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Abstract: Landslides are one of the major geohazards threatening human society. The objective of
this study was to conduct a landslide hazard susceptibility assessment for Ruijin, Jiangxi, China,
and to provide technical support to the local government for implementing disaster reduction
and prevention measures. Machine learning approaches, e.g., random forests (RFs) and support
vector machines (SVMs) were employed and multiple geo-environmental factors such as land cover,
NDVI, landform, rainfall, lithology, and proximity to faults, roads, and rivers, etc., were utilized to
achieve our purposes. For categorical factors, three processing approaches were proposed: simple
numerical labeling (SNL), weight assignment (WA)-based and frequency ratio (FR)-based. Then 19
geo-environmental factors were respectively converted into raster to constitute three 19-band datasets,
i.e., DS1, DS2, and DS3 from three different processes. Then, 155 observed landslides that occurred in
the past decades were vectorized, among which 70% were randomly selected to compose a training
set (TS1) and the remaining 30% to form a validation set (VS1). A number of non-landslide (no-risk)
samples distributed in the whole study area were identified in low slope (<1–3◦) zones such as urban
areas and croplands, and also added to the TS1 and VS1 in the same ratio. For comparison, we used
the FR approach to identify the no-risk samples in both flat and non-flat areas, and merged them
into the field-observed landslides to constitute another pair of training and validation sets (TS2 and
VS2) using the same ratio of 7:3. The RF algorithm was applied to model the probability of the
landslide occurrence using DS1, DS2, and DS3 as predictive variables and TS1 and TS2 for training
to obtain the SNL-based, WA-based, and FR-based RF models, respectively. Verified against VS1
and VS2, the three models have similar overall accuracy (OA) and Kappa coefficient (KC), which are
89.61%, 91.47%, and 94.54%, and 0.7926, 0.8299, and 0.8908, respectively. All of them are much
better than the three models obtained by SVM algorithm with OA of 81.79%, 82.86%, and 83%,
and KC of 0.6337, 0.655, and 0.660. New case verification with the recent 26 landslide events of
2017–2020 revealed that the landslide susceptibility map from WA-based RF modeling was able to
properly identify the high and very high susceptibility zones where 23 new landslides had occurred,
and performed better than the SNL-based and FR-based RF modeling, though the latter has a slightly
higher OA and KC. Hence, we concluded that all three RF models achieve reasonable risk prediction,
but WA-based and FR-based RF modeling deserves a recommendation for application elsewhere.
The results of this study may serve as reference for the local authorities in prevention and early
warning of landslide hazards.
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1. Introduction

Landslides are frequent natural disasters, which pose a serious threat to transportation,
property, and safety of people [1–4]. Petley (2012) stated that the damage caused by non-
seismic landslides is severe around the world, especially in Asia, and we previously
underestimated the toll caused by this type of disaster [5]. Ruijin County in Jiangxi,
South China, is such an area where landslide calamity constitutes a serious threat and
problem to human society. According to the 264 Geological Team (of the Geological Bureau
of Jiangxi Nuclear Industry), landslides have caused damage to 104 residential buildings,
and made 2319 people homeless in the past decades. Affected by a landslide disaster,
the construction and use of the newly-built campus of No. 6 Middle School of Ruijin was
suspended. The uncertainty and suddenness of landslide disasters constitute potential
threats to human daily life [2,4]. Therefore, recognition of potential landslide-prone areas
is an essential part of hazard early warning systems, which aids decision-makers in land
use planning and resource management, and reduces losses caused by disasters [6–8].

In the past decades, a number of studies about landslide susceptibility prediction
and assessment have been conducted [6,9–13]. These studies proposed a variety of land-
slide susceptibility prediction and assessment methods, e.g., knowledge-based, physical,
and data-driven methods [14–16]. However, advantages and limitations exist in each
approach, for example, knowledge-based and physical methods are mostly intuitive but
qualitative or half quantitative [14,16,17], while data-driven methods are quantitative,
yet require powerful computing capacity for big data processing. Overall, data-driven
methods seem more promising for a higher prediction accuracy than other methods,
and thus, are more suitable for landslide susceptibility assessment in areas where there is
insufficient geotechnical data [10,14,16,18–20].

Due to the heterogeneity in geological and environmental conditions, the scale and
mechanism of landslides may differ from one place to another [21]. This makes hazard
prediction complicated and requires consideration of as many of the hazard-causative
factors as possible while dealing with susceptibility assessment. Recently, remote sensing
(RS) and geographic information system (GIS) have been taking an active part in the study
of disaster risk zoning [22–26]. RS techniques can not only provide multitemporal and time-
series spatial information of large and even inaccessible areas over a span of decades but
also timely pre- or post-hazard spatial data [8,27,28]. Therefore, RS is an effective tool for
hazard monitoring and assessment. To be precise, satellite images can provide important
environmental factor layers (e.g., topography, land cover, and anthropogenic activities)
which can be used for landslide susceptibility prediction and modeling [8,29]. The other
main geological, soil, and meteorological hazard-prone factors are also fundamental and
essential for this purpose [8,17,21].

In the past years, artificial intelligence, notably, machine learning techniques including
deep learning have gained a momentum in geospatial big data processing. For exam-
ple, data-driven algorithms such as support vector machines (SVMs), random forests
(RFs), and artificial neural networks (ANNs) have been well applied in land cover map-
ping [7] and prediction of soil salinity [30] and ore mineralization [31] in geological fields,
and shown superior performance to traditional approaches [32–36]. Comparing with other
machine learning approaches, the RF algorithm has clear advantages, i.e., it does not
require the data to be normalized and discretized, is less sensitive to outliers, and runs
faster than SVMs [7,37,38]. Landslide causative factors often present nonlinear relation-
ships [14,19]. The RF algorithm can catch such nonlinear features among the factors but
prevents overfitting [8,17,37]. Hence, the reliability of landslide susceptibility prediction
mainly depends on the modeling approaches and the selection and processing of the
available hazard-causative factors [39–41].
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In view of the reliable prediction result obtained from regression and classification
with the RF algorithm [7,30], the objective of this study is to employ this algorithm, one of
the data-driven methods, to model the landslide susceptibility taking Ruijin, Jiangxi as an
example. One specific objective of this research is to find out which kind of processing
approaches for quantification of the categorical variables and for selection of the no-risk
(stable) samples will best help predict the landslide susceptibility, and which algorithm,
between RF and SVM, is more suitable for achieving a reliable prediction.

2. Data and Methods
2.1. The Study Area

Ruijin is located in the southeast of Jiangxi Province, China, extending from 115◦41′10′′

to 116◦21′49′′ E in longitude and from 25◦32′15′′ to 26◦17′45′′ N in latitude, covering an
area of about 2436 km2 (Figure 1). Topographically, the elevation of the study area varies
from 70 to 1211 m with a mean of 324 m while the slope varies from 0 to 65◦ with an average
of 15◦. Hydrologically, the main rivers are Meijiang, Mianjiang, and Jiubao, which run
through the study area as sub-tributaries of the Gongshui River watershed. The study area
belongs to the subtropical humid climate zone and is characterized by four distinct seasons,
sufficient rainfall, and a long frost-free period. Heavy rainfall often occurs from April
to July, accounting for 65.45% of the annual rainfall with amounts of about 1663.5 mm,
an average of the period from 1968–2017. The annual mean temperature is 21.54 ◦C and
July is the hottest month of the year with a mean temperature of 28.8 ◦C.

Figure 1. Location of the study area, Ruijin County, Jiangxi, China, and location of the training and
validation sites of landslides in the study area.

The hot and humid weather leads to severe weathering of rock mass giving rise to
formation of a thick weathered crust in which most landslides take places. On the human
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side, artificial cutting of slopes for infrastructure construction (such as roads and highways)
and housing development provokes instability of the crust mass, causing landslides.

2.2. Field Survey Data

During the first field investigation, 155 historical landslides that had occurred in the
period of 2000–2017 were collected by the 264 Geological Team from 2014–2017. Our field
investigation conducted from July 2019–August 2020 recorded 26 new landslides including
one rockfall and two large-scale bedding slides.

2.2.1. Observed Mechanisms

It came to our knowledge that there are three main types of landslide mechanisms in
Ruijin: (1) the majority of the slides occur in the weathered crust along certain unconformity
surfaces or in the talus without clear sliding surface, mostly small in scale caused by road
construction; (2) very local rockfall; and (3) large-scale downhill bedding slide, or creeping
block slide that causes geological formations together with the overlying regolith mass to
slowly slide downward. The rotational landslides and debris flow were not found [42].
The creeping downhill bedding slides take place in the Carboniferous and Cretaceous strata
in which sandstone and shale or mudstone are interbedded with each other and the bedding
serves as a slide surface. The measurement illustrated that the bedding dip is mostly
<10–20◦, which is where the creeping landslides that threatened and damaged the newly
built No. 6 Middle School of Ruijin and the Longzhu Temple developed (see Discussion).

2.2.2. Triggering Factors

Among the aforementioned geo-environmental factors, geological strata and their
lithologies, faults, development of joints, slope degree, and so on are the inherent factors
of influencing the landslide gestation. Whereas, strong rainfall and river cutting are
the exogenous environmental triggering factors, while human activity, e.g., road system
and housing development, is the artificial triggering factor that modifies the landscape
and destroys its original balance. Notable, about 94.8% of the observed landslides are
distributed along the two sides of roads and on the fringe of newly urbanized areas.
Hence, most of the landslides are a result of the combined action of road and house
construction and rainfall.

2.3. Data and Processing Procedures

For the landslide susceptibility assessment, it is unavoidable to deal with both nu-
meric and categorical geo-environmental factors such as rainfall, slope, geological strata,
faults, and rivers as they are essential for this purpose. Hence, it is necessary to convert the
categorical factors into numeric or meaningful values so that they can be incorporated as
quantitative variables for landslide susceptibility modeling by RF and SVM algorithms.
We introduced two approaches for this conversion, i.e., simple numeric labeling (SNL) and
weight assignment (WA).

The global methodological procedure includes data pre-processing, digitization,
linear features buffering, rational numeric value assignment to descriptive factors and
buffers, susceptibility modeling and validation, and finally, accuracy assessment. These pro-
cedures are presented in a flowchart shown in Figure 2.
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Figure 2. Methodological flowchart.

2.3.1. Geo-Environmental Data and WA-Based Processing
Satellite Data

(1) Landsat imagery: Landsat 5 TM images of late October and early November from
2006–2010 and Landsat 8 OLI images dated May 2017 and Sept 2019 were obtained
from the USGS data server (https://glovis.usgs.gov, accessed on 20 May 2020).
After atmospheric correction using the COST model [23,43,44], Landsat 8 images
were employed for land cover mapping using the approach proposed by Wu et al.
(2016) [7] and Landsat 5 data for deriving the averaged multiyear autumn NDVI
(Figure 3a).

Figure 3. Geo-environmental factors 1: (a) NDVI and (b) rivers.

https://glovis.usgs.gov
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Here, NDVI represents the coverage and vigor of forests and woodlands as crops have
been harvested and herbaceous vegetation has become withered in late autumn. In general,
vegetation, especially trees, can help soil hold water content and improve its mechanical
properties through root systems which stabilize slopes. Thus, landslides may arise more
likely in unvegetated areas rather than in forests and woodlands [45,46]. Slope cutting and
excavation for road construction and housing exacerbate the susceptibility even in areas
with vegetation.

(2) Very high-resolution images, available on Google Earth (©Google), were used as a
complementary source of ground-truth data. The road and river networks were also
extracted from Google Earth (Figures 3b and 4d).

Figure 4. Geo-environmental factors 2: (a) lithology and (b) faults.

According to the principle of the machine learning algorithm, we used two types of
samples for modeling as input variables: one is the locality of landslides that have taken
place and the other is the stable areas where landslides are unlikely to occur [8,47,48].
Identified on Google Earth, the stable areas are places where the slope is less than three
degrees, e.g., water bodies, urban areas, and cultivated land. Landslides with an area
greater than 900 m2 (1 Landsat pixel) that were overlooked during the field observation
were also identified and delineated on Google Earth.

Hydrological Data

(1) Rainfall: Monsieurs et al. (2018) and Depicker et al. (2020) stated that rainfall was the
direct cause, or rather, the triggering factor of many landslides [38,48]. Daily rainfall
data from January 2008 to December 2013 were obtained from 40 meteorological
stations in Ruijin and its adjacent areas. As the landslides mainly occurred in March
to July, especially, in June and July but without detailed recorded occurrence time,
our intention was to investigate which months of rainfall or their combinations may
best reveal its role in landslide events. Thus, apart from the mean annual rainfall,
March-June, May-July and March-July rainfalls of these six years were also aggregated
and gridded into raster with 30 m pixel size using the inverse distance weighting
(IDW) approach.

(2) River network: The influence of rivers on the occurrence of landslides is reflected
by the proximity to, or rather, distance from rivers [21,49,50]. Thus, the rivers were
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vectorized from Google Earth (Figure 3b) and buffered into belts with an interval of
30, 60, 90, 120, and 150 m, respectively, for streams, and 60, 120, 180, 240, and 300 m,
respectively, for the main rivers. Then, these buffers were assigned values in terms
of their propensity or their importance in the event of a landslide based on the field
knowledge and expert judgment. For example, for the main river buffers of 0–60,
60–120, 120–180, 180–240, and 240–300 m were respectively assigned with 20, 15, 10, 5,
and 1, while for streams, buffer zones of 0–30, 30–60, 60–90, 90–120, and 120–150 m,
respectively, with 10, 8, 6, 4, and 1. This implies that the closer to the river the higher
the propensity of a landslide.

Finally, these buffers are converted to raster data with 30 m cell size using the “polygon
to raster” tool as proposed by Wu et al. (2018) [30].

Geological and Geomorphic Data

(1) Geological strata and formations: Geological strata were extracted from the 1/50,000
Geological Map. Except for Ordovician, Silurian, Triassic, and Tertiary, the strata of
other geological periods are mostly exposed. In terms of texture and composition,
the lithology of different strata in the study area can be divided into 113 classes.
To facilitate the geohazard analysis, these lithological classes were further aggregated
into six main categories: (1) granitic rocks, (2) magmatic veins, (3) metamorphic rocks,
(4) sandstone, (5) limestone, and (6) mudstone and shales as shown in Figure 4a.
Based on lithology and in absence of faults and joints, granitic massif would possess
the highest resistance to landslides while mudstone the lowest resistance. Hence, from
(1) to (6), the propensity is likely to increase and these were respectively assigned
values of 1, 2, 3, 5, 7 and 10.

According to field observations, landslide events occurred frequently on the bound-
aries between two formations, especially between the Quaternary sediments and other
strata. Therefore, the lithostratigraphic boundary factor was also obtained by buffering
and rasterization, then added to analyze the landslide susceptibility.

(2) Faults: This kind of geological structure has a prominent effect on the stability of rock
mass [51,52]. In the study area there is a spectacular thrust nappe structure character-
ized by strong faulting activity. Such a structure is accompanied with a series of faults
and folds, which tend to be the landslide-prone areas, e.g., the fragile belts related to
fold hinges, fracture zones, and joints. As a matter of fact, the proximity to fault plays
a role in such hazard events, i.e., the closer to the fault, the higher the propensity of a
landslide. For this reason, the faults in the study area (Figure 4b) were divided into
three groups in terms of scale, i.e., big faults if their length is >10–20 km, medium faults
if they are 2–10 km, and small faults if they are <2 km. The big faults were buffered
into five zones of 0–120 m, 120–240 m, 240–360 m, 360–480 m, and 480–600 m,
and were respectively assigned values of 20, 15, 10, 5, and 1. The medium faults were
also buffered into five zones of 0–60 m, 60–120 m, 120–180 m, 180–240 m, and 240–300 m
with assigned values of 10, 8, 6, 4, and 1. The small faults were again buffered into
five zones of 0–30 m, 30–60 m, 60–90 m, 90–120 m, and 120–150 m and respectively
assigned values of 5, 4, 3, 2, and 1. These fault buffers were gridded into a raster layer
of 30 m in resolution.

(3) Depth of the weathered crust, soil type, and texture: Weathering is the process of
converting rocks into regolith and soils to constitute the weathered crust of our land
surface. Landslides mostly take place in this crust in which soil texture seems to
have a significant impact on [53,54] and the variability of soil types and depths of
the crust play a part in the occurrence of such events [55]. Because different soil
types and textures have different sand percentage, grain sizes and porosity affect
the permeation of rain water. If liquidized by penetrated water, the crust bottom
(soil/rock interface) may serve as a slip surface of a landslide as friction and resistance
from the underlying rocks are reduced by this process. As soon as it has reached a
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certain threshold, a landslide occurs. Thus, the crust thickness, i.e., the depth of the
slippery soil/rock interface, is a plausible indicator of landslide volume and scale.

The data of soil types were obtained from the Bureau of Jiangxi Coal Geology and
the sand percentage (%), in which high sand percentage (low percentage of clay but high
porosity) seems favorable for permeation of rain water and provoking landslide event,
was considered as an indicator of soil contribution. Hence, soils with sand percentage >40%,
30–40%, 20–30%, 10–20%, 5–10%, and 0–5% were respectively assigned values of 10, 8, 6, 4,
2, and 1. Finally, the soil proneness map was converted into a raster of 30 m resolution.

The thickness data of the weathered crust were obtained from the field 1282 measure-
ments. Assuming that all the ridges have a crust of 0.5 m in depth, these field-observed
depths were interpolated using the kriging approach, then converted into a raster layer of
30 m resolution.

(4) Geomorphic data: Slope (angle) is a key driver of landslides and a triggering an-
gle threshold of 28◦–38◦ was reported by Fan et al. (2016) [55]; at the same time,
elevation, aspect, plane curvature, and profile curvature may also contribute to the oc-
currence of the hazards [14,21,56–58]. The ASTGTMV003 GDEM data, with a spatial
resolution of 30 m, were obtained for Ruijin from NASA (www.earthdata.nasa.gov,
11 April 2020) and used to derive elevation, slope, and aspect (Figures 1 and 5a,b).

Figure 5. Geo-Environmental factors 3: (a) slope and (b) aspect.

Land Use/Cover, Transport System and Construction Sites

Using the classification approach proposed by Wu et al. (2016) [7], land cover mapping
was achieved for Ruijin with an accuracy of 90.99%. The main land cover type is forests
(54.25%), followed by shrub/woodlands (29.33%), croplands (6.65%), artificial areas (urban
areas, villages, roads and other infrastructures, 5.36%), barelands (1.45%), and waters
(1.41%) (Figure 6a). Forests cover hills and mountains; artificial areas and croplands are
mainly distributed in lowlands (valleys) with low slope. For susceptibility modeling
purpose, forest cover was considered of low proneness and assigned a value of 1. On the
contrary, unvegetated hilly slopes and barelands were regarded as having a high propensity
and assigned a value of 10, while zero-slope croplands, urban areas, and water-bodies
were treated as no-risk (zero probability) areas. At the same time, NDVI can be used as an
indicator of vegetation greenness and abundance, indirectly representing the development

www.earthdata.nasa.gov
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degree of the root system of forests and woodlands. For barelands, woodlands and forests,
NDVI shall be a good indicator of propensity to landslide.

Figure 6. Geo-environmental factors 4: (a) landuse/cover and (b) road.

Road construction is one of the important human activities leading to slope failure [21,59].
Similarly, housing development located along two sides of roads or on the brink of hills
by cutting slopes also constitutes an important factor that causes slope massif instability.
The influence of roads on landslides is also reflected by distance to them [8,21,49]. The road
system (Figure 6b) was assigned the same values as rivers and faults.

There were no landslide accidents recorded in the study area caused by earthquakes,
so the latter was not considered as a triggering factor in this study.

2.3.2. SNL Processing for Categorical Factors

SNL provides a digital label for each type of feature within the categorical variable.
For example, instead of the above WA to each lithology of strata, each type of land cover,
and each buffer of the linear factors, we gave an order number attributed respectively to
the features of a given categorical factor or variable so that these factors were converted
into numeric ones. After, they were rasterized.

2.3.3. Frequency Ratio (FR)-Based Processing

The FR approach can be applied to calculate the relative impact degree of a given geo-
environmental factor, either numeric or categorical, on a landslide event so that conversion
of the categorical factors into numeric ones can be directly avoided [16,60,61]. In general,
we have to divide continuous numeric factors into a number of subsets or intervals or
consider each type of feature within a categorical factor as a “subset”. FR can be calculated
by Equation (1):

FR =
Ni/N
Si/S

(1)

where Ni is the area of landslides occurring in the subset or interval of a given factor; N is
the total area of landslides in the study area; Si is the subset or interval area of the given
factor; and S is the total area of the study area. If FR is greater than 1, the possibility of
landslide in this subset is high, otherwise, it is low [16].
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2.3.4. Integrated Datasets of Geo-Environmental Factors

The occurrence of a landslide is a result of the combined action of all the hazard-
causative factors [14,19]. In this study, all these factors which may contribute to the
occurrence of a landslide will be considered for susceptibility modeling. The raster layers,
namely: geological strata; proximity to faults, lithostratigraphic boundaries, roads and
rivers; thickness of the weathered crust, soil types and texture; elevation; slope; aspect;
land use/cover; NDVI; multiyear annual mean rainfall; March–June rainfall; March–July
rainfall; and May–July rainfall, of which the categorical factors were processed by SNL,
were incorporated into a 19-band dataset (DS1) with Datum WGS 84 and Projection UTM
50 by the layer stacking function. Another 19-band dataset (DS2) was composed using
the above geo-environmental factors in which the categorical ones were processed by WA
approach, and the 19 FR-based raster layers constituted the 3rd dataset (DS3).

The raster layers in DS1, DS2, and DS3 were considered as hazard-causative factors or
independent hazard predictors.

2.3.5. Training and Validation Sets

As mentioned above, 155 landslides were obtained from the Geological Hazard Survey
Campaign in Ruijin on a scale of 1/50,000 by the 264 Geological Team of Jiangxi Nuclear
Industry in 2017. These landslides ranged from 20 m2 to 64,000 m2 in size and most of
them are small in scale, i.e., less than 900 m2 in the study area. To obtain the optimal spatial
presentation of the landslide samples for RF modeling, the landslides with areas less than
900 m2 were buffered with a radius of 30 m and then rasterized into pixels with a size
of 30 m [30], and for those larger than 900 m2, a direct rasterization from the vectorized
polygons was conducted. These cases were assigned a value of 1, indicating that the events
of landslide have truly taken place, i.e., the probability is 1.

The selection of the non-landslide areas has an important influence on modeling
landslide susceptibility, which was relatively easy to be ignored in previous studies.
As mentioned above, the non-landslide stable areas, e.g., low-slope (<1–3◦) croplands
in valleys, plains, and urban areas were integrated into the field dataset as zero-risk areas,
i.e., the occurrence probability is 0. Then, we randomly selected 70% of the landslide
samples (109 cases) plus 70% of the stable zones (no risk) to constitute a training set (TS1)
and used the remaining ones (46 cases, 30%) as a validation set (VS1).

Another approach to identify the stable area is to use FR calculation. The procedure is
shown as follows:

Superpose the FR values of all geo-environmental factors to obtain the regional land-
slide susceptibility index (LSI) [16], which is calculated with Equation (2).

LSI = ∑ FR (2)

Then, use this LSI (Figure 7) to identify the low-susceptibility zones, including both
flat and non-flat areas, where the non-landslide (stable) points were randomly sampled.
These new no-risk points were added into the observed landslides to generate another pair
of training set (TS2) and validation set (VS2).
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Figure 7. Landslide susceptibility index (LSI) of the study area and distribution of the non-
landslide points.

2.4. Landslide Susceptibility Modeling

Among the machine learning algorithms, Wu et al. (2016 and 2018) found that RF and
SVMs performed equally well in classification, better than ANNs, but RF performed best
in regression prediction [7,30]. Hence, the RF classification algorithm was selected for this
modeling and SVMs for comparison. The overall procedure was already summarized in
Figure 2 and the detail on modeling, validation, and accuracy assessment is given in the
following subsections.

2.4.1. RF Modeling of the Landslide Occurrence Probability

RF classification, based on growing decision trees, is an ensemble of tree classifiers
that allow the classification of a given pixel by predicting its probability into the target
class through majority voting. The key technique of this algorithm lies in that a bootstrap
sampling of the TS is used to build each tree, and a stochastic selection of the input variables
is searched to determine the best split for each node. Meanwhile, the RF algorithm uses
out-of-bag (OOB) estimates to define the generalization error and the importance of each
variable [37]. RF will not overfit if the number of decision trees (NT) increases to a certain
level. Thence, NT should be large enough to reduce the OOB error of classification to a
stable level in the training process. It should be noted that, instead of classification of land
cover types, we employ this algorithm to classify the probability of landslide occurrence
and non-landslide for each pixel.

2.4.2. Application of the RF Algorithm

In this study, the RF classification was conducted within EnMap-Box which is a
package particularly developed to process and analyze image data [62]. While conducting
RF modeling, we regarded the three combined 19-band datasets, DS1, DS2, and DS3 as
input predictive variables with TS1 and TS2 as dependent variables. Some key parameters
of RF classification that require set up include the impurity function, the stop criteria
(for node splitting), the number of randomly selected features (or number of variables) at
each node and number of trees (NT) with the classification and regression algorithm [7,30].

The Gini coefficient was selected for the impurity function and the default value,
i.e., minimum number of samples at a node of 1, was used for the stop criteria. The number
of randomly selected features (or number of variables) at each node was the square root of
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all available features. The default value of NT was 100 within EnMap-Box. In this study,
NT was set to 300 and 500 in order to achieve a better prediction.

After parameterization, or rather, modeling using TS1, the two derived RF models,
namely, the SNL-based and WA-based RF models, were applied back to the integrated DS1
and DS2, respectively, for landslide prediction, i.e., the probability of landslide occurrence
in each pixel, and VS1 was employed for validation of the models. While the FR-based
RF modeling result using DS3 and TS2 was also applied back to DS3, and its accuracy of
modeling was evaluated using the independent VS2.

2.4.3. Importance of Variables

The importance of variables in the RF algorithm can be evaluated by the variable
substitution method. In other words, it can be measured by calculating the difference of the
OOB error before and after value substitution. The importance of factor Fi can be expressed
as follows:

VIM (Fi) =
1

NT ∑
t

errOOBi
t − errOOBt, (3)

where NT is the number of trees; errOOBt is an error for tree t of the forests when all the
factors are included; errOOBt

i refers to an error after removing the factor Fi, and VIM(Fi) is
variable importance for Fi. For the RF modeling and its result produced, a high value of
VIM(Fi) indicates the high importance of the factor Fi or vice versa.

2.4.4. Accuracy Reporting

Based on the confusion matrix, precision, recall, kappa coefficient (KC), and overall
accuracy (OA) can be calculated to evaluate the accuracy and performance of the landslide
susceptibility prediction model [63–65]. VS1 and VS2 were hence used to calculate these
statistical indices. The evaluation results of TS1 and TS2 show the adaptability of the
model to the training datasets while those of VS1 and VS2 reveal the predictivity and
generalization ability of the models [66].

According to previous studies, the smaller the high-susceptibility area predicted by
the model, the more historical landslide points are concentrated there, which indicates that
the model has high reliability [21,34].

3. Results and Discussion
3.1. Landslide Susceptibility Maps

The landslide susceptibility zoning was achieved based on the modeled landslide
occurrence probability when the RF modeling was implemented at NT = 300. Pixels in the
study area were divided into five levels of susceptibility: very low (0–0.2), low (0.2–0.4),
moderate (0.4–0.6), high (0.6–0.8), and very high (0.8–1.0). The landslide susceptibility
maps of Ruijin were hence produced (Figure 8a–c).

Figure 8. Landslide susceptibility zonation maps of Ruijin: (a) from the simple numeric labeling (SNL)-based RF modeling;
(b) from the weight assignment (WA)-based RF modeling; and (c) from the frequency ratio (FR)-based RF modeling.
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The predicted results of the landslide-prone areas from the three schemes of data
processing and sampling were quite similar and largely consistent with the field survey:

(1) Very high susceptibility zones were mainly linearly distributed along the roads and
rivers due to the fact that a number of landslides were often caused by river under-
cutting and artificial road construction and housing development.

(2) In the central part of the study area, very high-susceptibility zones are concentrated
in the Quaternary soil layer, or rather, in the weathered crust, especially along the
boundaries of lithologic strata. The Quaternary unconsolidated soil layer with loose
structure provided rich material for landslides. The boundaries of lithologic strata
behaved as unstable structural interfaces, which appeared to be important factors
for landslides.

(3) In the granitic massif, there were also obvious very high-susceptibility zones dis-
tributed along the roads. Weathering accelerated by humidity, high undulating land-
form and tectonically active settings of the study area change the intrinsic properties
of the material and reduce the strength of the near-surface rocks.

As seen in Table 1, the zones of very high susceptibility generated by the SNL-
based, WA-based, and FR-based RF models were 118.72 km2, 107.13 km2, and 135.32 km2,
respectively, accounting for 4.86%, 4.39%, and 5.13% of the total study area. The high
susceptibility zones of the SNL-based, WA-based, and FR-based RF models accounted for
437.27 km2 (17.92%), 363.78 km2 (14.91%), and 212.66 km2 (18.48%), respectively.

Table 1. Distribution of landslides within different susceptibility levels.

RF Model SNL-
Based

WA-
Based

FR-
Based

SNL-
Based

WA-
Based

FR-
Based

SNL-
Based

WA-
Based

FR-
Based

SNL-
Based

WA-
Based

FR-
Based

Susceptibility
Level Area (km2) Percentage (%) Number of Historical

Landslides Percentage (%)

Very High 118.72 107.13 135.32 4.86 4.39 5.13 132 137 135 85.16 88.39 87.10
High 437.27 363.78 212.66 17.92 14.91 12.70 18 14 14 11.61 9.03 9.03

Medium 665.71 545.69 364.47 27.28 22.56 18.79 3 1 5 1.94 0.65 3.23
Low 726.33 745.11 679.71 29.76 30.53 25.27 1 2 1 0.65 1.29 0.65

Very Low 492.35 678.68 1048.24 20.18 27.81 38.12 1 1 0 0.65 0.65 0.00

Additionally, 96.77% of the field samples, i.e., the real landslides, took place in 22.78%
of the entire study area, which were categorized as high and very-high susceptibility
zones in our zonation map generated by the SNL-based RF model. However, 93.55% and
96.13% of the field samples took place in 19.30% and 17.83% of the entire study area by the
WA-based and the FR-based RF models.

It is noteworthy that 80% of the observed landslides fall in the scope of 0–120 m buffers
of roads and new urban fringes, and 94.84% of the total landslides are related to human
activities, e.g., development of roads and urbanization. This also reveals that the landslides
constitute a significant risk to human society.

3.2. Number of Trees with RF Modeling

The selection of NT has a great influence on the accuracy of RF modeling. The per-
formance of classification or regression is poor and the error is large when NT is small.
As it grows, the OOB error decreases continuously and eventually reaches a threshold [37].
However, the complexity of the RF models is directly proportional to NT. If there are
too many decision trees, the operating efficiency will decrease as it becomes more time-
consuming and the optimal result may not be obtained. The previous study by Wu et al.
(2018) confirmed that in both low (e.g., 100) and high NT (e.g., 1000) cases, the algorithm
did not perform well, but it did when NT was set to 300–500 [30]. It is clear that the OOB
error tends to be stable after NT gets greater than 300 (Figure 9), or rather, the model
accuracy becomes greater than 96%. Hence, 300 was finally used for NT when performing
landslide susceptibility modeling.
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Figure 9. Out-of-bag (OOB) error plot versus number of trees (NT) with RF modeling: (a) simple nu-
meric labeling (SNL)-based RF modeling using TS1, (b) weight assignment (WA)-based RF modeling
using TS1, and (c) frequency ratio (FR)-based RF modeling using TS2.

3.3. FR and Importance of Geo-Environmental Factors

The FR within each geo-environmental factor is presented in Figure 10. It is clear that
the FR is negatively correlated with the distance to roads, rivers, and to the geological
boundary and elevation, etc. This reveals the concrete role of each factor in the landslide
event. Thus, the FR values of geo-environmental factors explain to a certain extent the
importance of the independent variables demonstrated by the RF algorithm.

Figure 10. Frequency ratio (FR) of each geo-environmental factor: (a) distance to roads; (b) distance to rivers; (c) distance to
lithostratigraphic boundaries; (d) slope; (e) elevation; and (f) NDVI.

In terms of the OBB error, the first five important factors of the SNL-based and WA-
based RF modeling are as follows: (1) distance to roads, (2) slope, (3) May–July rainfall,
(4) elevation or NDVI, and 5) NDVI or elevation (Figure 11a,b), while for the FR-based
RF modeling, they are: (1) distance to roads, (2) NDVI, (3) Lithostratigraphic boundary,
(4) thickness of the weathered crust, and (5) May–July rainfall (Figure 11c).
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Figure 11. Importance (%) of the geo-environmental factors in landslide events from different random forest (RF) modeling.

In the case of Ruijin, the order of importance seems plausible. A stable slope be-
comes unstable as a result of road construction, i.e., slope cutting or housing development.
May–July rainfall shows most important among the different combinations of monthly
rainfall, and can be regarded as a triggering factor as it liquidizes the slippery interface
when it reaches a certain threshold, i.e., the rainfall amount leading to saturation of soil
after penetration and starting to flow on the soil/rock interface. The more the rainfall in
a short time, the higher the landslide susceptibility. Rainfall is thus widely employed as
a weather indicator (WI) of landslides. NDVI, a late autumn mean of a five year period
and an indicator of vegetation abundance, vigor, and root system development of forests
and woodlands, can largely reflect the stability and instability of the weathered crust. It is
hence reasonable that these factors were identified as the most important hazard-causative
factors in Ruijin though all others may also play a certain role in geohazard events.

The importance of geo-environmental factors associated with landslides has also
been discussed by other authors. Dou et al. (2019) showed that precipitation was the
most significant factor, but according to those of Arabameri et al. (2017) and Cao et al.
(2019), elevation was the most important factor [13,21,34]. It is understandable that in
different geological environments, the mechanism of landslides may be different and so is
the importance of geo-environmental factors.

3.4. Validation of the Modeling Results

Only after being validated, has the model potential to be applied elsewhere [29,63].
We used four statistical indicators to evaluate the performance of the landslide susceptibility
model, including precision, recall, KC and OA as mentioned above. Against the VS1 and
VS2, the statistical indicators of all three RF models were shown in Table 2. The FR-based RF
model has the highest accuracy with KC and OA of 89.08% and 94.54%, respectively. The WA-
based RF model obtained similar KC and OA results of 82.99% and 91.49%, respectively,
followed by the SNL-based RF model with KC and OA of 79.26% and 89.61%, respectively.
Those of the SVM models showed much lower results than RF models using the same
predictive variables DS1, DS2, and DS3, and the same TS1 and TS2 (Table 2).
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Table 2. Performance of the RF and SVM algorithms vs. validation sets (VS1 and VS2).

Item SNL-Based RF
Model (VS1)

WA-Based RF
Model (VS1)

FR-Based RF
Model (VS2)

SNL-Based SVM
Model (VS1)

WA-Based SVM
Model (VS1)

FR-Based SVM
Model (VS2)

Precision (%) 94.67 95.00 94.00 83.33 84.67 92.67
Recall (%) 85.54 88.67 95.27 82.78 83.55 77.65

KC (%) 79.26 82.99 89.08 63.37 65.50 66.00
OA (%) 89.61 91.49 94.54 81.79 82.86 83.00

3.5. Case Verification

The 26 new landslides observed from 2019–2020 were used to verify the predictivity
of the three RF models and we found that 15, 8, 2, 1, and 0 landslides are distributed
respectively in the very high, high, moderate, low, and very low susceptibility zones for the
SNL-based RF modeling map, while there were 15, 8, 3, 0, 0, and 15, 4, 5, 0, and 0 landslides
in these zones for WA-based and FR-based RF modeling maps. From this point of view,
WA-based RF modeling appears to have the best performance.

Surprisingly, the two large-scale creeping bedding slides (>20,000 m2) behind the
newly-built campus of No. 6 Middle School and the Longzhu Temple in Ruijin that
have been taking place for years, were well predicted as very high-susceptibility zones
in the susceptibility map from the all three RF models (Figure 12a–c). During the field
investigation in July 2019, the middle school was closed due to this disastrous effect
(Figure 12d); just behind the Longzhu Temple there were significant ground bulges along
the behind and side wall feet because of the extrusion provoked by the downward slide
of the upper slope composed of the Carboniferous strata and its overlying Quaternary
sediments (Figure 12e). Thus, both sites are in danger as landslides continue gradually and
were reliably predicted by all these RF models.

Figure 12. Prediction of the landslide susceptibility and case verification: (a) from simple numeric
labeling (SNL)-based RF modeling; (b) from weight assignment (WA)-based RF modeling; and (c)
from frequency ratio (FR)-based RF modeling. (d) landslide behind the No. 6 Middle School of Ruijin
and (e) bulges on the side wall feet of the Longzhu Temple.

4. Conclusions

The prediction and prevention of landslide disasters is essential to secure our society.
This research illustrates that the combination of remote sensing, geological, geomorphic,
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climatic, and human dimensional data is relevant for such geohazard susceptibility zoning
and mapping, and the RF algorithm has performed better than SVM in this case.

This paper presents three different processing schemes for the multi-source geo-
environmental factors. We found that FR-based RF algorithm shows slightly better predic-
tion accuracy, but WA-based RF model is of slightly better predictivity and able to derive
more reliable results. We believe that our research will be helpful for local government
to act on the prevention and early warning of geohazards to ensure people’s safety and
property, and to provide theoretical advice for the infrastructure construction and urban
planning. In the next phase of our work, a dynamic monitoring and early warning system
will be designed and implemented in the very high and high susceptibility zones predicted
by the above models. To achieve this, geodetic data obtained from the Global Navigation
Satellite Systems (GNSS) for displacement and deformation monitoring will be essential
and ground monitoring stations/equipment will be installed in the above critical areas
with help of the Internet of Things and micro-electro-mechanical systems (MEMS).

Our study also reveals the critical role of human activity, in particular, road construc-
tion and housing development in landslide events. Most of the observed landslides in
Ruijin were actually “man-made”. In future, when we design road system development
and effectuate new urban planning, we should assess the negative impacts.

Another innovation lies in identifying three approaches for conversion of the cate-
gorical geo-environmental factors, such as geological strata, faults, soil, roads, and rivers
into numeric ones, for example, WA-based, SNL-based, and FR-based so that quantitative
susceptibility modeling and prediction using the RF algorithm can be smoothly achieved.
We would like to highlight that both SNL-based and FR-based processing is able to avoid
subjective weight assignment, but WA-based RF modeling may lead to the most reliable
prediction. Therefore, this study can serve as a prototype for similar research elsewhere.
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