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Introduction
Although the current COVID-19 pandemic has brought 
infectious disease transmission models into prominence, 
there is a long history of the use of mathematical and 
statistical frameworks to understand infectious disease 
transmission and inform public health interventions.1–5 
The oldest known disease transmission model dates back 
to Daniel Bernoulli, who first used a probability-based 
model in 1766 to evaluate the effectiveness of smallpox 
inoculation, the process of introducing smallpox into the 
skin to cause a more mild illness than if the virus acquired 
by the usual respiratory route, but one that induces 
immunity.6 This precursor to modern-day vaccination 
was not without risk, and Bernoulli used his model to 
evaluate the likelihood of death following inoculation 
against the gain in life expectancy from evading infection. 
William Farr was perhaps the first to attempt to calibrate 
(or fit) a model of disease transmission when he noted 
the similarity between the timeseries of smallpox 
incidence and the normal distribution.7 In 1889, En’ko8 
investigated heterogeneity in measles transmission, 
using models to explain the possible mechanisms that 
give rise to variable epidemic sizes. In 1927, 
Kermack and McKendrick9 expanded on existing models 
to develop the foundation of the modern-day susceptible-
infected-recovered mass-action model using differential 
equations. These models, and many others, have formed 
the basis of modern disease modelling, which has been a 
crucial tool in improving understanding of best practices 
for infectious disease control. By combining mathematical 
or statistical forma lism with epidemiological data and an 
unde rstanding of biological mechanisms, infectious 
disease models enable the evaluation of the effect of 

public health interventions like vaccines, projection of 
future disease burden in various contexts, and answering 
fundamental questions, such as why some people are 
uninfected in an outbreak.

During the COVID-19 pandemic, transmission models 
have been used to provide rigorous guidance to inform 
decision making for infectious disease control at an 
unprecedented rate. Transmission models are often sepa-
 rated into two classes (though overlap exists): mechanistic 
models, in which individuals or populations are modelled 
as moving between discrete, exclusive health states via 
defined transitions, such as infection or recovery, and the 
process of transmission is modelled to represent the 
specific mechanisms of infection;10 and statistical models, 
in which transmission processes or the entire population 
are not necessarily explicitly mod elled, but key 
associations are leveraged to estimate or predict 
transmission variables or disease risk.11–14 The statistical 
models category would include so-called forecasting 
models, which are purely pheno menological.5 Both 
forms of transmission models can be used, broadly, for 
either of two purposes: first, to project disease burden, 
given a model structure and estimated or assumed 
parameter values; or second, to test competing 
hypotheses (ie, models) on what mechanisms best 
explain observed disease dynamics. Often, models are 
first fit to data, allowing for in-sample model assess ment; 
and then, crucially for public health purposes, used to 
generate out-of-sample project ions of disease 
transmission in the future or in other settings assumed 
to have similar transmission dynamics.

Models are crucial tools to estimate key epidemiological 
parameters, to understand and project the effect of 
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intervention policies, to evaluate the presence or effect of 
transmission or disease history phenomena (eg, super-
spreading events, waning immunity), and to provide 
short-term and long-term projections of disease risk or 
burden with customised assumptions of disease trans-
mission and intervention strategies. Which of these 
applications are the most feasible and the most useful will 
depend on the context of disease transmission: under the 
timescale of model development and with few data during 
an emerging outbreak, short-term projections and 
estimates of basic disease variables might take precedence 
over exploration of natural history pheno mena that occur 
over longer timescales. Previous major triumphs of 
disease modelling include examining the effect of 
vaccination campaigns (eg, effect of routine and 
supplementary vaccination programmes for measles) and 
the necessary amount of interventions for disease control 
or elimination (eg, required vector control amount for 
malaria control), identifying important epi demiological 
features of disease outbreaks (eg, measles honeymoons) 
and endemic transmission (eg, different seasonal 
transmission dyn amics for measles), and predicting 
heterogeneity among epidemiological dynamics in 
different socio demo graphic, geographical, or population 
contexts (eg, effect of different seasonal forcing, or birth 
rates and population mixing, on transmission).

The use of both statistical and mechanistic disease 
models has increased substantially during the COVID-19 
pandemic, primarily with the aim of estimating epi-
demiological variables or projecting case and mortality 
counts over time. As of Sept 27, 2020, there have been 
more than 5000 modelling analyses published in peer-
reviewed journals, excluding preprint servers, since the 
start of the epidemic in December, 2019. These analyses 
have greatly aided the pandemic response worldwide, 
from providing the first estimates of the basic repro-
ductive number, R0, to highlighting areas or populations 
that needed improved surveillance,15–18 quantifying targets 
for intervention strategies such as contact tracing,19–22 and 
keeping decision makers and the public informed of 
current and potential future burdens.23–27 However, 
models and their results can be misrepresented, misin-
terpreted, or even mis-specified. As with any other 
scientific enterprise, inappropriate assumptions and the 
misinterpretation of data or results can cause modelling 
efforts to be faulty. Importantly, a subset of COVID-19 
models have relied on opaque or inappropriate methods 
that do not accurately convey uncertainty. Reliance on 
these models can lead to fallacious policy decisions and 
the erosion of public confidence in modelling results.5,28,29

Therefore, there is one central question: how can the 
use of mathematical transmission models be rigorously 
tested and evaluated in the context of an emerging 
pandemic where key epidemiological features might be 
unknown, infor mation to guide responses and policy is 
urgently needed, and data might be few and rapidly 
changing? To answer this question, expertise needs to be 

drawn from a range of disciplines, in particular, 
epidemiology, public health, immunology, data science, 
statistics, ecology, and scien tific communication; and 
historical instances in which modelling has been 
successful—or unsuccessful—in guiding infectious 
disease prevention and control should be considered. 
Below, we discuss a few ongoing and historical examples 
in the field of mathematical transmission modelling for 
public health applications. We then outline aspects from 
these examples that have resulted in success and conclude 
with recommendations for future modelling efforts of 
emerging outbreaks.

What makes modelling efforts successful: past 
examples
In this section, we outline briefly the history and features 
of several successful and less successful efforts where 
models were developed and investigated to inform a 
public health response.2,8 These efforts span multiple 
pathogens, hosts, routes of transmission, and trans-
mission settings (emerging, endemic, or nearing elimin-
ation). Although no two outbreaks or transmission 
scen arios are alike, a common thread in the examples 
discussed here is the use of models in real time to develop 
policy decisions. Shared in the examples below of key 
public health questions that have been addressed through 
modelling, and mirrored in the ongoing COVID-19 
outbreak, are the problems of: few and possibly unreliable 
data, potentially uncertain transmission routes and model 
structures, and developing and communicating actionable 
modelling results. Comparing and analysing previous 
outbreaks across a range of settings allows for a holistic 
view of best practices and potential pitfalls for disease 
modellers.

Malaria: how effective does vector control need to be? 
Models of malaria transmission were some of the first 
mechanistic models used to assess public health inter-
ventions. Between 1908 and 1921, Ross developed a series 
of mathematical formulations of malaria trans mission 
following an unsuccessful mosquito larval control trial.30,31 
At the time, the long-standing scientific belief was that 
mos quito populations should be completely eliminated to 
eradicate malaria, an unattainable goal. However, with the 
use of a theoretical framework based on the mosquito-
human transmission process and the mosquito lifecycle, 
Ross provided evidence that malaria transmission could 
be contained with only the partial control, rather than the 
extinction, of mosquito populations. This early work laid 
the foundation for particular metrics to monitor 
transmission that are still used, such as the prevalence 
rate and entomological inocu lation rate. Following this 
work, Macdonald extended Ross’s model to inform control 
strategies for the WHO Global Malaria Eradication 
Programme.30,31 Importantly, this work evaluated the 
usefulness of additional vector control measures, like 
insecticides, and their overall effectiveness in reducing 
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malaria trans mission in high transmission regions of 
sub-Saharan Africa. These early models were highly 
successful in four areas: first, illustrating the benefit of 
developing biologically realistic theoretical formulations; 
second, identifying key epidemiological values, and 
outlining the necessary data to estimate them; third, out-
lining and addressing clear questions with pre cise 
communication, integration, and motivation from the 
eradication programmes; and finally, restricting analyses 
to evaluating the effectiveness of different inter ventions as 
opposed to directly forecasting the burden, which was not 
yet an attainable goal with the available knowledge of 
malaria transmission and computational methods.

HIV and AIDS: what is the effectiveness of different 
testing and treatment policies? 
Models of HIV and AIDS, including models of 
population-level transmission and within-host viral 
dynamics, have been used to identify patterns of trans-
mission and risk structure, the effect of treatment and 
individual changes in the immune response with anti-
retroviral therapy, and the emergence and propagation of 
drug-resistant variants.32,33 Arguably the most successful 
use of population-level (as opposed to within-host) 
models has been in producing and evaluating estimates 
for the intensity and frequency of various treatment and 
prevention measures needed to reach control targets in 
forward simulations of incidence and prevalence.34–39 As 
with many emerging pathogens, back-calculation met-
hods were also commonly used to estimate rele vant 
transmission parameters (eg, the incubation period) and 
historical infection incidence from AIDS incidence 
data.40 Importantly, these methods also pro vided a scien-
tifically supported approach to project AIDS incidence at 
various stages of disease progression with surprising 
simplicity and without the need for more complex model 
structures or data that were not readily available early on 
in the global pandemic.40

Increasingly, more realistic formulations of projection 
models have been developed to add social, demographic, 
and biological realism to the population risk structure, 
with a particular focus on burden within key populations 
and the role of heterogeneous sexual networks.41–43 The 
understanding that preferred or assortative mixing, con-
currency in sexual partnerships, and scale-free contact 
networks might lead to greater disease burden and faster 
growth than expected under propor tionate mixing 
assumptions was developed largely from models of HIV 
transmission.42–45 In addition to these theoretical advances 
in infectious disease dynamics, important public health 
decisions have been guided by the long-term projections of 
HIV incidence estimated with the use of mathematical 
transmission models, including the adoption or 
recommendations to scale-up antiretroviral therapy, 
universal test and treat ment, and treatment as 
prevention.39,46,47 Several of the most successful modelling 
efforts were integrated with long-running cohort studies 

or clinical trials, which provided crucial data on 
intervention effectiveness to modellers, and enabled the 
integration of modelling results into policy decisions and 
on-the-ground public health activities.47,48 But variability in 
model structure, complexity, and variable choice might be 
amplified over the decades-long timescale for which 
projections of HIV are often made, con sidering the innate 
complexity of HIV transmission. Sensitivity analyses and 
model com parisons, often done by formalised working 
groups, have been crucial to identifying a general 
consensus (eg, that antiretroviral therapy has the potential 
to substantially reduce infections, if access and adherence 
to it are high)34,47 and exploring possible uncertainties and 
varia bility in modelling results.49 At present, modelling is 
widely used to guide national and international prog-
rammes; for example, the Spectrum/AIDS impact model 
is used in more than 170 countries to estimate key HIV 
transmission and control indicators.50

Measles: how should vaccinations be deployed?
Measles is one of the earliest pathogens to be modelled, 
with transmission models dating back to at least the 
late 1800s.8 Since the wide-scale deployment of a safe and 
effective vaccine, transmission models have informed and 
guided international, national, and local immunis ation 
programmes.8,51 By providing a clear way to estimate 
spatial, seasonal, and age-specific transmission rates, 
dynamic compartmental models have been used to eval-
uate the effect of novel interventions, control stra tegies, 
and elimination strategies. In addition, an array of 
theoretical and applied work based on long-term mortality 
and morbidity data has informed current understanding 
of the relative effect of birth rates, seasonal forcing, 
recolonisation, and extinction events, and age-specific 
mixing rates on producing variable epidemic patterns.52–57 
Importantly, models have been used to understand the 
effectiveness of various vaccination campaign designs on 
local and global measles elimination in both low-income 
and high-income settings. The balance bet ween applied 
and basic science has formed robust literature focusing on 
measles dynamics. For example, the WHO Strategic 
Group of Experts includes models as a key tool for the 
successful control and hopeful elimination of the disease.58 
The successes of integrated modelling-public health 
efforts have largely relied on a foundation of clear, applied 
questions, along with an abundance of long time series 
data and multiple model fitting approaches. When 
coupled with the pathogen’s simple life history, models 
can readily address frequently applied questions such as: 
where are the areas of the population that routine vaccin-
ation coverage is not reaching, what is the likelihood of 
transmission in susceptible populations, and how to best 
design effective additional vaccination campaigns. 
Measles dynamics highlight the success associated with 
the use of extensive epidemiological data across a wide 
range of geographical, population and demographic set-
tings to inform model structure, estimate variables, and 
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test model validity. Additionally, the history of measles 
modelling shows the benefits of a goal-oriented approach 
for establishing modelling priorities and of rigorous 
model evaluation by multiple research groups over time.

Rubella: what is the effect of vaccination strategies on 
congenital rubella syndrome burden?
Routine vaccination for rubella has additional com-
plications compared with those for the measles 
vaccination, in that insufficient vaccine coverage can 
increase overall disease burden by increasing the average 
age of infection and subsequently the risk of congenital 
rubella syndrome among pregnant women, relative to 
the more mild form of the disease that occurs in early 
childhood.51,59–61 As a result, those leading vaccination 
programmes should weigh the risk of increased 
congenital rubella syndrome burden against the benefits 
of an overall reduction in rubella infections when 
considering introducing rubella vaccine into their 
routine pro gramme. This calculation depends on the 
demo graphic characteristics of the population, the risk of 
an outbreak, and the probable vaccination coverage. 
Infectious disease transmission models have been used 
to clearly identify the risks and benefits of introducing 
rubella to a vaccine programme and therefore have been 
an integral part of guidance policies for routine 
vaccination requirements in various countries. 
The success of rubella modelling in addressing what the 
appropriate circumstances are for introducing a rubella 
vaccine into a population relies on three components. 
First, the ability to build off of the substantial history of 
measles transmission modelling (with the use of 
common terminology and validated models); 
second, clear policy questions and guidance; and 
third, subsequent model refinements to the structure of 
the model following the identification of possible 
vaccination strategies.4,61

Foot and mouth disease: how should the epidemic be 
controlled?
During the 2001 foot and mouth disease outbreak in 
the UK, multiple models were used to predict the disease 
dynamics and inform control measures.62 This situation 
was one of the first instances when models were used 
during an epidemic to support the decision making 
process. Models were used both to predict the epidemic 
trajectory (with stochasticity) as it was occurring, and to 
compare different control measures.62 Models used 
during this time were able to capture the number of 
cases at a moment in time, approximate the spatial 
concentration of cases, and roughly estimate the overall 
magnitude of the outbreak.63–66 Direct communication 
between modellers, veterinarians, and policy makers, as 
models were being developed and as more epi demio-

logical data were becoming available, was facili tated via a 
centralised working group.67 Therefore, this outbreak 
served as the first example of the regular integration of 

emerging data into modelling efforts during an ongoing 
outbreak to inform decision making (in this situation, 
the recommendation was to cull infected animals and 
poten tially exposed animals in nearby facilities).68 That 
multiple models were developed allowed for model 
comparison to identify robust results, and helped to 
support the notion that modelling results were not biased 
by model structure or complexity. These efforts were not 
without controversy, though; some contend that the few 
models used to justify large-scale animal culling were 
unverified, based largely on the same data and assump-
tions about transmission, and that the policies they 
informed were too rigid.62,67,69 There was concern that 
model estimates were presented as inappropriately 
precise, and that models geared towards understanding a 
national outbreak were not sufficiently capturing the 
local context.62,68

Ebola: what will be the magnitude, burden, duration, 
and areas affected by the Ebola outbreak? 
Although the 2014–2015 Ebola outbreak in west Africa 
probably gave rise to more real-time models than any 
previous outbreak scenario, it is also arguably the least 
successful example of integrating mathematical models 
with a public health response. There were an estimated 
125 models identified and developed during this outbreak 
to answer a range of questions, including predicting the 
spatial and temporal extent of the outbreak, overall 
burden and required hospital or treat ment centre capacity, 
and subsequent effects on other health services.70–73 
Several models sought to eval uate the use of ring 
vaccination strategies to control emerging outbreaks or 
mitigate established outbreaks.74–76 Most models attempted 
to forecast burden, but there were few or inappropriately 
aggregated data that missed local patterns, a rapidly 
changing situation on the ground, and suffered from 
little integration with response activities in the most 
highly affected countries.71,77,78 Often, there was little 
collaboration and transparency between modelling 
efforts, and there were substantial delays to the results 
being made public.70,77 Post-hoc analyses of these models 
found that their ability to accurately forecast burden was 
low; forecasts were unreliable further than 1–2 weeks in 
the future, a timeframe far surpassed by the modelling 
attempts during the outbreak.70–73,79 Substantial differences 
in model results, including some criticised at the time as 
clearly unreasonable or reliant on assump tions known to 
be unfounded, further complicated the interpretation and 
application of model results.79–81 Such disagreement led to 
a real-time analysis critiquing avoid able errors in Ebola 
modelling.73 The difficulty in engaging local stakeholders 
and the community, particularly those on the front lines 
of epidemic response, combined with these siloed, con-
flicting, and even sensationalist modelling results fed 
into a general distrust that prevented models from being 
able to provide results that would inform effective and 
implementable public health interventions.82,83
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Summary of lessons learned
We note several common features among the successful 
efforts (table).

First, successful efforts integrate modelling into 
decision making in the early stages of the outbreak 
response by developing models that produce succinct, 
actionable outputs addressing the specific needs of policy 
makers and stakeholders. Second, successful models 
integrate data in both construction and evaluation stages, 
ensuring that the results are consistent with the observed 
data and knowledge of the epidemiology of the pathogen 
of interest. The integration with data should include 
some quantification of uncertainty in parameter 
estimation and model output. Thus, as the epidemic 
progresses, these models can be evaluated and refined in 
terms of both their structure and complexity and users 
obtain a deeper understanding of exactly which questions 
these models can address. Third, successful efforts make 
use of reproducible and transparent modelling practices, 
thus facilitating collaborative research and peer review by 
the scientific and public health communities. Finally, 
successful modelling is properly contextualised, both in 
development and in producing results relevant to and 
informed by current public health practice. Modelling 
results that are not grounded in a particular context are 
unlikely to produce timely, action able results. In creating 
and consuming these models, the context-specific 
implications of results should be actively addressed at 
the peril of misinterpretation or misuse, leading to 
suboptimal and at times biased public health policies.

Of the five example pathogens discussed, the use of 
modelling in the COVID-19 pandemic probably best 
resembles that of the 2014–2015 Ebola outbreak: many 
models are produced independently, with little real-time 
evaluation or scientific review of model results, few (or 
biased) data are avail able, and knowledge of how severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
is transmitted changes con tinually. However, one 
difference is that in many settings modelling efforts for 
COVID-19 have been integrated with public health 
decision making at multiple levels. The magnitude of the 
public health emergency response provides more support 
and demand than ever for modelling results to inform 
decision making, presenting an opportunity to integrate 
models into public health emergency and response on an 
unprecedented scale.

How can the successes and pitfalls of past 
transmission modelling efforts help to inform 
SARS-CoV-2 transmission modelling?
A universal feature of transmission models is the need to 
evaluate their usefulness and validity within the context of 
their intended use. This aspect has been key to making 
previous modelling efforts successful, since it directly 
informs the choice of model structure, variables, and 
outputs, and makes these results more relevant to decision 
makers. Model evaluation most commonly refers to a 

formal quantitative assess ment of how well the model 
output matches known data; exactly which data or target 
population is used, and which metric is used to establish 
how well the model and data match depends on many 
factors, as well as a more holistic review of the usefulness 
and reasonableness of a model and its assumptions.

Importance and challenges of continued model 
refinement
As knowledge of transmission, disease progression, and 
the effectiveness of interventions continue to improve over 
the course of an epidemic, transmission models should be 
refined to reflect these changes and the current needs of 
decision makers and stakeholders. Model refinement 
might reflect both the data and the underlying assumptions 
about processes driving transmission patterns. For 
example, at the start of the pandemic it was reasonable to 
use estimates of the serial interval, generation time, and 
transmission rate from SARS-CoV for SARS-CoV-2 before 
many data were available. However, as new data and 
analyses emerged, these variable values were no longer 
valid. Similarly, initial models of SARS-CoV-2 might not 
have included asymptomatic or pre-symptomatic trans-
mission, given the inadequate understanding of the 
pathogen at that time.84 This assumption might under-
estimate trans mission and accordingly overestimate the 
effectiveness of some interventions, such as temper ature 
screenings.85 The validity of modelling results might 
depend most on these structural assumptions, which 
should continually be interrogated and evaluated via model 
comparison and sensitivity analyses.86,87

Specific actions

Integrate modelling 
into decision making 
in the early stages of 
the outbreak response

Develop models with succinct, actionable outputs (eg, estimates of health-care 
system needs under various intervention strategies; risk of infection or death 
for key populations) that address the specific needs of policy makers and 
stakeholders; continually refine models to address the changing needs of policy 
makers and stakeholders and to incorporate new data or knowledge about 
disease transmission. Clearly communicate to policy makers and stakeholders 
any changes to model and consequences of these changes

Integrate data in both 
construction and 
evaluation stages

Evaluate and constrain models with empirical data. At minimum, ensure that the 
results are consistent with the observed data. Ideally, use data to quantify the 
uncertainty or bias in model performance and to improve model accuracy via 
advanced fitting methods; incorporate uncertainty in the data, including report 
processes if possible, into modelling results. Consider how biases in the data would 
propagate through to model outcomes

Ensure reproducible 
and transparent 
modelling practices

Make model code publicly accessible and easily reproducible; publish results 
publicly (eg, through preprint servers); where available, participate in modelling 
consortia or other collaborative modelling efforts to confront and explore 
assumptions in model structure and data uncertainty; share modelling results in 
accessible ways to appropriate audiences. Pay special attention to communicating 
the assumptions and uncertainties in modelling results

Contextualise 
modelling results

Consider the specific context in which policy recommendations are to be made; 
adapt models to cover the population of interest, transmission patterns, or 
behaviours, and potential interventions being considered; explicitly state 
assumptions and possible biases underlying modelling results. Clarify the 
heterogeneities and questions that the model can address and the heterogeneities 
that the model ignores or simplifies; present modelling results with an appropriate 
degree of uncertainty, and, if applicable, over a relevant time frame

Table: Recommendations for successful public health modelling efforts
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What is reasonable to include in a model will change 
over time; a model that might be a useful tool early in an 
outbreak could no longer be valid weeks later. In fact, the 
most effective models should render themselves obsolete, 
as they guide policy and intervention imple mentation that 
change the course of the previously forecasted outbreaks. 
This presents an additional chal lenge; though, in that 
changing recommendations and contradicting results 
following feedback between modelling results, decision 
makers, and policy makers, can cause distrust of 
modelling. The evolution of model results over the course 
of an epidemic should be communicated carefully and 
with consider ation of the target audience.88 Models should 
be constrained by empirical data as much as possible; 
how ever, in scenarios where this is not possible, 
researchers are under obligation to evaluate and commun-
icate the limitations of their modelling approach.

Continual model refinement does not require 
continually more complex models. Perhaps the most 
crucial decision in modelling is to decide which hetero-
geneities (eg, contact structure, age-specific risk of severe 
disease or mortality, seasonality) should be included to 
derive valid or useful results, which heterogeneities are 
not needed, and which heterogeneities have sufficient 
data to include in a model. Model parsimony is often a 
strength, in that the data required and the assumptions 
inherent to the model are fewer, which has contributed to 
the enduring popularity of compartmental models such 
as those derived by Kermack and McKendrick.9 Although 
it might appear that more complex models, in making 
fewer abstractions about the disease transmission 
process, might better capture all aspects of an outbreak, 
such models rely on many more latent assumptions that 
can imply and amplify the bias or uncertainty in model 
results.89 Balancing the need or request to build a highly 
specific model with the constraints of available data and 
know ledge is key to generating useful, interpretable, and 
actionable model results.

Importance and challenges of fitting models to data
Grounding models in data is one way to address concerns 
around model validity. Data are crucial to better inform 
key aspects of models, including variable terms, struc-
ture, and intervention scenarios. However, a model used 
to guide policy is only as good as the data it relies on—
therefore, a model’s reliance on data is a double-edged 
sword, particularly in emerging epidemics. The most 
successful examples of models used to inform policy 
(eg, measles) have greatly relied on long time series data, 
spanning more than 100 years, of incident cases coupled 
with information on vaccination in multiple populations 
and countries to estimate variables, test model com-
plexity, and inform model structure. Such rich data do not 
yet exist for the current COVID-19 pandemic; however, 
when available data are used methodologically and with 
careful interpretation of possible biases, they are none-
theless invaluable in developing realistic models.

Reliance on data largely comes in two forms: clinical, 
laboratory, or epidemiological data used to externally 
estimate key variable input into the model; or data on a 
model outcome to which the model is directly fit. Data 
availability for either purpose might be scarce or delayed 
in emerging epidemic scenarios. Biases in data because 
of over representation of some groups, varying access to 
equitable health care, and low spatial resolution, can also 
skew a model’s ability to resolve an underlying mech-
anism (eg, age-specific risk of infection) or result in 
flawed projections.71,73 Although methods exist to explicitly 
con sider reporting and measurement processes, when 
fitting models or estimating key variables these methods 
generally assume a constant reporting rate or a simple 
functional form (eg, a logistic response function), when 
in reality reporting is likely to change non-linearly in an 
emerging outbreak.90

Data drawn from multiple sources present an additional 
challenge, in that estimates from one source (eg, trans-
mission rates derived from early serological analyses) 
might differ from estimates drawn from other sources 
(eg, transmission rates derived from early expon ential 
growth time series). Whether these differences are 
because of differing methodological assumptions, con-
founding factors, temporal trends, or reflect the true 
differences in estimates across populations, can rarely be 
established. For example, estimates of the proportion of 
COVID-19 asymptomatic infections have ranged 
from 12% to 60%, but are probably confounded by age 
and differences in study design or case definitions.84 
Perhaps one of the more pernicious challenges of using 
data to fit transmission models is the use of aggregated 
data that can mask local variance in transmission 
patterns, restricting the accuracy of local projections that 
might be most helpful to stakeholders guiding 
response.29,62,71

Just as models require continual refinement, data are 
frequently changing during an outbreak scenario. For 
example, incorporating newly available case data for 
model fitting91 or estimating the serial interval92 has led to 
multiple estimates of the R₀ that sometimes conflict, 
despite it being a fundamental transmission variable. 
Data are likely to become more complete or less prone to 
errors over time. Common estimation procedures, such 
as trajectory matching assuming an exponential growth 
of the outbreak, are particularly sensitive to the omni-
present errors in early available data. As the out break 
continues and community transmission persists, data 
might be more reliable, but the assumptions about the 
initial exponential growth underpinning these methods 
are no longer valid and will probably lead to incorrect 
variable estimation. Advanced methods, inclu ding app-
roximate Bayesian computation, data aug mentation, and 
particle filtering, allow for more inclusion of multiple 
data sources under flexible distributional assumptions,93–95 
though these methods alone cannot resolve issues of 
validity or uncertainty in data. Incorporating the inherent 
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stochasticity of both disease transmission and the 
reporting processes when fitting a model to data is 
computationally and technically complicated, but crucial 
to fully capture the range of plausible model outcomes.

Importance and challenges of clear, reciprocal 
communication and interpretation
In epidemics, transmission models are primarily devel-
oped and used to answer policy-relevant questions. The 
successful modelling efforts previously outlined 
(malaria, measles, foot and mouth disease, and rubella) 
were all guided by clear policy goals or intervention 
scenarios and informed by policy makers. As 
transmission patterns and response to the pandemic 
change, the questions of interest to stakeholders—and 
the questions that feasibly can be answered with 
models—will also change. Early models will probably 
focus on estimating baseline trans mission rates and 
populations most likely to be at a high risk of infection 
or severe outcomes on the basis of preliminary data. As 
more data become available, direct forecasts will become 
increasingly accurate. Later models might focus on 
estimating and comparing the effect of intervention 
strategies that have been or that could be implemented. 
As a result, one model cannot possibly answer every 
question of interest during these types of outbreaks, and 
models should regularly be tailored to address the most 
pressing questions. At the same time, modellers should 
communicate clearly the assumptions or possible biases 
arising from the choice of model structure and data, as 
described earlier. In the longer term, modellers should 
develop a formal integration or partnership with public 
health agencies to facilitate sustainable modelling efforts 
for public health policy.96

For example, one common policy question in the 
COVID-19 pandemic is: when will we hit the maximum 
intensive care unit bed capacity? Although statistical, 
curve-fitting models might be useful for some short-term 
forecasts of intensive care unit bed use, they are generally 
not as useful for longer term forecasts that rely on 
knowledge of the mechanistic underpinnings of disease 
transmission. Furthermore, as testing and interventions 
change, the demographic characteristics of the infected 
population also change, leading to different intensive 
care unit bed usage. In general, simple, compartmental 
mechanistic models might be ideal for exploring the 
relative effect of intervention strategies or varying 
assumptions of the transmission process, but are less 
suited for precise forecasts, particularly in the absence of 
epidemiological data to which models can be fit. Such 
models are also ill-equipped to consider individual-level 
transmission phenomena (eg, the role of household 
transmission or the effectiveness of contact tracing), 
which are better addressed with models at the individual-
level, that are agent-based, and that are of the mechanistic, 
network, or statistical branching process type. Useful 
though they might be, long-term forecasts are likely to be 

unreliable in nearly all contexts, though especially so 
early in an outbreak when much is unknown about the 
routes and frequency of transmission or the interventions 
available to control the spread.

Interpreting model results accurately and communi-
cating them effectively is essential for policy and public 
health officials to make decisions to improve health and 
for the public to engage in intervention use.77 The inter-
pretation and dissemination of mathematical models, 
however, is inherently challenging as models are used 
to inform a diverse set of stakeholders ranging from 
policy makers and other scientists to journalists, and by 
proxy the general public.5,97,98 For the interpretation of 
model results, it is important to at least describe the 
type of model used and what questions this model can 
address (eg, a planning model allows for the comparison 
of different intervention scenarios), to explicitly state 
the model assumptions, and to provide the results with 
estimates of uncertainty that appropriately propagate 
uncertainty from underlying data and methods of 
estimation, when possible. Accur ately depicting model 
traits such as uncertainty is crucial for producing useful 
and timely model inter pretations, particularly during 
the exponential growth phase of epidemics. Model 
results can often appear deceptively precise, though 
point estimates typically represent an aggregate, 
probabilistic estimate of what might happen. For 
example, models cannot predict precisely when 
intensive care unit bed capacity will be reached. Rather 
they show, within bounds of uncertainty, the likelihood 
that inten sive care units will exceed capacity in a time 
frame and which interventions might reduce that risk. 
Comparing various models, which is an increasingly 
common practice, is another method to help provide a 
broader range of estimates to inform decision making. 
Groups have even started providing guidelines on how 
these comparisons should be done and explored.86 
Without appropriate measurements of uncertainty and 
trans parency in model assumptions, model results 
might give rise to misin formation and poor decision 
making on behalf of policy and public health officials.28

Conclusion
As the COVID-19 epidemic changes regionally, new 
questions or public health policies arise and require their 
own evaluation. As a consequence, an abundance of 
mathematical models and analyses are thrust onto the 
public and scientific body. The use of models has 
changed as the COVID-19 pandemic has progressed, and 
as a result there will be more substantial qualitative and 
quantitative variation in the models developed by aca-
demic and industry groups worldwide. Ultimately, only a 
subset of these models will be functionally integrated 
with the ongoing public health response. As historic 
examples have shown, transmission models can be used 
to help inform and guide public health policy; however, 
their success depends on integrating the biology of the 
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pathogen, specifics about the population of interest, and 
epidemiological parameters, with a clear focus on the 
public health policy implications of the results, all at the 
same time as communicating the uncertainty and the 
limitations of current knowledge and model results.
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