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Cortical activity exhibits persistent metastable dynamics. Assemblies of neurons

transiently couple (integrate) and decouple (segregate) at multiple spatiotemporal scales;

both integration and segregation are required to support metastability. Integration

of distant brain regions can be achieved through long range excitatory projections,

but the mechanism supporting long range segregation is not clear. We argue that

the thalamocortical matrix connections, which project diffusely from the thalamus to

the cortex and have long been thought to support cortical gain control, play an

equally-important role in cortical segregation. We present a computational model of

the diffuse thalamocortical loop, called the competitive cross-coupling (CXC) spiking

network. Simulations of the model show how different levels of tonic input from the

brainstem to the thalamus could control dynamical complexity in the cortex, directing

transitions between sleep, wakefulness and high attention or vigilance. The model also

explains how mutually-exclusive activity could arise across large portions of the cortex,

such as between the default-mode and task-positive networks. It is robust to noise but

does not require noise to autonomously generatemetastability. We conclude that the long

range segregation observed in brain activity and required for global metastable dynamics

could be provided by the thalamocortical matrix, and is strongly modulated by brainstem

input to the thalamus.

Keywords: thalamocortical matrix, autonomous metastable dynamics, cortical segregation, default mode

network, sleep, wakefulness, complexity, spiking networks

Introduction

In wakefulness and in rapid eye movement (REM) sleep, cortical activity exhibits persistent
ongoing complex dynamics (Breakspear et al., 2003; Honey et al., 2007). In this state, activity
shifts continuously throughout the cortex, and cortical regions couple (integrate) and decouple
(segregate) across multiple spatial and temporal scales (Sporns et al., 2000a; Varela et al., 2001;
Shanahan, 2008; Tognoli and Kelso, 2014). Each individual episode of integration and segregation
is transient, but a continuous superposition of such episodes through space and time results
in the observed persistent metastability of cortical dynamics (Tognoli and Kelso, 2014). This
dynamical complexity is hypothesized to support the brain’s flexibility and sophisticated processing
capabilities (Breakspear et al., 2003; Buzsáki and Draguhn, 2004; Fries, 2005; Tognoli and Kelso,
2014), including memory retrieval, planning and problem solving (Binder et al., 1999; Mazoyer
et al., 2001). During times when the brain is not actively processing sensory stimuli or task-related
events, and as such is in a state known as the “resting” or “default-mode” state, cortical activity is
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concentrated in a well-defined sub-network including regions
of frontal and association cortices (specifically the ventromedial
prefrontal cortex, posterior cingulate cortex, ventral precuneus,
and parts of the medial temporal and medial, lateral and inferior
parietal cortices) (Greicius et al., 2003; Uddin et al., 2008).
Activity of this default-mode network (DMN) is anticorrelated
with activity in much of the rest of the cortex—that is, activation
of the DMN and of those cortical centers used for sensory and
task-related processing is largely mutually exclusive (Greicius
et al., 2003; Uddin et al., 2008; Tomasi and Volkow, 2011).

Metastable cortical states, and the functions these dynamics
presumably underpin (Binder et al., 1999; Mazoyer et al., 2001;
Breakspear et al., 2003; Buzsáki and Draguhn, 2004; Fries, 2005;
Tognoli and Kelso, 2014), cannot exist without the myriad,
often overlooked, sub-cortical areas that provide the cortex
with controlling and modulatory input. Projections from the
pedunculopontine nucleus (PPN) and the laterodorsal tegmental
nuclei (LDT), parts of the brainstem network collectively known
as the ascending arousal system (AAS—but previously known
as the reticular activating system), enter the intralaminar nuclei
of the thalamus (IL) and thence on to the cortex through the
thalamocortical matrix connections. The AAS is thought to
modulate wake and sleep states as well as arousal and vigilance
levels (Moruzzi and Magoun, 1949; Reese et al., 1995; Jones,
2003). The IL matrix connections project diffusely and somewhat
non-specifically to large portions of the cortex, which in turn
project back to the IL through the thalamic reticular nucleus
(RN). Notably, these projections have opposing effects: whereas
the cortex excites the RN, the RN exerts an inhibitory influence
on the IL. Hence, rising global cortical activity increases RN
activation, which in turn inhibits the IL, reducing its input
to cortical activation and ultimately countering the activity
rise in the cortex. Similarly, a decrease in cortical activity can
cause an increase in thalamocortical input from the AAS. This
diffuse matrix thalamocortical loop can therefore potentially
dynamically control overall activity levels in the cortex (Steriade
and McCarley, 1990). Effectively, it implements a mechanism
similar to k-winner-take-all (WTA) across the entire cortex,
where the allowed activity level k is controlled by AAS input
to the IL. WTA networks are known to be able to implement
powerful computational functions (Maass, 2000).

Brain integration is served by long range excitatory
connections, but the paucity of long range inhibition in the
brain has meant that the mechanisms to support long range
segregation of brain activity are less obvious and are not well
understood. Long range inhibition has been discovered within
the visual cortex (McDonald and Burkhalter, 1993), between
the hippocampus and entorhinal cortex (Melzer et al., 2012),
and between the prefrontal cortex and nucleus accumbens (Lee
et al., 2014). However, currently these long range inhibitory
connections are known to exist only in or between a limited
number of specific structures; they certainly do not approach the
abundance of the long range excitatory projections forming the
large fiber tracts that criss-cross the brain. The mechanism by
which, for example, the DMN is segregated from other cortical
regions is unclear (Greicius et al., 2003; Uddin et al., 2008). The
contribution of the AAS, IL and RN to global cortical activation

control is widely suspected (Steriade and McCarley, 1990; Taylor
and Farrukh, 1996; Saper et al., 2001). In this paper we refine
this view and argue for the specific functions of long range
competition and segregation of cortical activity, and thereby the
support of cortical metastability. To demonstrate this potential
we present a computational model of the diffuse thalamocortical
loop, called the Complex Cross Coupling (CXC) spiking network
(see Figure 1). The CXC network includes input from the
AAS and RN to the IL, local and long range corticocortical
connections and local inhibitory interneurons. Simulations
demonstrate that the model requires no extrinsic noise to exhibit
its full range of dynamical states. We use the model to show how
different levels of input from the AAS to the IL could support
a range of dynamical states in the cortex, including states with
high dynamical complexity.

Methods

Neuron and Synapse Models
All simulations were conducted using the Parallel Circuit
Simulator (PCSIM) (Pecevski et al., 2009), a comprehensive
software package for the simulation of large neural networks.
Simulations used Euler integration with a time-step of 0.1ms.

The Complex Cross Coupling Spiking Network was
constructed using two types of Izhikevich model cortical
neurons (regular spiking, RS, and fast spiking, FS) (Izhikevich,
2003). These neurons provide for realistic neuron membrane
dynamics such as spike frequency adaptation, intrinsic bursting,
resonance and bistability, whilst being computationally tractable
for large network simulations (Izhikevich, 2004). The Izhikevich
model is defined by three equations over two variables, the
membrane potential v (nominally inmV) and the membrane
recovery variable q, which are updated as follows:

v′ = 0.04v2 + 5v+ 140− q+ I (1)

q′ = a(bv− q) (2)

if v ≥ 30 then

v ← g

q ← q+ h (3)

where I is the summed synaptic input current and a, b, g, and h
are neuron-specificmodel parameters. In this study, all excitatory
neurons were modeled as regular-spiking (RS) cells with the
parameters (a, b, g, h)= (0.02, 0.2,−65, 8) and inhibitory neurons
as fast spiking (FS) cells with (a, b, g, h) = (0.1, 0.2, −65, 2).
These dimensionless parameters are set as specified in Izhikevich
(2003) to obtain membrane dynamics (modeled by v) that closely
resemble the modeled classes of neuron (i.e., RS and FS cells). In
this study, pyramidal cells are modeled as regular spiking, and
inhibitory interneurons as fast spiking.

The synapses received presynaptic spikes that would initiate
postsynaptic currents that decayed with characteristic time
constants. Synapses were conductance-based, meaning they each
had a reversal potential Erev at which current flow ceased and
beyond which the direction of current flow reversed. Reversal
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FIGURE 1 | The complex cross coupling (CXC) spiking network

(not all connections shown). Filled circles are cortical principal cells

(pyramidal neurons). Open circles are inhibitory interneurons. Excitatory

cortical pyramidal neurons are innervated by diffuse thalamic

(intralaminar nuclei) projections (from shaded oval). The intralaminar

nuclei receive continuous steady, not time-varying, input current from

the AAS. Cortical neurons project back to the thalamic reticular nucleus

which inhibits the intralaminar nuclei, completing the diffuse

thalamocortical loop. Cortical neurons excite each other within a small

neighborhood radius, inhibit each other through local interneurons within

a larger inhibitory radius, and project a small number of random long

range excitatory synapses to other cortical neurons. RN, thalamic

reticular nucleus; IL, diffuse (intralaminar) thalamic nuclei; AAS,

ascending arousal system.

potential for excitatory and inhibitory synapses was 0mV and
−90mV respectively.

To implement short term synaptic dynamics (which was
applied to synapses between all excitatory neurons in one
experiment, the results of which are shown in Figure 5D), a
combination of synaptic depression and facilitation was used
(Markram et al., 1998). For synaptic depression, synaptic efficacy
was assumed to be a finite resource, of which a proportion p was
in use at any given time. Only an amount u of the currently-
available proportion of synaptic efficacy, (1 – p), was used at the
occurrence of each spike; p recovered back to zero with time
constant d (p was therefore bounded in [0,1)). The rate of change
of p for synapse i, ṗi, was given by:

ṗi = δ(t − ti)(1− p)iui −
pi

di
(4)

where δ is the Dirac delta function and ti was the time of the last
spike from the neuron that was presynaptic to synapse i. The
initial value of u for dynamic synapses was set to U, then for
synaptic facilitation u was increased on the occurrence of each
spike, recovering back to U with time constant f (u was therefore
bounded in [U,1)). The rate of change of u for synapse i, u̇i, was
given by:

u̇i = δ(t − ti)(1− ui)U +
(U − ui)

fi
(5)

The synaptic usage factor U was set to 0.15 with a recovery time
constant of f = 1000ms for all dynamic synapses. Total synaptic

current, Idynamic, for a postsynaptic neuron was given by the sum
of all the currents from its afferent synapses:

Idynamic =
∑

i

[

wi(1− pi)ui(v− Erev)
]

(6)

where wi was the total efficacy of synapse i and v was the
postsynaptic membrane potential.

The synaptic recovery time constant d was set to 50ms
for local excitatory-to-excitatory and 500ms for long-range
excitatory-to-excitatory connections. The difference was
motivated in part by the different recovery times for AMPA
and NMDA receptors. Long range connections in this model
were loosely associated with feedback connections within
the hierarchically-organized, massively recurrent cortical
connectome. These feedback connections may be NMDA-rich,
as against feedforward and local connections which may be
predominantly AMPA-based (Thiele, 2012). The time constants
used were longer than typically acknowledged for these receptor
types to compensate for the absence of other network influences
in the model, such as cholinergic neuromodulation, which are
known to enhance NMDAR function.

For static synapses (synapses of fixed efficacy, i.e., with no
short term synaptic dynamics), synaptic efficacy was assumed to
be an infinite (non-depleting) resource, so u was always 1 and the
rate of change of p for synapse i, ṗi, simplified to:

ṗi = δ(t − ti)−
pi

di
(7)
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Total synaptic current, Istatic, for a postsynaptic neuron was then:

Istatic =
∑

i

[

wi(1− pi)(v− Erev)
]

(8)

Static synapses were used in all simulations in this study except
for Figure 5D (for which dynamic synapses were used as above).
For static excitatory-to-excitatory synapses the synaptic recovery
time constant d was set to 50ms, for excitatory-to-inhibitory
5ms and for inhibitory-to-excitatory 40ms. No inhibitory-to-
inhibitory connections existed.

Network
The CXC network was devised for this study in order to
investigate the relationship between the diffuse thalamocortical
matrix loop and cortical dynamics, although precursor models
have been published (Stratton and Wiles, 2010a,b). The
CXC model is an abstraction of the essential computational
components of the complex thalamocortical connection
structure. It utilizes some of the known characteristics of
these regions (such as dense local and more sparse long-range
connections), while ignoring others (such as cortical layers). As
such, it is a general representation only, with no intended specific
spatial scale. Its purpose is to show that thalamocortical-like
connectivity between simple neuron-like elements can result in
non-trivial dynamics, and to point to some of the general neuron
and network properties that may be involved.

The network consisted of ne = 1000 regular-spiking (RS)
excitatory pyramidal neurons and ni = 250 fast-spiking
(FS) inhibitory interneurons connected linearly (i.e., in a
1-dimensional network) with directional synapses. Synaptic
efficacies were set such that several presynaptic spikes in
close succession were required to cause an output spike in a
postsynaptic neuron. Connection structure was set to be small
world-like, with dense local connectivity and sparse random long
range connections, similar to the cortex. Each RS neuron was
connected to each of its closest j neighbors with local excitatory
efficacy wn/j where wn = 2 (the end neurons connected circularly
to the opposite end of the neuron vector). Random long-range
connections of weight wr/k where wr = wn were then made
from each RS neuron to each other RS neuron with probability
k/ne, giving an average of k long-range connections per neuron.
In all simulations j = 4 and k = 10 (these numbers of
connections were smaller than in actual cortex due to the limited
size of the modeled network, and synaptic efficacies and currents
were therefore scaled up accordingly). Inhibitory FS neurons
were spread uniformly between the RS neurons. Each FS neuron
received excitatory input from and projected inhibitory output to
each of its closest l RS neurons with efficacywi/lwherewi = 1 and
l = 20.

The thalamic reticular (RN) and intralaminar (IL) nuclei were
each implemented as a single analog (non-spiking) neuron with
output equal to the sum of its input currents. These nuclei are
modeled as analog because their function is to balance cortical
activity, and while the brain uses spiking neurons in these nuclei,
we hypothesize that the summed action of many spikes from
many neurons results in this homeostatic balance, so for the CXC

model the analog representation is sufficient. RS neurons were
innervated by IL projections with synaptic efficacy of 0.4. The
IL received continuous steady (not time-varying) input current
from the AAS (IAAS) which ranged from 0 to 10 in different
experiments. This upper bound on IAAS was set to strongly
depolarize the connected neurons without causing them to reach
spiking threshold. Cortical neurons projected to the RN with
efficacy 1, with synaptic currents decaying with time constant d,
as above (Equation 7). The RN inhibited the IL with efficacy −1,
completing the diffuse thalamocortical loop. Network activity
was initiated by a single input pulse at time zero into a random
selection of ne/2 RS neurons. Conduction delays were set in a
uniform random distribution between 1 and 25ms for long range
connections and to 1ms for all other connections.

To test the sensitivity of the results to numerical factors,
additional test simulations were conducted with very high
temporal resolution (1µs time-steps) and larger scales (100,000
neurons in the network). Additionally, simulations of 10.000 s
duration were run to ensure that network dynamics neither
failed nor entered a short limit cycle attractor state. All these
simulations exhibited metastable network dynamics across their
entire spatiotemporal extents.

Analysis
Input current from the AAS to the IL (IAAS) was varied from 0 to
10 in steps of 0.01. For each input current level, a simulation was
conducted for 10 s of simulated time. Spike times and membrane
potentials of all neurons were recorded at each time-step of
0.1ms. The first 1 s of activity was deemed to be the network
settling period during which time the network activity would
transition from synchronous bursting (initiated by the input
pulse) to sustained activity (or to quiescence depending on the
input level). The neural activity for this first second was omitted
from further analysis. The remaining 9 s of the recordings were
used to calculate the mean firing rate, r, of the network (r =
T/ne/9, where T is the total number of spikes generated by all
RS neurons).

We estimated the local field potential (LFP) that would be
recorded from this network at any moment in time, lfp(t), by
summing the membrane potentials of all neurons:

lfp(t) =
∑

m

vm(t) (9)

where vm(t) was the membrane potential of neuron m at time t.
Due to the vertical alignment of cortical dendrites in real brains,
real dendritic potentials, when summed from many cortical
neurons, contribute to the LFP (Nunez and Srinivasan, 2006).
Neurons in this study were simulated as point entities with no
dendritic processes, so the neuron (soma) membrane potential
was the closest estimate of the dendritic potential. This process of
calculating the estimate of the LFP is similar to that used by Beim
Graben and Kurths (2008).

An indication of the complexity of the dynamical network
state was based on deviations of the interspike interval (ISI)
distribution from exponential tomulti-modal. Duringmetastable
dynamics, three modes (short, medium and long) were evident
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in the ISI distribution; these modes arose explicitly due to the
processes of active integration and segregation in the network.
Short ISIs were caused by bursty firing of a neuron, which
occurred when the neuron was receiving strong synaptic input
from neighboring neurons and from long range connections
from distant neurons, and hence indicated that the neuron was
being integrated into network activity. Long ISIs were caused by
long periods when a neuron did not fire, which occurred when
the neuron was receiving weak or no input from neighboring
neurons and from long range connections, and hence when the
neuron was segregated from network activity.

Spikes firing within the central ISI mode, midway between
the short and long modes, were simply following the dominant
oscillation frequency of the network, exhibiting neither enhanced
integration nor segregation from network activity. Small
integration and segregation peaks, when compared to the
central peak, therefore indicated that most spikes were
entrained to the dominant network oscillation and neuron
firing was predominantly periodic, whereas simultaneously-large
integration and segregation peaks indicated that the network was
in a complex metastable dynamical regime.

Finally, the network trapping time was calculated (Marwan
et al., 2002). Trapping time quantifies the amount of time a
network remains in a given state before transitioning to a new
state. The trapping time was determined by first constructing
a matrix S of states of the network spiking activity over 0.2 s
non-overlapping time windows. Within each time window j, the
number of times each RS neuron i emitted a spike was counted:

Si,j =
∣

∣{0.2(j− 1) ≤ ti < 0.2j}
∣

∣ for all i, j (10)

where ti is the set of spike times of neuron i and |{...}|denotes the
length of a set.

The correlation matrix of S was calculated and the resulting
matrix was thresholded at 0.5, yielding the state recurrence
matrix R:

R = H(corr(S)− 0.5) (11)

where H is the Heaviside step function. R is a symmetric
matrix that reveals, for all states j, which other states were
similar (i.e., which other states had a similar pattern of firing
neurons). Finally, the mean width of the super-threshold region
surrounding the main diagonal of R was determined (i.e., for
each 0.2 s window represented by an element on the main
diagonal of R, the width of the super-threshold region around
this element was measured perpendicular to the diagonal by
stepping outwards from the element until a sub-threshold
element, where H i, j = 0, was found; the mean of these widths
for all elements along the main diagonal of R is the trapping
time of the network). Trapping time is interpreted as follows: If
the network transitioned between states rapidly, then adjoining
state vectors of S had sub-threshold similarity and the diagonal
of the recurrence matrix R (the trapping time) was only one state
wide (i.e., each state was similar only to itself). However, if the
state transitions were slow, then adjoining state vectors of S had
super-threshold similarity and the width around the diagonal of
R was greater than one. Longer trapping times indicated that

the network state was evolving more slowly. Trapping times
approaching 10 s (the length of most simulations in this study)
indicated that the network dynamics were fixed in an attractor
state in which activity did not evolve at all.

Results

Autonomous (Self-sustained) Metastable
Dynamics
To establish the baseline complex dynamics supported by the
CXC network, constant input from the AAS was first set to the
baseline level of 1 and synaptic conductances were set to standard
values for the network (see Methods). No noise sources were
used within the network or in its input. The network exhibited
metastable dynamics (Figure 2) despite being deterministic. We
have previously investigated the network properties required for
a spiking network (a precursor to the CXC) to exhibit such
dynamics (Stratton and Wiles, 2010a,b)—these include small-
world or scale-free cortical connectivity, a mechanism of global
inhibition, and maintenance of dynamics in a critical (phase
transition) state. The parameters of the CXC network of the
current study were set to be in the critical region. Metastable
network dynamics were robust to moderate network parameter
changes, however significant modification of these parameters
resulted in either collapse of network dynamics into a limit
cycle resembling seizure or failure of activity to propagate
causing the total network activity to fall to zero. These two
states of seizure and quiescence are the low-complexity states
between which the activity in the CXC network rapidly, partially
and transiently switched to generate the metastability (Stratton
and Wiles, 2010b)1. The cortico-thalamo-cortical feedback from
the matrix connections played a homeostatic role, lowering
cortical input as activity levels increased and raising input
as activity levels decreased, ensuring that the network as a
whole remained within the critical region of phase space. In all
simulations, these autonomous, complex, non-periodic dynamics
lasted indefinitely.

Inspection of the firing of neural assemblies (groups of
neighboring neurons) in the spike raster plot shows that
they occurred approximately 0.05 s apart (Figure 2). This
oscillation period was determined by the interplay of the cortico-
thalamo-cortical feedback and the time constant of the local
synaptic inhibition. Despite the regular oscillation period, these
assemblies formed at unpredictable, apparently random times
and existed for unpredictable durations (Figure 2; also see
Stratton and Wiles, 2010b). Dynamic formation of assemblies
was unpredictable because it depended on three tightly coupled
factors: (1) which assemblies were currently firing, (2) the precise
pattern of random long-range connections from the currently
active assemblies, since this pattern would determine which of
the currently inactive neurons were receiving strongest synaptic
input, and (3) the past history of firing activities, since neurons

1While the subcortical structure of the CXC is more complicated than that

presented in this earlier paper, it fulfills the same function and the extra detail

has been included for biological fidelity. Parameter sensitivity is therefore not

significantly altered in the CXC.
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FIGURE 2 | A spike raster plot of CXC network activity shown at

different zoom levels reveals characteristics of complex network

dynamics. These include network-wide oscillations, groups of neighboring

neurons unpredictably forming transient oscillating assemblies, and ongoing

non-periodic activity. (A) Spiking activity of 200 neurons for 1 s. Each

horizontal group is an assembly of bursting neurons. Each neuron within an

assembly bursts at high frequency, with the bursts occurring every

0.05–0.1 s (10–20Hz) while the assembly is active. Assemblies are transient,

sometimes firing synchronously with other assemblies in the network and

sometimes asynchronously. Examples of both synchronous and

asynchronous firing can be seen. (B) The entire network shown for the full

60 s of simulation. The transient and unpredictable nature of assembly

formation and duration is evident. The time period shown in panel (A) is

boxed. Mean firing rate for all neurons was just 1.0Hz. (C) Spike raster plot

for one typical neuron over 60 s, showing random firing with burst activity

punctuating extended periods of quiescence. Most neurons had lengthy

periods of complete silence lasting 10 s or more despite having mean firing

rates around 1Hz and the network as a whole oscillating at 10–20Hz.

which had been recently active could still have been in a relative
refractory period, meaning other neurons could fire first even if
they were receiving weaker synaptic input. Thus, even though
the network dynamics were noiseless and deterministic, they
were unpredictable unless the entire network state (both static
and dynamic, i.e., the entire connectivity map, the complete
properties of every neuron and synapse, and the precise current
states of all membrane potentials and synaptic currents) was
known with absolute accuracy. In other words, the only way to
predict the ongoing activity would be to create an exact duplicate
of the network, and any inputs impinging upon it, and simulate
it in its entirety. (Interestingly, this inability to accurately predict
model dynamics for the CXC network applies equally to real
brains).

Integration and Segregation
For the network with baseline AAS input level (equal to 1, as in
Figures 2, 3A), LFP power was strongest at approximately 19Hz,
indicating the dominant oscillation frequency in this network
(Figure 3A center). The ISI distribution appeared monotonic on
a linear scale (Figure 3A right inset), but by exploiting the fact
that very small ISIs are excluded by the refractory period, we
plotted the ISIs on a log scale to give superior count resolution
for short ISIs (Figure 3A right). On a log scale several peaks
were apparent; the ISI distribution was clearly multi-modal. The
central mode, occurring at just below 0.1 s (–1 on the log scale),
was caused by the dominant 10–20Hz oscillations. This mode
could therefore be considered the “base mode” or default ISI of
this network. In this respect, spikes occurring 0.05–0.1 s apart

carried little information; these spike timings were predictable
based on the observed dominant oscillation frequency, and in an
information theoretic sense, the more predictable an event, the
less information it conveys (Shannon et al., 1949). Unexpected,
apparently random deviations from this base mode, however, can
carry much larger amounts of information. Interestingly, for this
network these deviations occurred in amanner suggestive of both
integration and segregation of network elements, as follows:

The mode with shortest ISI, occurring at less than 0.01 s (–
2.4 on the log scale), was caused when neurons integrated into
assemblies. When a neuron received synaptic input from its local
neighbors and from random long-range connections from other
active assemblies elsewhere in the network, it would fire at much
higher rates than baseline and become integrated by and into the
network activity.

Similarly, the mode with longest ISI in the ISI distribution
(Figure 3A, right), occurring at approximately 1 s (0 on the log
scale) and beyond, was caused by neurons firing less often than
expected given the network oscillation frequency, or equivalently,
neurons being excluded from firing. The majority of the principal
neurons in the network had lengthy periods of complete silence
lasting 10 s or more despite the network as a whole displaying
regular oscillations of much shorter periods.

Input Level from the Ascending Arousal System
Changed Dynamical State
When constant input from the AAS was increased, several
dynamical properties of the network were altered (see Figure 3B,
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FIGURE 3 | Varying AAS input induced very different dynamical states

in the CXC network. (A) With AAS input set to 1, complex dynamics

emerged despite the absence of noise in the system. The spike raster plot

for all the principal cells for 10 s of activity is shown (the first 1 s of network

settling time was excluded) (left). The Local field potential (LFP) showed a

(Continued)
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FIGURE 3 | Continued

dominant 19Hz oscillation (center). Firing rate variability was high; neural

activity occurred in combinations of strong bursts and long periods of

inactivity. The ISI distribution, shown as a probability density, was therefore

multi-modal (right), indicative of integration (bursts), and segregation

(extended periods of inactivity—see text). Displaying ISI with log time

enhances resolution for short ISIs (main panel, right; inset on right shows the

ISI distribution with linear time). Network parameters in this panel match

those shown in Figure 2 above. (B) Increasing AAS input levels resulted in

increased firing rate (left), higher dominant oscillation frequency (center) and a

decrease in the number of spikes in the high and low modes of the ISI

distribution (right) compared with the central mode, indicating that more

spikes were becoming entrained to the dominant oscillation as AAS input

increased. (C) Low but non-zero AAS input and no noise resulted in a very

different dynamical state characterized by all neurons being entrained to a

single low oscillation frequency (left). The LFP was characteristic of a

rectangular wave (similar to a square wave but with a shortened or

lengthened duty cycle) (center). Almost all ISIs were identical (right). (D) AAS

input and all synaptic conductances in the network were set to zero and

noise was added to induce random firing at 1Hz (left). Mean firing rate was

identical to that in (A) but the LFP was consistent with filtered noise,

attenuated slightly at higher frequencies by the neural membranes (center).

The ISI distribution was nominally exponential (inset, right) with the spike

refractory period excluding short ISIs (main panel, right).

with four times the AAS input). The network firing rate increased
as a direct result of the increased input allowing a greater
number of neuron assemblies to be simultaneously active. The
dominant network oscillation frequency also increased, due to
the stronger input causing faster depolarization of the neurons
after each oscillation cycle; the oscillation peak shifted from 19
to 26Hz (Figure 3B center). In the ISI distribution, more spikes
occurred in the central baseline mode and fewer in the outlying
short and long ISI modes (Figure 3B right). This change in
distribution indicated greater predictability of the spike train—
a greater proportion of spikes were being entrained to the overall
dominant network rhythm and fewer were exhibiting enhanced
integration with or segregation from this overall network activity.
The reason for the reduced segregation is straightforward—
with more neurons firing there are fewer opportunities for
neurons to be silent for extended periods. On the other hand,
the comparatively lower integration into assemblies is due to
stronger inhibition (which itself is due to the increased overall
activity in the network); each oscillation cycle is shorter, so fewer
spikes are generated by each neuron in each cycle before the
assembly is silenced by inhibition.

For some small but non-zero levels of input from the AAS,
the network entered a very different state (Figure 3C, AAS input
lowered to 0.75). The dominant oscillation frequency decreased
markedly and virtually all neurons were entrained to the global
oscillation. This state had a very low complexity, as can be seen
from the single large peak in the ISI distribution at the dominant
frequency. In this state, the spike times of all the neurons verged
on wholly predictable. It is not immediately evident why this state
arose. However, two observations may be relevant: (1) the state
was not strongly stable, with dynamics settling into either low
or high complexity regimes under initial conditions with very
small differences, and (2) the state was abolished by noise (see
Section Robustness to Noise, below). These observations suggest
that the network dynamics were bistable in this region of phase
space (a not-uncommon occurrence in non-linear dynamical
systems).

To establish a control condition with Poisson firing, which
reveals the differences in dynamics when network activity
is dependent on extrinsic noise rather than on the network
structure, AAS input and all synaptic conductances in the
network were set to zero efficacy and sufficient noise was added
to the neural membranes to induce random spiking activity
at 1Hz (Figure 3D, left). The LFP showed a power spectrum

characteristic of low-pass filtered noise; higher frequencies were
filtered by themembrane capacitance of each neuron (Figure 3D,
center). The ISI distribution took the expected exponential
shape curtailed by the spike refractory period. Poisson firing
highlights the contrasts in dynamics between random activity
and metastability, where the average firing rates were equal but
the higher order statistics were dissimilar.

With the extrinsic noise removed and synaptic conductances
reinstated (i.e., the network restored to standard baseline), AAS
input was then varied from 0 to 10 in steps of 0.01, themean firing
rate for each instance was recorded, and the network trapping
time was calculated (see Methods for details). Trapping time
quantified the amount of time the network tended to remain in a
given state before transitioning to a new state.

Mean firing rate increased linearly as AAS input was increased
(Figure 4, top), except for low input values where firing rate
was typically either zero or extremely high. The regions of
zero network firing were generally for very low AAS input
values near zero, while regions of very high firing rate occurred
for slightly higher input levels between 0.6 and 0.8. The
transformation between low and high firing rates was sudden,
with no intermediate states. The dynamics in the high firing
rate regions were as shown in Figure 3C—low complexity, global
entrainment, and slow oscillations around 5Hz. In these high
firing rate regions the trapping time was high (Figure 4, bottom),
signifying that the network state was not changing (marked as
point c in Figure 4).

With increasing AAS input to just above 0.8, network
dynamics again switched dramatically, in this instance to a
state of low trapping time (high complexity) and low firing
rate, as shown in Figure 3A (marked as point a in Figure 4).
Trapping time and firing rate increased with further rises in AAS
input (point b and beyond). The firing rate increase has been
explained above. The trapping time increase is related to, and
perhaps caused by, the increase in firing rate; specifically, by
the increase in the number of simultaneously-active assemblies.
When a greater number of assemblies are active at any given
time, there are fewer long-range connections that project to
currently-inactive assemblies. Only inactive assemblies have a
chance of switching to an active state and changing the overall
state of the network. The consequence is that, as firing rate
increases, there is decreasing probability of a change in state
at any given time, as reflected in the increasing trapping
time.
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FIGURE 4 | Changing input level from the AAS dramatically affected

network dynamics. Left panels—AAS input levels from 0 to 10. Right

panels—close-up on AAS input from 0 to 1. Cases a–c from Figure 3

are marked on the graph (top). Very low input levels below 0.6 usually

resulted in no network activity, with sporadic instances of complex

dynamics occurring for AAS input levels between 0.35 and 0.6 (see

close-up panels on right). At input levels between 0.6 and 0.8, global

entrainment at high firing rates but low oscillation frequencies emerged

abruptly, again with some sporadic interspersed instances of complex

dynamics. The sporadic large changes in firing rate and trapping time for

low AAS input levels (between 0.35 and 0.8) are characteristic of network

dynamics being bistable, with the random initial conditions for each

network instance controlling which of the stable states the network settled

into in each case. A small increment in AAS input could therefore result

in a large change in dynamics, as can be seen in the close-up panels on

the right. At AAS levels beyond 0.8, a sustained switch to complex

dynamics occurred (i.e., the bistability vanished). At high levels of AAS

input, firing rate and trapping time increased. Adding noise to the neural

membranes removed the bistability and caused complex dynamics to be

sustained for all levels of AAS input down to zero (dashed line, top right).

Connectivity Impacts Dynamics
In all of the above simulations, long range cortical connections
were set randomly with uniform probability. It is also possible
to base connection probability on distance between the cells,
so that cells that are nearer have a greater chance of having a
long range connection between them. Such a connection scheme
resulted in “waves” of activity propagating through the cortical
cells (Figure 5A). These waves arose due to the connections from
any active region in the network projecting most densely to
regions that were immediately adjacent. These adjacent regions,
receiving the strongest input, were the most likely to become
active next. As this process repeated, the result was a wave
of activity propagating through the network. However, since
the propagation was chaotic, the speed, number and even the
direction of the propagating waves could vary unexpectedly.
Alternatively, by dividing cortical neurons into two groups such
that intergroup long range connections were less likely than
intragroup, activity would unpredictably switch between the
groups (Figure 5B). The activity switch occurred for a similar
reason to the activity waves in Figure 5A, except that the
connection probability within each group was fixed and equal
between all neurons, causing all neurons within a group to have
equal chance to become active.

Reducing the radius of local inhibition resulted in variable
neuronal assembly sizes andmuch faster oscillations (Figure 5C).
Assembly sizes varied because the reduced radius of inhibition
was unable to contain the surrounding excitation, meaning

that adjacent assemblies could link together and form larger
super-assemblies. Oscillation frequency increased because local
inhibition could no longer provide a stabilizing effect on the
network dynamics; instead, local excitatory connections could
form tight recurrent loops limited in frequency only by axonal
conduction delays and membrane dynamics. Finally, increasing
local inhibition and excitation strength and adding short-term
plasticity (STP) to the excitatory synapses resulted in network
dynamics which would spontaneously and intrinsically enter
and exit seizure states (Figure 5D). STP seems to be involved
in the generation of seizure-like dynamics in the model, since
networks without STP do not exhibit these seizure states. Seizure
onset was caused by chance synchronous firing, during one
oscillation cycle, of a larger number of neurons than normal,
simultaneously facilitating a large number of synapses, which
pushed the network into a hyper-synchronous state that was
then perpetuated (often beyond the facilitation time constant)
by feedback through the thalamic matrix connections. Seizure
termination also seemed to occur by chance, with a spike from
a cell either not involved in the seizure or at a time not
synchronized with the seizure oscillations. Such a “wayward”
spike could sufficiently affect the timing of subsequent spikes
in the network to break the hyper-synchronicity. However,
a deeper understanding of the mechanism or mechanisms
involved in seizure onset and termination would require
further studies that are beyond the scope of the current
paper.
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FIGURE 5 | Modifications to the synaptic connection schemes

resulted in changes to the network dynamics. (A) Long range

connection probability based entirely on distance between neurons

resulted in propagating waves of activity. (B) Dividing the neurons into

two groups where neurons within a group were more likely to be

connected resulted in a dynamic switching of activity between groups.

(C) Reducing the radius of local inhibition to less than that of local

excitation resulted in the formation of variably-sized neuronal

assemblies and much faster oscillations. (D) If short-term synaptic

dynamics are modeled and excitation and inhibition strength increased,

a network that exhibits spontaneous entry to and exit from seizure

states can result.

In the version of the CXC network presented in this paper,
the pedunculopontine, reticular and intralaminar nuclei are each
modeled as unitary entities with no smaller components or
sub-nuclei. While this simplification is adequate to demonstrate
the functional involvement of these regions in long range
segregation of cortical activity and facilitation of complex
dynamics, in reality these nuclei are comprised of distinct
components with distinct connection patterns. In particular,
the “non-specific” matrix projections from the IL to the cortex
may in fact have specific synaptic targets (Groenewegen and
Berendse, 1994). This specificity has consequences for cortical
dynamics: rather than cortical regions competing uniformly for
activity, the competition (segregation) occurs in interconnected,

hierarchically-arranged overlapping pockets of varying sizes
across the entire cortex. With such a connection paradigm, total
cortical activity remains controlled at all times, but inter-regional
competition can vary in complex ways based on IL connection
patterns and precise patterns of cortical activity at any given time.
The result is that the repertoire of cortical dynamics is potentially
even richer than presented here.

The network is not limited to linear (1-dimensional) layouts;
2-dimensional, and greater, network arrangements work equally
as well (see online2 for details). Overall, this and the above

2For an animated example of 2-dimensional cortical dynamics in the CXC see

https://dl.dropboxusercontent.com/u/70159706/gtrajectory_out.avi.
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preliminary results (Figure 5) suggest a strong impact of network
connectivity on the ensuing neural dynamics that warrants
further investigation. Understanding how neural dynamics are
influenced by specific connection structures in the brain such
as the directed connections between regions at the macro
scale, intra-regional connectivity inside structures like the
hippocampus at the meso scale, and detailed neural circuitry at
the micro scale, is critical to understanding how these structures
perform their diverse functions.

Robustness to Noise
To test the robustness of the network dynamics to noise, sufficient
membrane noise was added to all principal cells to induce
random spiking at 0.1Hz in each cell; that is, spiking occurred
at 100Hz across the network of 1000 cells. (Note that this is a
very different experiment to that depicted in Figure 3D, where
the network was effectively disabled by setting synaptic efficacies
to zero prior to the injection of noise.) In the case of adding noise
to the functioning network, there was no significant change in
the mean firing rate, integration and segregation, or the trapping
time for most AAS input levels. However, for AAS input between
0 and 0.8, the transitions to low complexity states with high
mean firing rates and high trapping times did not occur; instead,
complex dynamics continued for all input levels down to zero
(Figure 4, dashed line in top right panel). This continuation of
complex dynamics was due to random spiking activity adding to
the total activity in the network, similar to sustained higher AAS
input, and holding the network in a metastable dynamical state.
Crucially, the network’s ability to maintain metastability and long
range segregation of activity was not compromised by noise.

Discussion

Segregation, Metastability, and the
Thalamocortical Matrix
The primary finding in the current study has been that the
AAS-IL-RN circuit may have the ability to globally segregate
cortical activity and maintain metastable cortical dynamics,
with no need for injected noise or input perturbations, and
that the global cortical state could be strongly modulated by
brainstem input to the thalamus. In the absence of long-
range inhibition, and the absence of long-range excitation onto
local inhibitory interneurons, the long-range competition and
network segregation observed in the CXC could only occur
through the lowering of excitation from the IL. Local and long-
range corticocortical connections in the CXC network were
not strong enough to sustain activity at low firing rates—a
depolarizing input from the IL was required to boost neural
membrane potentials sufficiently close to threshold so that a
small number of presynaptic spikes was capable of causing
a spike in the postsynaptic neuron. If total activity in the
CXC network increased, tonic depolarizing input from the IL
decreased, and neurons or assemblies that would have fired due
to convergent input from other active assemblies would then be
unable to fire. This is competition through effective inhibition
(inhibition that occurs via the withdrawal of tonic excitation),
controlled by the total amount of activity across the network.

Simultaneous, transient, unpredictable, recurring integration and
segregation of activity in the CXC network resulted in the
observed on-going metastability. Without these thalamocortical
matrix connections, sustained metastability at low firing rates,
long range competition, and global segregation of cortical activity
would not be possible.

The activity states observed in the CXC network have analogs
in real brains. The slow oscillations and global coupling seen at
lowAAS input levels in the CXC network are similar to the strong
delta oscillations and very low dynamical complexity observed
during deep (non-REM) sleep (Massimini et al., 2005; Murphy
et al., 2009). In mammals, AAS input levels, particularly input
from the pedunculopontine nucleus (PPN, or sometimes PPT
or PPTg) are significantly reduced during periods of non-REM
sleep (Moruzzi andMagoun, 1949; Reese et al., 1995; Jones, 2003),
with slow delta oscillations at 0.5–4Hz the predominant neural
activity signature of this state. The transition between sleep
and active cortical states is thought to be driven by cholinergic
neuromodulation. However, there is likely to be more than one
mechanism involved, and this result in the CXC network suggests
that the transition could be assisted by the lowering of AAS input;
supporting the switch from a state of high to low dynamical
complexity.

At slightly higher AAS input levels than those required to
generate sleep-like dynamics, the CXC network switches into a
low firing rate, high complexity state. This state is analogous to
awake states of low cortical arousal and metastability seen in
real brains at intermediate levels of PPN activity, and observed
during quiet relaxation (Stam et al., 1999). The characteristic
neural activity signature of this state is relatively slow alpha
oscillations (8–12Hz, just lower than the dominant oscillation
frequency observed in the CXC network) seen over large parts of
the cortex. Increasing AAS input beyond this level in the CXC
network resulted in increased firing rates, increased dominant
oscillation frequency and increased trapping time—the length of
time for which neural assemblies were stable—while decreasing
the dynamical complexity. The decrease in complexity arose
due to more spikes being entrained to the dominant oscillation
and fewer spikes exhibiting either integration into assemblies
or segregation from network activity. These states in the CXC
network may correspond to states of attention, arousal and
vigilance in real brains when AAS input is known to be maximal.

Default Mode Network
Free association and daydreaming tend to occur when the brain
is not actively processing sensory stimuli or task-related events,
and as such these states are correlated with activity in the default
mode network (Mason et al., 2007; Buckner et al., 2008; Christoff
et al., 2009). It follows that when the brain switches state from free
association to attention, activity tends to switch from the DMN
to other parts of the cortex. The regions of the cortex involved
in the DMN are more strongly connected to each other than
they are to the rest of the cortex (Buckner et al., 2008). We have
shown that when a similar connection strategy is employed in the
CXC network—dividing the cortical neurons into groups where
intergroup connections are less likely than intragroup—activity
dynamically and unpredictably switches between groups.
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In the CXC network, activity tends to concentrate in one
group at a time because the recurrent long range connections
required to sustain ongoing activity (Stratton and Wiles, 2010b)
are focused within groups. Switching between groups is driven
by a combination of the long range connections and the
input from the AAS; when several long range inputs to a
new group are activated simultaneously, perhaps coinciding
with a decrease in activity of the currently-active group due
to either habituation or random activity fluctuation, then
input from the AAS can be sufficient to ignite a larger
number of assemblies in the new group. Activity in the new
group then competes for persistence with the current group
through the segregation process mediated by the AAS and
the thalamic matrix connections, and if activity in the new
group is strong enough then it will dominate and an activity
switch occurs. This dynamic switching in the CXC network
provides a parsimonious explanation and inherent mechanism
for activity in the DMN and other cortical regions being
mutually exclusive despite the limited connectivity (especially
inhibitory connectivity) between them. In the brain, the timing
of switches in activity between the default mode and task-
positive networks is likely also influenced by task requirements
and external events in the perceived environment, rather than
being purely chaotic, but the segregation principle remains the
same.

Consequences for Brain Function
Sustained firing of neural assemblies has been proposed as
the neural substrate of working memory in the cortex (Wang,
1999; Pesaran et al., 2002; Jensen, 2006; Jensen et al., 2007).
In the CXC network, the state of higher firing rates, increased
trapping times and faster oscillations is analogous to a state
of increased vigilance, attention and working memory in the
cortex (Oken et al., 2006), driven by an increase of input
from the AAS (specifically the PPN). There is ample evidence
that increasing input from the AAS causes increasing cortical
activation in general (Jones, 2003), and that firing rate and
oscillation frequency also increase specifically for those neurons
representing attended stimuli (Fries et al., 2001). There is also
some evidence that increased vigilance does indeed reduce
spiking variability (meaning that complexity of spiking patterns
is also reduced) (Falkner et al., 2013). The converse state of low
firing rates, short trapping times and high complexity in the CXC
network is driven by lower AAS input levels and is associated
with slower oscillations. This state is analogous to fluid states
of mentation such as mind-wandering or daydreaming (Laufs
et al., 2003; Mason et al., 2007; Buckner et al., 2008; Christoff
et al., 2009) where working memory is not heavily utilized and
mental associations arise freely and apparently randomly due to
the increased variability of the neural dynamics.

The CXC network has a clear dichotomy between relaxed
free association and vigilant attention; these modes cannot
occur together because they are distinct dynamical states of the
thalamocortical system, driven by changing input levels from
the AAS. Dynamical states of low complexity are necessary for
stable maintenance of working memory, with the trade-off that

fewer potential states will be visited due to longer network
trapping times. Dynamical states of high complexity and short
trapping times are necessary for exploring more of the possible
state space combinations of neural representations, supporting
mind-wandering and free association, but are ineffective when
focussed attention and working memory are required. Based
on the model’s behavior, we conjecture that states of high
and low complexity are both useful but cannot co-occur, so
the brain switches between them as need and opportunity
arises.

Several predictions about neural dynamics can be made from
the model:

1. Overall cortical activity should increase approximately linearly
with increasing stimulation from the AAS. This correlation
could possibly be measured experimentally using fMRI.

2. Increasing AAS input should cause increased trapping time
in the cortex (i.e., longer activation of neural assemblies
and slower transitions between cortical states). This
relationship could be quantified using fMRI ormulti-electrode
electrophysiology recordings.

3. Increasing AAS input should also reduce the complexity
(increase the predictability) of dynamic cortical activity
patterns. Predictability can be quantified by calculating the
entropy of or the mutual information in recorded spike trains
(Dorval, 2008).

What can the CXC network tell us about computation in the
brain, rather than simply brain dynamics? To adequately address
this question requires consideration of both representation
(how does brain activity represent information?) and learning
(how does this information come to be in the brain?); these
are substantive and intricately connected topics which are the
focus of much research today. In its current form, the CXC
network offers mechanisms behind the intrinsic, autonomous
generation of metastability that seem to be required for complex
thought (Binder et al., 1999; Mazoyer et al., 2001; Breakspear
et al., 2003; Buzsáki and Draguhn, 2004; Fries, 2005; Tognoli
and Kelso, 2014) and for the stable maintenance of dynamic
neural assemblies required for working memory (Wang, 1999;
Pesaran et al., 2002; Jensen et al., 2007). These apparently
conflicting requirements are addressed through the control
exerted over network dynamics by the level of input from the
AAS to the thalamus. With these mechanisms in place, the
dynamics observed in the CXC can potentially inform existing
and perhaps even all-new theories of information transmission
and transformation in the brain. Likewise, theories of learning,
representation and mental processing can be tested in, and may
lead to refinements of, the CXC. Initial questions include:

• Can repeated activity sequences be embedded in the network
and spontaneously replayed—spontaneous sequence replay
has been seen in animals during sleep and decision-making.
• Can plasticity mechanisms bias network dynamics to

functionally integrate given cortical regions on demand
(based on specific internal or external triggers)—this would
help answer how the brain learns to functionally connect
brain regions for the propagation of information as required.
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Subsequent questionsmay address more complicated issues, such
as how complex representations can be constructed in dynamical
neural assemblies and utilized by the brain for purposeful
computation. The ultimate goal of this future research will be to
link the observed network dynamics with computational states in
the brain.While realization of this goal is clearly distant, studying
the CXC network will potentially lead in this direction.

Pathological Dynamics
Many brain disorders are associated with alterations to cortical
dynamics, the DMN and the AAS (Garcia-Rill, 1997; Schnitzler
and Gross, 2005; Uhlhaas and Singer, 2006; Buckner et al.,
2008; Fröhlich et al., 2008; Fox and Greicius, 2010; Zhang
and Raichle, 2010). We have demonstrated the dependence
of autonomously-generated metastable dynamics on network
connectivity in these regions. Because up to 99% of cortical
connections derive from the cortex (Braitenberg and Schüz,
1998) and only a small fraction of the brain’s energy consumption
is used for the processing of external events (Raichle and
Mintun, 2006; Zhang and Raichle, 2010), by far the majority
of cortical activity originates in and is driven by other cortical
activity. Changes in cortical structure driven by either learning or
disease may therefore affect ongoing dynamics in unpredictable
ways. Furthermore, these changes in dynamics may often lead
to further structural change, creating a recursive dependency
between dynamics and structure that could possibly lead to
pathological states, such as in epilepsy, sleep disturbance,
schizophrenia and many other brain disorders. By modeling
autonomous metastable activity in the AAS-IL-RN circuit, this
recursive chain of structural-dynamical co-dependence remains
intact, allowing the investigation of how this dependence may
lead to pathological states. Such studies are directions for future
research with the CXC model.

Advances in the CXC Model
The thalamocortical matrix loop modeled in the CXC network
is reminiscent of a winner-take-all (WTA) mechanism, however
it is more accurately described as implementing winnerless
competition (WLC). In WLC, a clear winning neuron or
neural assembly never emerges from the competition; instead,
each winner is immediately displaced by the next, resulting
in continuously-evolving complex dynamic activity patterns
(Akrami et al., 2012; Rabinovich et al., 2012). WLC can occur
in networks of neurons mutually connected with inhibitory
synapses, as observed in some simple animals during the
generation of unpredictable behavior (Levi et al., 2005). It
has also been shown analytically to occur in networks of
neurons connected with slow global inhibition (Ermentrout,
1992). One of the insights offered by the CXC model is how
the thalamocortical matrix can provide the necessary global
inhibition to implement WLC for the control of complex
dynamics across the cortex.

Random networks with balanced local excitation and
inhibition have previously been shown to exhibit chaotic
dynamics (Van Vreeswijk and Sompolinsky, 1996). Since then,
studies have shown that networks connected using small world
principles can also exhibit complex dynamics (Sporns et al.,

2000b; Sporns and Tononi, 2001; Roxin et al., 2004; Riecke et al.,
2007; Shanahan, 2008). However, for common topologies of these
networks, the regions of parameter space where metastability
was evident was small (Breakspear et al., 2003; Shanahan,
2008). More recently it has been shown that activity-dependent
synaptic depression (a short-term decrease of synaptic efficacy
based on postsynaptic activity) can massively enlarge the critical
region where metastability occurs (Levina et al., 2007), and
that the voltage-dependence of synaptic currents can stabilize
complex dynamics for long periods of time (Kumar et al., 2008).
Most recently, networks organized into hierarchical modules,
where intra-module connections are abundant and inter-module
connections are sparse, have been studied (Rubinov et al.,
2011; Wang et al., 2011). Unlike previous networks, these latest
networks (Kumar et al., 2008; Rubinov et al., 2011; Wang et al.,
2011) can exhibit irregular sustained activity at low firing rates.
For all of the above-mentioned networks, however, some or all of
these questions remain open:

• How can complex dynamics be sustained indefinitely?
• How can low average firing rates, as seen in cortex, be

obtained?
• Can dynamics be maintained without injection of extrinsic

noise?
• Can very long interspike intervals (tens of seconds) be

achieved?
• How can explicit segregation of activity (as against just a lack

of integration) be accomplished?

In the current study, we have shown how the thalamocortical
matrix connections control cortical dynamics and resolve
the above issues. Complex metastable dynamics in the CXC
network continue indefinitely with no need for injected
noise, at low firing rates and with very long ISIs occurring
frequently. Most importantly, the matrix connections can
cause explicit dynamic segregation of network activity through
withdrawal of tonic excitation—a process we have termed
effective inhibition. Effective inhibition leads to activity between
weakly-connected regions (such as the default mode and task
positive networks) being significantly anticorrelated rather than
simply uncorrelated. A mechanism by which effective inhibition
can arise globally across the cortex has not previously been
suggested.

Conclusion

The first and main result of this paper—that the global inhibition
required for winner-take-all dynamics can be implemented by
the diffuse thalamocortical loop—is not immediately obvious
from neurophysiological observation, since there is little large-
scale long-range inhibition within the loop. For this reason we
have termed the process ‘effective inhibition’. Secondly, we show
how changing tonic input levels from the ascending arousal
system to the thalamus can change the dynamical state in
the cortex (Section Input Level from the Reticular Activating
System Changed Dynamical State). This result explains previous
observations concerning how AAS input affects cortical activity
(such as state changes between sleep, wakefulness and vigilance)
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and makes several novel predictions (Section Consequences for
Brain Function). Thirdly, we show how cortical connectivity
affects the sustained dynamics (Section Connectivity Impacts
Dynamics). These sustained activity patterns can potentially
be understood in terms of WTA dynamics, and we have
demonstrated that the ‘effective inhibition’ paradigm, with its
fundamentally different mechanism, is capable of supporting
these patterns. When the network was structured into task-
positive and DMN cortical regions with dense local and sparse
long-range connections, we additionally showed how activity
could intrinsically alternate between the groups based on chaotic
dynamics with no extrinsic noise. We argue that such intrinsic
alternation provides a plausible explanation for the dynamical
segregation of the DMN from other cortical regions. We have
shown that the network is robust to noise, but importantly
does not require noise for the generation and maintenance of a
complex, ongoing brain state.

Previous studies have examined networks that exhibited
complex dynamics, but these networks were unable to achieve

long range segregation of activity. In contrast, the CXC network
achieves both segregation of activity and metastability through
the global control of the RN acting through IL. Without global
control, network activity reduces to numerous interconnected
pockets of activity that can mutually integrate due to activity
propagating through the long range connections, but cannot
mutually segregate.
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