaling from TLRs 2, 4, 5, 7 and 9, whereas 
TRIF mediates signaling from TLR 3 and 4. TLR1/2, TLR4, 
TLR5, TLR2/6 respond to bacterial ligands, whereas TLR3, 
TLR7, and TLR 8 respond to viral ligands. CD14 serves as 
a coreceptor for a number of these TLRs. CD14 is induced 
by 1,25(OH)2D [37]. Activation of TLRs leads to the induc-
tion of antimicrobial peptides (AMPs) and reactive oxygen 
species (ROS), which kill the organism. However, excess 
ROS can also cause cell damage. 1,25(OH)2D can control 
this process by inducing antioxidant genes such as glu-
tathione synthase [51]. Among the antimicrobial peptides 
produced by the activated cells is cathelicidin. Cathelicidin 
plays a number of roles in the innate immune response. The 
precursor protein, hCAP18, must be cleaved to its major 
peptide LL-37 to be active. In addition to its antimicrobial 

properties, LL-37 can stimulate the release of cytokines 
such as IL-6 and IL-10 through G protein coupled receptors, 
and IL-18 through ERK/P38 pathways, stimulate the EGF 
receptor leading to activation of STAT1 and 3, modulate 
TLR signaling including enhanced recognition of dsRNA, 
increase binding of dsRNA binding to cell surface scavenger 
receptors increasing endocytosis, induce the chemotaxis of 
neutrophils, monocytes, macrophages, and T cells into the 
site of infection, and promote the clearance of respiratory 
pathogens by inducing apoptosis and autophagy of infected 
epithelial cells [34, 52]. The expression of this antimicro-
bial peptide is induced by 1,25(OH)2D in both myeloid and 
epithelial cells [53–55]. 1,25(OH)2D also induces another 
AMP, defensin β2, albeit somewhat indirectly as it involves 
induction of NOD2/card15/IBD1, a pattern recognition 
receptor for muramyl dipeptide that in turn activates NOD2 
to stimulate NFĸB, the direct inducer of defensin β2 [56]. 
Defensin β2, like cathelicidin, contributes to host defense 
by stimulating the expression of antiviral cytokines such as 
IFNβ, immune inducing molecules (NOD2, TNFα, IL-1β, 
IL-6), and chemokines involved in the recruitment of mono-
cytes/macrophages, natural killer cells, neutrophils, T cells 
and DC [57]. In summary the innate immune system is the 
first line of defense against invading pathogens initiating 
the inflammatory response and activating the adaptive arm 
of the immune defense mechanism [58]. However, chronic 
activation of the innate immune response can be deleteri-
ous. 1,25(OH)2D inhibits TLR2, 4, 9 expression in mono-
cytes in the later stages of activation [59, 60] and limits the 
excessive production of TNFα and IL-12 [61] serving to 
modulate chronic innate immune activity. But an additional 
part of the cytokine storm is due to an uncontrolled adaptive 
immune system, which vitamin D signaling is also poised 
to modulate.

Adaptive immune response  The adaptive immune response 
is initiated by cells specialized in antigen presentation, DC 
and macrophages in particular, activating the cells respon-
sible for subsequent antigen recognition, T and B lym-
phocytes. These cells are capable of a wide repertoire of 
responses that ultimately determine the nature and duration 
of the immune response. Activation of T and B cells occurs 
after a priming period in tissues of the body, eg. lymph 
nodes, distant from the site of the initial exposure to the 
antigenic substance, and is marked by proliferation of the 
activated T and B cells accompanied by post translational 
modifications of immunoglobulin production that enable 
the cellular response to adapt specifically to the antigen 
presented. I will not focus on the role of B cell activation 
and immunoglobulin production, but limit this discussion 
to the T cells. The type of T cell activated, CD4 or CD8, 
or within the helper T cell class Th1, Th2, Th17, Treg, and 
subtle variations of those, is dependent on the context of the 
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antigen presented by which cell and in what environment. 
Systemic factors such as vitamin D influence this process. 
1,25(OH)2D in general exerts an inhibitory action on the 
adaptive immune system. When airway DC are activated 
as by a virus, they migrate to lymph nodes where they gain 
enhanced ability to present antigen for activation of T cells 
[62]. As noted previously this activation and maturation 
of DC includes increased CYP27B1 expression but also a 
decrease in VDR [46]. 1,25(OH)2D decreases the maturation 
of DC as marked by inhibited expression of the costimula-
tory molecules HLA-DR, CD40, CD80, and CD86, decreas-
ing their ability to present antigen and so activate T cells 
[63]. Furthermore, by suppressing IL-12 production, impor-
tant for Th1 development, and IL-23 and IL-6 production 
important for Th17 development and function, 1,25(OH)2D 
inhibits the development of Th1 cells capable of produc-
ing IFNγ and IL-2, and Th17 cells producing IL-17 [64]. 
These actions prevent further antigen presentation to and 
recruitment of T lymphocytes (role of IFNγ), and T lympho-
cyte proliferation (role of IL-2). Furthermore, suppression 
of IL-12 increases the development of Th2 cells leading to 
increased IL-4, IL-5, and IL-13 production, which further 
suppress Th1 development shifting the balance to a Th2 cell 
dominated profile. Treatment of DCs with 1,25(OH)2D can 
also induce CD4 + /CD25 + regulatory T cells (Treg) cells 
[65] as shown by increased FoxP3 expression, critical for 
Treg development [64]. These cells produce IL-10, which 
suppresses the development of the other Th subclasses. Treg 
are critical for the induction of immune tolerance [66] and 
likely play a key role in preventing the cytokine storm asso-
ciated with severe respiratory disease caused by viral infec-
tions such as SARS-CoV2 [67]. On the other hand myeloid 
suppressor cells, that are increased in SARS-CoV1 infec-
tions, may suppress the initial immune response to the infec-
tion, facilitating its spread. These cells like other immune 
cells express VDR, and 1,25(OH)2D blocks their differentia-
tion and so their suppressive action [20].

1,25(OH)2D has both direct and indirect effects on 
regulation of a number of key cytokines involved with 
the proinflammatory response. TNFα has a vitamin D 
response element (VDRE) in its promoter to which the 
VDR/RXR complex binds, leading to its repression. As 
noted earlier 1,25(OH)2D both blocks the activation of 
NFĸB via an increase in IĸBα expression and impedes its 
binding to its response elements in the proinflammatory 
genes such as IL-8 and IL-12 that it regulates. 1,25(OH)2D 
has also been shown to bring an inhibitor complex contain-
ing histone deacetylase 3 (HDAC3) to the promoter of rel 
B, one of the members of the NFĸB family, suppressing 
gene expression. Thus, TNF/NFkB activity is markedly 
impaired by 1,25(OH)2D at multiple levels. Furthermore, 

1,25(OH)2D suppresses IFNγ, and a negative VDRE has 
been found in the IFNγ promoter. GM-CSF is regulated 
by VDR monomers binding to a repressive complex in the 
promoter of this gene, competing with nuclear factor of T 
cells 1(NFAT1) for binding to the promoter. As implied in 
the introduction, we do not know how much of the knowl-
edge gained about vitamin D regulated immunity in other 
systems applies to SARS-CoV2 infections given its recent 
appearance on the scene, but these studies do underlie the 
hope that vitamin D will be of some help in the prevention/
treatment of this pandemic given how few other interven-
tions with the exception of vaccination and perhaps newly 
developed oral antivirals are proving useful.

4 � Conclusion

While the data clearly demonstrating a beneficial role for 
vitamin D in SARS-CoV2 infections are limited, its role 
in regulating both the innate and adaptive immune systems 
certainly suggests that it may be. The innate immune system 
is the first line of defense against invading pathogens such 
as viruses. It is prebuilt, relying on constitutive expression 
of pattern recognition receptors like TLRs to identify such 
pathogens. 1,25(OH)2D enhances that defense by inducing 
AMPs like cathelicidin that lead to viral destruction and 
clearance by several mechanisms, help recruit neutrophils, 
monocytes/macrophages, and DC which further the killing 
and clearance of these pathogens, and initiate the adaptive 
immune response. While beneficial acutely, chronic activa-
tion of the innate immune response is not, and can result in 
the cytokine storm. 1,25(OH)2D works to curtail this chronic 
innate immune response through a number of mechanisms 
including down regulation of TLRs and direct inhibition 
of TNF/NFĸB and IFNγ signaling pathways. The adaptive 
immune system provides a more specific response, but takes 
longer to develop, although once developed provides a pow-
erful response against invading organisms. However, this 
response if not controlled can also be destructive. Vitamin 
D, via its active metabolite 1,25(OH)2D, regulates adaptive 
immunity by limiting the maturation of DC, limiting their 
ability to present antigen to T cells, and shifting the T cell 
profile from the proinflammatory Th1 and Th17 subsets to 
Th4 and Treg subsets, which inhibit the proinflammatory 
processes. Although these results come from studies with 
a variety of pathogens, viral and bacterial, the relevance 
of these protective actions on SARS-CoV2 merits further 
investigation.
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