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Background: Interhemispheric and intrahemispheric long-range synchronization and
information communication are crucial features of functional integration between the
bilateral hemispheres. Previous studies have demonstrated that disrupted functional
connectivity (FC) exists in the bilateral hemispheres of patients with carpal tunnel
syndrome (CTS), but they did not clearly clarify the phenomenon of central dysfunctional
connectivity. This study aimed to further investigate the potential mechanism of the
weakened connectivity of primary somatosensory cortex (S1) based on a precise
template.

Methods: Patients with CTS (n = 53) and healthy control subjects (HCs) (n = 23)
participated and underwent resting-state functional magnetic resonance imaging (rs-
fMRI) scanning. We used FC to investigate the statistical dependency of the whole
brain, effective connectivity (EC) to analyze time-dependent effects, and voxel-mirrored
homotopic connectivity (VMHC) to examine the coordination of FC, all of which were
adopted to explore the change in interhemispheric and intrahemispheric S1.

Results: Compared to the healthy controls, we significantly found a decreased strength
of the two connectivities in the interhemispheric S1hand, and the results of EC and VMHC
were basically consistent with FC in the CTS. The EC revealed that the information
output from the dominant hemisphere to the contralateral hemisphere was weakened.

Conclusion: This study found that maladjusted connections between and within the
bilateral S1 revealed by these methods are present in patients with CTS. The dominant
hemisphere with deafferentation weakens its effect on the contralateral hemisphere.
The disturbance in the bilateral S1 provides reliable evidence to understand the
neuropathophysiological mechanisms of decreased functional integration in the brains
of patients with CTS.

Keywords: carpal tunnel syndrome, primary sensory cortex, effective connectivity, functional connectivity, voxel-
mirrored homotopic connectivity, interhemispheric
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INTRODUCTION

Interhemispheric and intrahemispheric long-range
synchronization and information communication are crucial
features of functional integration between the left and right
hemispheres (Xinhu et al., 2020). Integration has been found
to play an important role in multiple high-order functional
processes, such as vision, attention, and sensory and motor
functions (Antonello et al., 2016). Therefore, studies of various
clinical diseases and neurophysiologic contexts, such as autism
(Xiaonan et al., 2020), mild cognitive impairment (Li et al., 2021),
chronic insomnia (Zhou F. et al., 2018), stroke (Lee et al., 2018),
aging (Coelho et al., 2021), and the use of different gestures
(Balconi and Fronda, 2021), have focused on these representative
brain communication pathways to further understand the
relevant pathophysiological processes.

Resting-state functional magnetic resonance imaging (rs-
fMRI) has commonly been used to investigate brain connectivity
between and within the two hemispheres (Biswal et al., 1995).
Based on fMRI, functional connectivity (FC) and effective
connectivity (EC) are two powerful methods to investigate the
functional integration between different brain regions and reflect
interactions across different cerebral regions (Fox and Raichle,
2007). By means of interhemispheric and intrahemispheric FC
and EC, investigators could directly quantify the functional
integration between and within the two brain hemispheres and
thus have a considerable chance of determining how functional
integration affects higher functional processing (Jin et al., 2020).
FC, the statistical correlation between two or more brain
regions, is considered a common approach to measuring non-
directional interactions in the human brain (Zhou Y. et al.,
2018; Reid et al., 2019). EC, such as the one shown by granger
causality analysis (GCA), reveals the direction of the information
flow by focusing on the time lag in the relationship between
different brain regions (Xu et al., 2019). Different from the
same time series of FC, GCA results are calculated in multiple
time series (von Eye et al., 2014). However, both FC and
EC have been used to identify the magnitude of functional
connections between different brain regions in a variety of
neurological and psychiatric disorders. Interestingly, different
studies have shown multiple patterns of functional integration;
for example, Coelho et al. (2021) have shown that aging
induces decreased intrahemispheric connectivity and increased
interhemispheric connectivity, which reflect a reduction in
integration (Coelho et al., 2021). In contrast, patients with
stroke showed disrupted interhemispheric connectivity (Lee
et al., 2018). A study of temporary functional deafferentation
also revealed that the interhemispheric FC of the sensorimotor
area of healthy individuals was significantly reduced after
peripheral nerve blockade, while the intrahemispheric FC
changed inappreciably (Melton et al., 2016). Meanwhile, a similar
pattern of interhemispheric plasticity has been demonstrated by

Abbreviations: CTS, carpal tunnel syndrome; EC, effective connectivity; FC,
functional connectivity; S1, primary somatosensory cortex; PNI, peripheral nerve
injury; rs-fMRI, resting-state functional magnetic resonance; GCA, granger
causality analysis; ROIs, regions of interest; HCs, healthy control subjects; MNI,
Montreal Neurological Institute, VMHC, voxel-mirrored homotopic connectivity.

fMRI in patients with different peripheral nerve injuries (PNIs)
(Chemnitz et al., 2015; Chao et al., 2018). In addition, we
also adopted voxel-mirrored homotopic connectivity (VMHC)
to qualify the coordination of the primary somatosensory
cortex (S1) in whole-brain interhemispheric FC, which was
represented by the FC between each voxel in one hemisphere
and its mirrored counterpart in the opposite hemisphere
(Stark et al., 2008).

Normally, the experience of the external and internal
environment is properly accepted as an input signal and
accommodated by the cerebral cortex. PNIs disorder the daily
function of the brain processes in manual behaviors, and
functional and structural remapping continuously proceed in
the entire cerebrum (Bhat et al., 2017; Onishi et al., 2018). The
deafferented sensory input from the injured body part causes
neural activity not only in the contralateral cortex but also
in the ipsilateral, homotopic cortical area (Yu and Koretsky,
2014). The cortical projection territories of the corresponding
afferent nerve are disordered and invaded from the adjacent
area (Wu et al., 2018). In particular, the neuronal activity
following PNI is changed in the contralateral and ipsilateral S1s,
which are related to enduring symptoms of sensory dysfunction,
such as paresthesia, numbness, pain, and weakness (Han
et al., 2013). Individuals with carpal tunnel syndrome (CTS),
a typical nerve entrapment PNI, exhibited a greater activated
extent in the contralateral S1 and different ipsilateral activity
during the activation task compared to healthy individuals
(Nordmark and Johansson, 2020). Meanwhile, our previous
study found increased intrahemispheric FC and decreased
interhemispheric FC. We previously suggested that increased
FC is supplementary to the afferent block, and decreased FC
implies conduction damage of bilateral hemispheric information
exchange (Lu et al., 2017).

We speculated that the decreased synaptic activity
suppressed the synchronization effect from the contralateral
hemisphere, but we still have doubts about the direction of
these information-interaction effects. Previous studies used a
relatively rough subarea template to clarify refined connectivity
information, which may provide imprecise results, such as
S1 spanning multiple functional regions. The Brainnetome
is a finely sorted human brain atlas based on connectional
architecture and links brain connectivity to function. It
was considered the brain template that we adopted in this
study to explore the strength of functional and directional
interactions and the coordination between the bilateral S1
(Fan et al., 2016).

As described earlier, combined with our previous results (Lu
et al., 2017), eight subregions of the bilateral S1 in the human
Brainnetome Atlas were extracted as the regions of interest
(ROIs) (Fan et al., 2016). The FC, GCA, and VMHC were
adopted to explore the alternations of interhemispheric and
intrahemispheric information communication of the S1. The
directional and non-directional connectivity patterns between
ROIs were computed to verify our hypothesis. We hypothesized
that the interhemispheric and intrahemispheric integration
would be changed in the patients with CTS, and the EC and
FC results would mutually be corroborated. Therefore, this
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study investigated the changed connectivity of communication
functions and coordination of central neural regions in
patients with CTS.

MATERIALS AND METHODS

Participants
All the data were acquired from 76 right-handed participants
who were recruited from the Yueyang Hospital of Integrated
Traditional Chinese and Western Medicine, Shanghai University
of Traditional Chinese Medicine. Participants included 53
patients with bilateral CTS and 23 healthy control subjects (HCs).
Written informed consent was obtained from each subject. This
study was approved by the Medical Ethics Committee of Yueyang
Hospital. All ethics-related work was performed in accordance
with the Declaration of Helsinki.

The patients with CTS presented with a stage with
objective neurological signs and delayed motor conduction.
To ensure these criteria, one professional hand surgeon was
involved throughout the diagnosis of all patients and healthy
subjects. Inclusion criteria were as follows: (1) complaints of
paresthesia/numbness in the median nerve innervated territories,
night pain, wrist/finger weakness, and/or thenar atrophy in
bilateral hands for more than 3 months according to the guideline
released by Lu et al. (2017); (2) Phalen’s sign and Tinel’s sign;
and (3) motor latency of the median nerve above 3.7 ms. The
exclusion criteria for both groups include (1) confirmed or
suspected history of peripheral neuropathies or cerebral diseases
and (2) MRI contraindications.

fMRI Data Acquisition
Each participant was instructed before scanning to remain at
rest and awake without thinking or falling asleep. Matching
hoods and foam pads were used to fix the head and reduce head
motion. The images were acquired using a Magnetom Trio A
3T MR Scanner (Siemens AG, Erlangen, Germany). Rs-fMRI
images were acquired using a gradient echo-echo planar imaging
(GRE-EPI) sequence with the following parameters: interleaved
scanning order; slice number = 43; matrix size = 64 × 64; field
of view (FOV) = 240 mm × 240 mm; repetition time/echo time
(TR/TE) = 3,000/30 ms; flip angle = 90◦; slice thickness = 3.0 mm;
acquisition voxel size = 3.2 mm × 3.2 mm × 3.40 mm; and
number of repetitions = 240 for a total acquisition time of 12 min.

fMRI Data Preprocessing
Data preprocessing procedures were performed using the
Statistical Parametric Mapping 12 (SPM 12) toolbox1based on
the MATLAB 2014a platform. The first 10 volumes were removed
to eliminate unstable signals. The subsequent preprocessing steps
included slice timing, head motion correction, coregistration to
individual anatomical images, spatial normalization to the EPI
template of the Montreal Neurological Institute (MNI) space,
resampling to 3.0 mm × 3.0 mm × 3.0 mm, and smoothing
with a 6-mm full-width at half-maximum Gaussian kernel. Linear

1http://www.fil.ion.ucl.ac.uk/spm/

detrending and bandpass filtering (0.01–0.08 Hz) were further
carried out. Finally, the nuisance signals, including the averaged
signal from white matter, cerebrospinal fluid, and Friston 24 head
motion parameters, were regressed out of the data. Five normal
healthy subjects and three patients were abandoned because of
excessive head motion (more than 2◦ and 2 mm) or serious
artifacts. Finally, the images of the remaining 68 subjects were
included in this study.

Functional Connectivity and Extracted
Regions of Interest
The main focus was on the S1 cortices, which were defined as the
walls of the postcentral gyrus inside the central sulcus. To explore
which connections contributed to alterations in patients with
CTS, seed-based FC analyses were further conducted in eight
regions of bilateral sub-S1 as ROIs, which were performed using
the Resting-State fMRI Data Analysis Toolkit (REST) software2.
The first pair of sub-S1 (PoG_L/R_1) regions represents the
upper limb, head, and face, the second pair (PoG_L/R_2)
represents the tongue and larynx, the fourth pair (PoG_L/R_4)
is the trunk region, and the third pair (PoG_L/R_3) represents
other parts of the body (Fan et al., 2016). Specifically, for
each individual, the mean time series of each seed point was
calculated by averaging the functional MRI time series for
all voxels within each ROI and then correlating them with
the time series of the rest of the whole brain in a voxelwise
way using the preprocessed functional images. The resultant
correlation maps were subsequently normalized with Fisher’s r to
Z transformation.

Granger Causality Analysis
In this study, we also used the REST toolbox to explore the
causal interaction among the eight subregions (Zang et al., 2012).
According to previous studies, GCA was based on multiple
linear regressions and considered a credible method to investigate
causal connectivity (Roebroeck et al., 2005). The GCA protocol
was performed as follows (van Ettinger-Veenstra et al., 2019).
We intended to explore the EC of all the sub-S1 regions. All
the ROI coordinates were in the MNI space. ROI-wise GCA
was performed using the selected ROIs. We used the RESTplus
toolkit to perform the bivariate ROI-wise GCA pipeline. For each
participant, the causal effects among the ROIs were analyzed.
The alterations in EC were calculated by computing the bivariate
coefficients between the patients and healthy controls.

Voxel-Mirrored Homotopic Connectivity
The analysis of VMHC was also performed using REST
software. For each subject, the homotopic FC was computed
as the Pearson’s correlation coefficient between each voxel’s
preprocessed signal time series and that of its symmetrical
counterpart in the other hemisphere. Correlation coefficients
were then Fisher’s Z-transformation to improve normality.
The resultant Z-values, constituting the VMHC, were used for
subsequent voxelwise group comparison.

2http://www.restfmri.net/forum/
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FIGURE 1 | The brain regions with a significant difference in the FC of the sub-primary sensory cortex between patients with CTS and healthy controls. (A) The left
first sub-S1. (B) The left third sub-S1. (C) The left second sub-S1. (D) The right second sub-S1. INS, insular gyrus; LOcC, lateral occipital cortex; MFG, middle
frontal gyrus; MTG, middle temporal gyrus; MVOcC, MedioVentral occipital cortex; OrG, orbital gyrus; PCun, precuneus; PoG, postcentral gyrus; SFG, superior
frontal gyrus; Tha, thalamus. L, left. R, right.

Statistical Analysis
A two-sample t-test was performed to contrast the results
between CTS and HCs. Those considered significant results
were passed the false discovery rate (FDR) correction
(p < 0.05). Autoregression coefficients of ROI-wise GCA
results between CTS and HCs were compared using the two-
sample t-test based on the Social Sciences 21.0 (IBM SPSS
Inc., United States).

RESULTS

Functional Connectivity
Compared to the HCs, the patient group with CTS showed a
significantly changed FC (FDR, p < 0.05).

With the predefined four subregions in the left S1, increased
FC was observed between the PoG_L_1 and the bilateral
thalamus, the PoG_L_2 and the bilateral thalamus, the PoG_L_2
and the left insular, the PoG_L_3 and the right middle frontal
gyrus, and the PoG_L_3 and the bilateral thalamus. Decreased FC
was exhibited between the PoG_L_1 and the ipsilateral PoG_L_3,
the PoG_L_1 and the contralateral PoG_R_1, the PoG_L_2
and bilateral middle temporal gyrus, bilateral precuneus, left
superior frontal gyrus, left orbital gyrus, the ipsilateral PoG_L_1,
the contralateral PoG_R_3, the right lateral occipital cortex,
the PoG_L_3, and the ipsilateral PoG_L_2 (Figures 1A–C and
Table 1).

With the predefined four subregions in the right S1, decreased
FC was displayed between the PoG_R_3 and the contralateral
PoG_L_1, right temporal gyrus, and right medioventral occipital
cortex (Figure 1D and Table 1).

There were no significant differences in the other sub-
S1 regions.

Effective Connectivity
According to the eight selected sub-S1 regions, the GCA analysis
between each pair was computed. In contrast to the healthy
controls, the patients with CTS demonstrated significantly
decreased values from the PoG_R_1 to the contralateral PoG_L_1
and the right PoG_R_3, and from the PoG_R_2 to the
contralateral PoG_L_1 (p < 0.05, Figure 2).

Voxel-Mirrored Homotopic Connectivity
The VMHC results revealed that the coordination of the bilateral
PoG_1 was decreased, while the coordination of the bilateral
PoG_3 was increased (Figure 3 and Table 2).

DISCUSSION

In this study, the results of abnormal connective and
coordination patterns between and within the bilateral S1
are shown by the FC, GCA, and VMHC results. In contrast to
most previous studies of interhemispheric and intrahemispheric
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TABLE 1 | Regions showing significant differences in functional connectivity of the
sub-S1 areas between patients with CTS and HCs (pFalsediscoveryrate < 0.05).

Contrast name MNI coordinates

ROI-seed Region
label

Extent t-value X y z

PoG_L_1 Positive Tha_L_8 21 4.7168 −18 −18 0

Tha_R_2 13 4.6085 15 −6 6

Negative PoG_L_3 47 −6.1465 −60 −15 30

PoG_R_1 12 −4.7988 48 −21 57

PoG_L_2 Positive INS_L_6 50 5.4193 −33 0 15

Tha_R_2 117 5.1319 15 −6 6

Tha_R_5 117 4.4707 9 −30 3

Tha_L_8 61 4.4567 −15 −18 9

Negative MTG_L_1 75 −5.9152 −63 −36 −6

PoG_L_3 67 −4.8182 −57 −15 30

MTG_R_4 42 −4.8052 63 −3 −15

SFG_L_3 36 −4.7037 −12 57 27

PoG_R_1 15 −4.5723 48 −21 57

PCun_L_3 33 −4.5277 −18 −75 27

PCun_R_3 20 −4.5268 21 −69 30

OrG_L_6 17 −4.2139 −48 30 −12

LOcC_R_1 21 −4.1363 30 −81 9

MTG_R_1 10 −4.026 69 −24 −12

PoG_R_2 Negative MVOcC_R_5 20 −5.348 9 −75 30

PoG_L_1 40 −5.0868 −54 −6 21

PCun_L_3 20 −4.8597 −18 −75 27

PoG_L_3 Positive MFG_R_4 11 4.2102 36 51 21

Tha_L_5 29 4.8051 −12 −9 9

Tha_R_8 28 4.8348 12 −9 9

Negative PoG_L_2 35 −4.7809 −60 −15 27

The corrected threshold of p < 0.05 was determined by Monte Carlo simulation.
MNI, Montreal Neurological Institute; INS, Insular Gyrus; LOcC, lateral Occipital
Cortex; MFG, Middle Frontal Gyrus; MTG, Middle Temporal Gyrus; MVOcC,
MedioVentral Occipital Cortex; OrG, Orbital Gyrus; PCun, Precuneus; PoG,
Postcentral Gyrus; SFG, Superior Frontal Gyrus; Tha, Thalamus. L, left: R, right.

FIGURE 2 | Group differences in effective connectivity of sub S1 (CTS > HCs,
p < 0.05). PoG, postcentral gyrus; L, left; R, right.

connections, we applied more precise brain regions to explore
abnormally changed connective characteristics. In addition,
more interhemispheric results were shown in this CTS study

FIGURE 3 | The results of VMHC revealed the coordination of the bilateral
PoG_1 and PoG_3. L, left; R, right.

TABLE 2 | Regions showing significant differences in VMHC of the sub-S1 areas
between patients with CTS and HCs.

Contrast name MNI coordinates

Region label Extent t-value X y z

Positive PoG_L_3 11 5.208 57 −24 48

PoG_L_3 10 5.208 −57 −24 48

Negative PoG_R_1 32 −5.038 51 −15 48

PoG_L_1 32 −5.038 −51 −15 48

PoG_R_1 26 −4.422 63 −6 24

PoG_L_1 18 −4.422 −63 −6 24

The corrected threshold of p < 0.001.

than in the intrahemispheric study, especially for EC and
VMHC. We found significantly decreased strength of the two
connectivities in the interhemispheric S1. The information
output from the dominant hemisphere to the contralateral
hemisphere was weakened. Meanwhile, FC displayed a
significant intrahemispheric decrease. The results of EC
regarding the strength of connection were basically consistent
with those of FC. Similarly, the VMHV value of the hand
representative region (S1hand), PoG_4_1, also decreased. These
results revealed that the information communication efficiency
between the two hemispheres was obstructive.

Numerous studies have examined the changeable relationship
in the interhemispheric and intrahemispheric FC of integration.
In a study on stroke, Baldassarre et al. reported that focal
brain lesions induce a reduction in interhemispheric FC and
an increase in intrahemispheric FC2. Liu et al. (2015) examined
the effects of lesions and treatment-based recovery on functional
organization and found that increased interhemispheric FC
between the bilateral primary motor cortex (M1) was positively
correlated with motor function recovery. Therefore, FC was
thought to be a marker to predict behavioral deficits after
stroke. Meanwhile, a similar integration pattern has been
demonstrated not only in stroke but also in different diseases
(Chen and Schlaug, 2013; Lee et al., 2018). Impaired and reduced
white matter fibers have been found in children with cerebral
palsy (Weinstein et al., 2014). In a study of schizophrenia,
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investigators found that the disconnection between brain
hemispheres represents a derailment of cognitive functions. In
addition, the asymmetry of hemispheric network properties was
associated with patients’ symptom severity, such as the severity
of hallucinations and delusions, which showed an increase with
increasing interhemispheric connectivity in the right frontal and
bilateral temporal cortices (Zhang et al., 2019). Other research
on diseases, including dementia (Filippi et al., 2017), epilepsy
(Hung et al., 2019), and acute damage to the corpus callosum
(Ridley et al., 2016), among others, also reported a disordered
integration pattern. Interestingly, connectivity also changed
even in healthy subjects. Duncan et al. demonstrated that the
differential processing demands of two scripts influenced both
interhemispheric and intrahemispheric interactions; compared
to Hiragana, Kanji could increase activation in right hemisphere
areas or within a ventral visual form-to-meaning pathway and
increase interhemispheric connectivity.

In contrast to central nervous diseases, in PNIs, the brain
is complete and undamaged. Compared to healthy subjects,
long-term aberrant signal inputs changed the corresponding
cortical representation of the injured nerve (Irvine and Rajan,
1996). Recent studies have indicated that denervation always
causes reorganization in the bilateral sensory cortex. For instance,
research on a rodent whisker system has confirmed that trimming
whiskers in mice could lead to loss of synaptic connections in
S1 and change sensorimotor integration (Barnes and Finnerty,
2010). Persistent hand representation still exists in the S1 of
amputees after denervation, and activation was found in the
corresponding sensory areas when the amputees attempted to
move their phantom limb (Irvine and Rajan, 1996). Elevated
gray matter volume was found in the S1 of patients with chronic
low back pain (Kim et al., 2020). This study also found that
the alterations were not limited to and even overstepped the
cortical representation of the body area to which persistent pain
was attributed. Similarly, in CTS, a previous study suggested
that sensory afferent interruption induces a decline in synaptic
activity in S1 (Lu et al., 2017). In contrast, another study also
indicated that cortical plasticity expands from the S1-hand area
to the S1-leg and S1-face areas (Maeda et al., 2017). Functional
cortical remapping occurred in distinctly defined subregions of
ipsilateral S1 after CTS. Therefore, the interactions in S1 may be
the consequence of an internal compensatory response.

Interestingly, a previous study reported that the connectivity
between the areas located far apart from each other was
vulnerable, such as the heterotopic interhemispheric structural
connections in the sensorimotor network (Straathof et al., 2020).
A human study also supports the opinion that, compared to
the other high-order association regions, the primary sensory-
motor cortices demonstrated relatively lower functional stability
during resting-state scans (Li et al., 2020). The instability reflects
both external stimuli and top-down modulation from high-
order regions (Macaluso and Driver, 2005). Li et al. (2020)
found that the bilateral primary visual cortices displayed lower
stability during the viewing task than in the resting state. They
deduced that sensory inputs directly affect the neural activity
of visual cortices, and the decreased stability could be caused
by the continuous reorganization of functional architecture to

changes in the received visual form over time. Similarly, patients
with CTS always suffered sustained abnormal stimuli. Based
on Li’s inference, a possible interpretation of our results was
that continuous stimuli and modulation would worsen the frail
connection connecting the bilateral S1. The weakened VMHC
results further suggested that coordination of the bilateral hand
representative brain area was impaired after CTS. The increased
VMHC confirmed that compensatory remodeling took place
in the other sub-S1 region. Meanwhile, the EC showed that,
compared with the HCs, the output information flow from
the dominant S1hand of patients with CTS was prominently
decreased. The series of consequences demonstrated that
aberrant and persistent sensory stimulation from the dominant
hand weakened the strength of the output information of the
contralateral S1hand and decreased the connectivity between the
S1hand and other brain regions directly.

In addition, our FC results offer an accordant and interesting
phenomenon, namely, the connections between the sub-S1s
and thalamus were activated. Generally, the sensory processing
pathways in the cerebral cortex occur not only via direct
communication between the primary and secondary sensory
areas but also via a parallel transthalamic circuit (Mo and
Sherman, 2019). Robust and effective synaptic connections
between the S1 projections to the thalamus have been confirmed
by trans-synaptic tracing, and the latter carries information to
other cortical areas (Mo and Sherman, 2019). Animal studies
also reported that transection of the sensory nerve could lead to
an increasing number of afferent fibers to the thalamic neurons
(Takeuchi et al., 2012). This evidence demonstrates our result that
CTS could activate the pathway from S1 to the thalamus.

Several limitations should be declared. First, this cross-
sectional study does not provide direct evidence of a correlation
between FC and the clinical assessment, similar to EC.
Future studies using different scales are needed to deepen
our understanding of the neural mechanisms underlying CTS.
Second, the FC and GCA analyses were based on the whole brain.
However, the somatosensory network, the specific functional
resting-state network related to the motor-sensory network,
should be regarded as the anatomical substrate to analyze sensory
connectivity in future studies. Third, the GCA method has
been debated due to the effects of hemodynamic convolution;
therefore, the dynamic causal model, which can compensate for
the defects of the GCA, could be used to provide accurate results
for future research (Friston, 2011).

CONCLUSION

In this study, we demonstrated that maladjusted connections
between and within the bilateral S1 revealed by FC and EC
are present in patients with CTS. The patients with CTS
showed decreased FC between the bilateral sub-S1 regions
and increased FC between the sub-S1 regions and thalamus.
Meanwhile, the decreased VMHC and causal information flow
from the advantaged S1hand to the disadvantaged S1hand were
consistent with the FC results to some extent and reflected
that the prominent cortices are more easily influenced by
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the abnormal information from the corresponding afferent
nerve. The disturbance in the bilateral sub-S1 will provide
reliable evidence to understand the neuropathophysiological
mechanisms in patients with CTS.
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