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Alternative pacing strategies for
optimal cardiac
resynchronization therapy
Juan Hua, Qiling Kong and Qi Chen*

Department of Cardiology, The Second Affiliated Hospital of Nanchang University,
Nanchang, China

Cardiac resynchronization therapy (CRT) via biventricular pacing (BVP)

improves morbidity, mortality, and quality of life, especially in subsets of

patients with impaired cardiac function and wide QRS. However, the rate

of unsuccessful or complicated left ventricular (LV) lead placement through

coronary sinus is 5–7%, and the rate of “CRT non-response” is approximately

30%. These reasons have pushed physicians and engineers to collaborate to

overcome the challenges of LV lead implantation. Thus, various alternatives to

BVP have been proposed to improve CRT effectiveness. His bundle pacing

(HBP) has been increasingly used by activating the His–Purkinje system

but is constrained by challenging implantation, low success rates, high and

often unstable thresholds, and low perception. Therefore, the concept of

pacing a specialized conduction system distal to the His bundle to bypass

the block region was proposed. Multiple clinical studies have demonstrated

that left bundle branch area pacing (LBBAP) has comparable electrical

resynchronization with HBP but is superior in terms of simpler operation,

higher success rates, lower and stable capture thresholds, and higher

perception. Despite their well-demonstrated effectiveness, the transvenous

lead-related complications remain major limitations. Recently, leadless LV

pacing has been developed and demonstrated effective for these challenging

patient cohorts. This article focuses on the current state and latest progress in

HBP, LBBAP, and leadless LV pacing as alternatives for failed or non-responsive

conventional CRT as well as their limits and prospects.
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Introduction

Heart failure (HF) is a cardiovascular epidemic, with high morbidity and
mortality and poor quality of life, especially in patients with HF and reduced
ejection fraction (HFrEF) (1). According to the 2021 European HF guidelines,
sodium–glucose cotransporter 2 inhibitors (SGLT2i) are used as a first-line therapy
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along with angiotensin-converting enzyme inhibitors
(ACEi)/angiotensin receptor–neprilysin inhibitors (ARNI),
β-blockers, and mineralocorticoid receptor antagonists (MRA)
(2). However, the HF symptoms of some patients cannot be
resolved, despite optimized medical treatments (OMT).

Cardiac resynchronization therapy (CRT) is a well-
established modality that offers remarkable clinical benefits
for patients with medically refractory HF (3). It has a
class IA indication for symptomatic HF patients with sinus
rhythm (SR), a QRS ≥ 150 ms, left bundle branch block
(LBBB) QRS morphology, and a left ventricular ejection
fraction (LVEF) ≤ 35%, despite OMT according to the 2021
European Society of Cardiology (ESC) guidelines on CRT (4).
Conventional CRT via biventricular pacing (BVP) is non-
physiological with the fusion of the epicardial LV wavefront
and the endocardial wavefront from the right ventricular
(RV) apex, leaving some degree of dyssynchrony. However,
conventional CRT is precluded in a proportion of eligible
candidates due to anatomic or technical constraints such
as occluded venous access, an inappropriate coronary sinus
(CS) anatomy, or a high threshold in regions of fibrosis
(5, 6). In addition, approximately 30% of recipients are
non-responsive to CRT due to the inability to effectively
stimulate diseased tissue, or suboptimal LV lead placement
(7, 8).

For these reasons, physicians and engineers have been
working together to overcome the challenges of LV lead
implantation but have also shown increased interest in
developing physiological pacing techniques to improve CRT
effectiveness. His bundle pacing (HBP) has increased in use
by activating the His bundle but is restricted by implant
challenges, low success rates, and a high and often unstable
pacing threshold (9–12). Therefore, the concept of pacing the
specialized conduction system distal to the His bundle to
bypass the block region has been introduced (13). Multiple
clinical studies reported that left bundle branch area pacing
(LBBAP) has electrical resynchronization that is comparable
with that of HBP but superior due to its simpler operation,
higher success rate, and low and stable pacing threshold (13–
17). Despite their well-demonstrated effectiveness, the resulting
complications of transvenous leads and typical pocket infections
remain a non-negligible limitation (18, 19). Thus, leadless
cardiac pacing has been engineered and demonstrated as having
potential efficacy for treating those challenging patient cohorts
(20, 21).

From CS epicardial pacing to leadless endocardial
stimulation, various LV pacing alternatives reportedly
improve CRT effectiveness (Figure 1). This review focuses
on the current state and latest progress of HBP, LBBAP, and
leadless LV pacing as alternatives for impossible or failed
conventional CRT as well as their limits and future areas of
improvement.

FIGURE 1

Schematic diagram of pacing electrode positions of different
CRT modalities. BVP, biventricular pacing; CRT, cardiac
resynchronization therapy; HBP, His bundle pacing; HOT-CRT,
His-optimized CRT; LBBAP, left bundle branch area pacing;
LOT-CRT, LBBAP-optimized CRT.

Benefits and limits of biventricular
pacing-cardiac resynchronization
therapy

The efficacy of CRT in patients with HF has been
demonstrated in numerous trials. The Multisite Stimulation
in Cardiomyopathies (MUSTIC) study was the first to assess
the clinical outcomes of CRT in 67 patients with severe
HF (22). Finally, 48 patients completed both phases of the
study. The quality-of-life score improved by 32%, while
hospitalizations decreased by 67.7%. Similarly, the Multicenter
InSync Randomized Clinical Evaluation (MIRACLE) trial was
the first double-blind trial to assess the CRT outcomes in 453
patients with moderate to severe HF with an LVEF ≤ 35%
and QRS ≥ 130 ms (23). CRT improved the New York Heart
Association (NYHA) class, quality of life, and LVEF and reduced
hospitalization and intravenous interventions. The Cardiac
Resynchronization–Heart Failure (CARE-HF) trial was mainly
conducted to assess the morbidity and mortality of CRT in
813 patients with HF (NYHA class III/IV) (24). The results
indicated that CRT reduced mortality of any cause, increased the
LVEF, and improved symptoms and quality of life. Subsequently,
the REVERSE, MADIT-CRT, and RAFT trials assessed the
efficacy of CRT in mildly symptomatic HF (25–27). These results
showed that CRT significantly delayed the time to the first
HF hospital stay or death, reduced the risk of HF events, and
improved LV reverse remodeling.
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However, approximately 30% of candidates respond
unfavorably to CRT or even worsen (23, 24, 28). In fact, the
optimal LV pacing site is not always consistent with the right
branch of the CS. In addition, phrenic stimulation, occlusion of
the CS anatomy, or other anatomical constraints would hamper
the procedure. Thus, several approaches based on BVP-CRT,
such as the adaptive CRT algorithm (29), the SyncAV algorithm
(30), and multipoint pacing (MPP) (31), have improved the
effectiveness of BVP-CRT. Notably, the optimal electrode
position was not equal to that of the optimal treatment. In
addition, little experience has been gained regarding the optimal
programming of pacemakers after MPP. Furthermore, the
higher battery use of MPP also prevents its recommendation.

Alternative pacing strategies for
conventional cardiac
resynchronization therapy

Despite great advances in multipolar LV electrodes and
MPP, non-response due to suboptimal lead position remains
a critical problem. To overcome the challenges of the CS
approach, physicians have strived for alternative solutions, such
as surgical LV epicardial lead placement, LV endocardial pacing,
or HBP to most recently leadless LV pacing. However, surgical
LV epicardial lead placement does not always deliver additional
improvement in the LVEF versus conventional CRT, and it is
inherently more invasive and challenging in patients with a
previous history of heart surgery (32). Moreover, the greatest
concern for LV endocardial pacing is the risk of thromboembolic
complications and the need for lifelong anticoagulation (33). By
contrast, physiological pacing modalities have advantages over
conventional LV epicardial and endocardial pacing. Next, this
review focuses on the progress, limits, and prospects of HBP,
LBBAP, and leadless LV pacing used for CRT.

His bundle pacing for cardiac
resynchronization therapy

His bundle pacing activates the His–Purkinje system (HPS)
and restores physiological activation of the ventricles. HBP is
defined as the presence or absence of His–Purkinje conduction
disease (HPCD) according to four basic criteria (34): (1)
relationship between the His-QRS (H-QRS) and stimulus-QRS
(S-QRS) intervals; (2) the presence or absence of direct capture
of the local ventricular electrogram (EGM) on the pacing lead;
(3) QRS duration (QRSd) and morphology; and (4) capture
thresholds. Broadly, there are two forms of HBP: selective HBP
(S-HBP), in which the His bundle is exclusively captured; and
non-selective HBP (NS-HBP), in which both the His bundle
and its surrounding ventricular tissues are captured. The form

of S-HBP or NS-HBP is usually dependent on the location
of the pacing electrode in relation to the His bundle and the
surrounding tissue (35). S-HBP can be differentiated from NS-
HBP by review of the His bundle EGM on the pacing lead (34,
36): the local ventricular EGM is discrete and separate from the
pacing stimulus on S-HBP, whereas it is fused with the pacing
stimulus on NS-HBP. The specific criteria for S-HBP or NS-HBP
are as follows (9, 34):

S-HBP: (1) S-QRS = H-QRS with an isoelectric interval. In
patients with HPCD, S-QRS ≤ H-QRS with BBB correction and
S-QRS ≤ or > H-QRS without BBB correction; (2) discrete local
ventricular EGM in HBP leads with the stimulus to the local
ventricle (S-V) = His to the local ventricle (H-V); (3) paced
QRS = native QRS. In patients with HPCD, paced QRS < native
QRS with BBB correction; paced QRS = native QRS without
BBB correction; and 4) a single capture threshold (His capture)
was observed. In patients with HPCD, two distinct His capture
thresholds (with and without BBB correction) may be observed.

NS-HBP: (1) S-QRS < H-QRS (usually 0, S-QRSend = H-
QRSend) with or without an isoelectric interval. In patients with
HPCD, S-QRSend < H-QRSend with BBB correction; (2) direct
capture of local ventricular EGM in HBP lead by a stimulus
artifact; (3) paced QRS > native QRS. In patients with HPCD,
paced QRS ≤ native QRS with BBB correction and paced
QRS > native QRS without BBB correction; (4) usually, two
distinct capture thresholds (His bundle capture and RV capture)
are observed. In patients with HPCD, three distinct capture
thresholds (with or without correction for BBB and RV capture)
may be observed.

Theoretically, S-HBP may be advantageous over NS-HBP
in terms of clinical outcomes. Instead, few hemodynamic and
clinical differences were observed between these two forms of
capture, probably owing to the rapid conduction of the HPS
relative to the ventricular myocardial conduction (37, 38).

Evidence for resynchronization using
His bundle pacing

In 2000, HBP was first described in 12 HF patients with atrial
fibrillation, cardiomyopathy, and improvements in LV function
after HBP and atrioventricular node ablation (39). In 2012, a
series of direct HBP (DHBP) was reported in 16 patients after
CS approach failure (40). Of these, LBBB was corrected in 13
of 16 patients, and permanent HBP (pHBP) was performed
successfully in nine of 13 patients. LBBB was corrected using
pHBP, with a mean QRS reduction (166 ± 8 to 97 ± 9 ms;
P < 0.01). Subsequently, a prospective study assessed the HBP
outcomes of patients with HF and LBBB (18). A total of 74
patients were enrolled, and pHBP was successful in 56 of them
(75.7%). Of them, 30 had completed a 3-year follow-up with an
increased mean LVEF (32.4 ± 8.9% to 55.9 ± 10.7%, P < 0.001)
and decreased LV end-systolic volume (LVESV; 137.9 ± 64.1 to
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52.4 ± 32.6 mL, P< 0.001). Similarly, the outcomes of HBP were
explored in 106 CRT-eligible or -failed patients (41). Among
them, HBP was successful in 95 patients (89.6%). During an
average follow-up of 14 months, it also delivered significant
QRS narrowing, increased LVEF, and improved NYHA class.
Lead-related complications were observed in seven patients.
These studies demonstrated that HBP may be a promising
treatment for failed BVP.

His bundle pacing versus biventricular
pacing for cardiac resynchronization
therapy

Multiple studies demonstrated that HBP may be an effective
alternative to BVP; however, whether it is equal to or better than
BVP requires further evaluation. The first crossover study to
compare the outcomes of HBP and BVP enrolled 29 patients
for HBP as an alternative to BVP (10). Finally, 21 of 29 patients
achieved narrow-paced QRSd. The baseline LVEF was 26% with
improvements at 6 months in the HBP (32%) and BVP (31%).
A similar result of HBP delivering a greater reduction in QRSd,
LV activation time (LVAT), and LV dyssynchrony index (LVDI)
than BVP was reported (42). The His-SYNC trial was the first
randomized comparison of HBP and BVP using treatment-
received (TR) and per-protocol (PP) analyses (43). A total of
41 patients were enrolled and randomized into HBP (n = 21)
and BVP (n = 20) groups. Compared with BVP, HBP achieved
a narrower mean QRSd, regardless of TR or PP analyses (TR:
125 ± 22 vs. 164 ± 25 ms, P < 0.001; PP: 124 ± 19 vs.
162 ± 24 ms, P < 0.001). Furthermore, a non-significant trend
toward a higher echocardiographic response was observed.
There were also no significant intergroup differences in CV
hospitalization and mortality. Another randomized trial of HBP
versus BVP (His-Alternative) was performed in patients with
symptomatic HF and LBBB (44). The pacing thresholds of HBP
were higher than those of BVP, both at implantation and at the 6-
month follow-up. Using PP analysis, the LVEF was significantly
increased, and the 6-month LVESV was lower in patients with
HBP than in those with BVP. These data revealed that HBP was
equivalent to, or even better than, BVP in some cases; however,
further investigations are required to confirm these findings.

His-optimized cardiac
resynchronization therapy

The use of HBP alone may not always be optimal
for obtaining QRS narrowing. Several studies have explored
whether CRT could maximize electrical resynchronization by
HBP fused with sequential LV pacing, termed His-optimized
CRT (HOT-CRT) (45–48). HOT-CRT was attempted in 27
patients with LBBB/intraventricular conduction defect (IVCD)

partially corrected by HBP alone (45). HOT-CRT produced
a greater narrowing of the mean QRSd to 120 ± 16 ms
(vs. baseline, BVP, or HBP; P < 0.0001). LVEF improved
significantly (from 24 ± 7% to 38 ± 10%, P = 0.001) after
a mean follow-up of 14 ± 10 months. Similar results with
a narrower QRSd, increased LVEF, and improved NYHA
were reported in other studies (46–48). In addition, HOT-
CRT versus HBP resulted in significant QRS narrowing, thus
achieving electrical resynchronization in four of five patients
with IVCD (45). These data indicate that HOT-CRT produced
more pronounced QRS narrowing and improved clinical
outcomes than HBP alone. Particularly, HOT-CRT could further
optimize electrical resynchronization in patients with advanced
cardiomyopathy and conduction disease; however, this finding
requires further verification.

Limits of His bundle pacing

These trials indicated that HBP generates a narrow paced
QRS and improves clinical outcomes, which seem potential
for CRT. However, HBP has some limitations. First, the major
limit is the inability to map the precise location of the His
bundle, which is approximately 1–2 mm in diameter (49).
The mean success rate of HBP was approximately 79.8%
(mostly were performed with the SelectSecure 3830 lead;
Medtronic, Minneapolis, MN, United States), while the lead-
related complication rate was 6% (50). Second, 30–40% of
LBBB cannot be corrected by HBP because of the presence of
lesions distal or more extensive to the conduction tract during
implantation (51). Third, the HBP threshold increased over
time. About 53.6% of patients had a significant increase in
the His capture threshold after a mean follow-up of 3 years
(18). A progressive increase in the pacing threshold implies
a shortened battery longevity. HBP may also undersense the
ventricle and oversense the atrium, thus resulting in crosstalk.
Finally, most of the current research conclusions on the
application of HBP in HF with LBBB were derived from the data
of HBP with failed BVP, while large-scale randomized controlled
clinical trials of HBP and BVP are lacking. Furthermore, the
number of patients who responded to HBP and did not respond
to BVP was small, and similarly, the number of patients who
included HOT-CRT with IVCD HF and were refractory to BVP
or HBP was small.

Left bundle branch area pacing for
cardiac resynchronization therapy

In 2017, Huang et al. (13) first introduced left bundle branch
pacing (LBBP) in a patient with HF and LBBB and confirmed
its feasibility and safety. LBBP captures the proximal LBB or its
branches with or without the LV septal myocardium. LV septal

Frontiers in Cardiovascular Medicine 04 frontiersin.org

https://doi.org/10.3389/fcvm.2022.923394
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-923394 September 21, 2022 Time: 15:51 # 5

Hua et al. 10.3389/fcvm.2022.923394

pacing (LVSP) exclusively captures the LV septal myocardium.
However, during the early stage of LBBP, the criteria for LBB
capture are not well defined and uniform. With the increased
use and further research on LBBP, the definition of LBB capture
is gradually becoming definitive (52). Broadly, there are two
forms of LBBP: selective LBBP (S-LBBP) exclusively captures
the LBB, whereas non-selective LBBP (NS-LBBP) captures the
LBB along with the surrounding local myocardium. The detailed
characteristics of LBBP are defined as follows: (1) RBBB pattern,
(2) LBB potential, (3) S-LBBP with specific ECG changes and a
discrete component on EGM, and (4) a constant and shortest
stimulus to the LVAT, regardless of high or low pacing outputs.
LBBP is differentiated from LVSP based on the mentioned
characteristics of the indirect criteria for LBB capture. Thus,
LVSP is mistakenly considered LBBP in some cases. Wu et al.
(53) proposed retrograde His bundle potential or anterograde
left conduction system potentials to directly confirm LBB
capture, which can more accurately distinguish between LBBP
and LVSP. However, this method is complicated and unsuitable
for routine clinical use. In this context, the concept of LBB
area pacing (LBBAP) has been proposed, that is, LBBP or LVSP,
without clear evidence for LBB capture (4). During LBBAP, the
QRS morphologies in lead V1 are typically demonstrated as Qr
(60.7%), qR (19.6%), rSR’ (7.1%), or QS (12.5%) patterns, and
the duration of the terminal R’ wave was significantly shorter
than that of native RBBB (54).

Evidence for resynchronization using
left bundle branch area pacing

Several single-center studies with short follow-up periods
have confirmed the potential of LBBAP in patients with HF
and wide QRS (13, 55). A prospective multicenter medium-term
study assessed LBBP in patients with LBBB and non-ischemic
cardiomyopathy (56). LBBP was successful in 61 of 63 patients
(97%). It produced a shortened mean QRSd (169 ± 16 to
118 ± 12 ms, P < 0.001), increased LVEF (33 ± 8% to 55 ± 10%,
P < 0.001), decreased LVESV (123 ± 61 to 67 ± 39 mL,
P < 0.001), and improved NYHA class (2.8 ± 0.6 to 1.4 ± 0.6,
P < 0.001). A subsequent long-term trial with a larger sample
size (N = 632) assessed LBBP feasibility and safety (57). LBBP
was successful in 618 (97.8%) patients, and the mean follow-
up was 18.6 ± 6.7 months. A significant decrease in QRSd was
observed in patients with LBBB. LVEF after LBBP improved in
patients with QRS ≥ 120 ms (N = 88). No serious complications
occurred during the procedure or follow-up. A similar result
was reported by another large study (N = 325) (19) in which
LBBAP was successfully achieved in 277 (85%) patients. During
a mean follow-up period of 6 ± 5 months, LBBAP also resulted
in significant QRS narrowing and improved LVEF. In a current
meta-analysis, LBBP for CRT resulted in a narrower QRSd and
an increased LVEF than baseline (58). Nonetheless, relatively

few studies have examined LVSP for CRT. To date, LVSP
has been demonstrated to generate short-term hemodynamic
improvement and electrical resynchronization equal to that of
BVP and possibly HBP (59). These data demonstrated that
LBBAP may be a promising rescue strategy for failed BVP;
however, further investigations are needed.

Left bundle branch area pacing versus
biventricular pacing for cardiac
resynchronization therapy

Several clinical trials have explored whether LBBAP is equal
or superior to conventional CRT (15–17, 60, 61). In these
studies, LBBAP/LBBP produced a narrower paced QRSd than
did BVP as expected. Accordingly, LBBAP/LBBP resulted in an
increased LVEF and improved NYHA class. LBBAP improved
the LVEF more than BVP in this study (16). By contrast,
LBBAP/LBBP was equivalent to BVP in other studies (15,
17, 61). LBBP, HBP, and BVP were compared in 137 non-
randomized patients with an LVEF ≤ 40% and typical LBBB
(60). Finally, HBP and LBBP delivered similar improvement in
the LVEF and NYHA class after the 1-year follow-up, which was
significantly higher than that in BVP. Furthermore, some meta-
analyses of LBBAP for CRT have been reported (62, 63). A meta-
analysis compared LBBAP and BVP for CRT (62). Compared
with BVP, LBBAP produced significantly narrower QRSd with a
mean difference (MD) 29.18 ms, LVEF improvement of 6.93%,
LVEDD reduction of 2.96 mm, and NYHA class improvement
of 0.54. Similarly, a network meta-analysis compared LBBAP,
HBP, and BVP for patients requiring CRT (63). Compared
with BVP, LBBAP produced greater LVEF improvement with
an MD of 7.17%, followed by an HBP of 4.06%. In addition,
HBP produced a narrower QRSd with an MD of 31.58 ms,
followed by an LBBAP of 27.40 ms. There were no differences
in LVEF improvement and QRS narrowing for LBBAP versus
HBP. These data indicated that LBBAP, comparable with HBP,
may be superior to BVP, but further evaluations are needed.

Left bundle branch area
pacing-optimized cardiac
resynchronization therapy

To our knowledge, proximal LBB pacing is inherently
limited by its inability to restore physiological activation of
the lateral wall of the LV in patients with a distal conduction
delay (19). Thus, it may not always be optimal for QRS
narrowing by LBBAP alone. Whether LBBAP-optimized CRT
(LOT-CRT), LBBAP combined with CS LV pacing, would
be advantageous over LBBAP or BVP is unknown. Thus,
the LOT-CRT was assessed in an international multicenter
study of non-consecutive patients who were indicated for
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CRT or non-responders (64). LOT-CRT was successful in
91 of 112 patients (81%). The average follow-up was
7.8 ± 2.3 months. LOT-CRT generated significantly greater
narrowing of QRSd to 144 ± 22 ms (vs. baseline, BVP,
and LBBAP, P < 0.0001), increased LVEF (28.5 ± 9.9% to
37.2 ± 12%, P < 0.0001), and decreased LVEDD (62.0 ± 8.9
to 59.1 ± 9.1 mm, P < 0.0442) and N-terminal pro-hormone
B-type natriuretic peptide (5,668 ± 8,249 to 2,561 ± 3,555
pg/mL, P < 0.0001). These results indicated that LOT-
CRT provided greater electrical resynchronization and clinical
benefits than BVP or LBBAP alone, but further research is
needed to confirm this finding.

Limits of left bundle branch area
pacing

Multiple studies demonstrated the technical advantages and
clinical potential of LBBAP. It has comparable LV synchrony
with HBP but a high success rate of 81.1–97% (15, 16, 19,
56, 65) and a low lead-related complication rate of 1.5%
(65) with the SelectSecure 3830 lead (Medtronic, Minneapolis,
MN, United States). Currently, other stylet-driven conventional
active fixation pacing leads can also effectively obtain LBBAP,
such as the Solia S60 lead (Biotronik, SE & Co., KG, Germany)
(66–68), the Ingevity pacing lead (Boston Scientific Inc.,
Marlborough, MA, United States) (68), and the Tendril 2088TC
lead (Abbott, Inc., United States) (68, 69). In addition, LBBAP
has a lower and stable threshold and high perception, and
it is preferred for patients with a block far beyond the His
bundle branch. Furthermore, the broad and expansive nature
of LBB makes LBBAP implantation simpler and faster than
that of HBP (70). However, some issues should still be noted,
including its acute and long-term safety. Several complications
may occur during the procedure, such as LV perforation as
the lead advances into the deep interventricular septum (IVS)
(71). Thus, a pre-procedural IVS thickness evaluation would be
safer. Furthermore, the lead should be rapidly rotated until it
penetrated deep into IVS, and fluoroscopic image and pacing
parameters and morphologies should be monitored to avoid the
perforation of IVS during the process (13, 19). In addition, the
safety of postoperative lead extraction after a long duration has
been the focus of much attention. Chen et al. (72) reported that
three of 612 patients repositioned the lead during the follow-up
(one postoperative septum perforation and one postoperative
lead dislodgement at 1 month, and one postoperative lead
dislodgement at 1 month after repositioned for 5 months). These
leads were extracted and repositioned at different sites, and
the parameters were stable at an additional 1-year follow-up.
Similarly, Su et al. (57) reported a septal perforation during
the follow-up in one patient, and the lead was removed and
reimplanted without serious complications. Collectively, further
research is needed to firmly establish the safety of LBBAP

for CRT, particularly for lead extraction over a long duration
after the procedure.

Leadless left ventricular pacing:
New direction for patients after
coronary sinus approach failure

Despite the well-demonstrated effects of HBP and LBBAP,
transvenous leads and typical pocket infections remain a non-
negligible limitation (18, 19). Leadless cardiac pacing has
been proposed to address these complications. The WiSE-CRT
system (EBR Systems Inc., Sunnyvale, CA, United States) is
the only currently available leadless LV pacing system that
comprises a subcutaneous pulse generator transmitter and LV
endocardial receiver electrode (73). In this system, acoustic
energy is converted from the pulse generator transmitter, located
subcutaneously at the fourth, fifth, or sixth intercostal space, to
electrical stimulation of a receiver electrode implanted into the
LV cavity. The system works in conjunction with a co-implant
of RV pacing, which could be a conventional device such as
a pacemaker or implantable cardioverter defibrillator (ICD) or
a leadless pacemaker such as Micra (Medtronic, Minneapolis,
MN, United States). Biventricular pacing is accomplished by
perceiving the RV pacing output of the co-implant, followed
by the system immediately transducing acoustic energy to
electrical stimulation of the LV electrode, thus achieving near-
synchronous RV and LV pacing.

Evidence for leadless pacing

In 2014, the Wireless Stimulation Endocardially for CRT
(WiSE-CRT) study (20) included 17 HF patients, two-thirds of
whom showed ≥ 1 NYHA class improvement at the 6-month
follow-up. The Safety and Performance of Electrodes implanted
in the Left Ventricle (SELECT-LV), a prospective multicenter
non-randomized trial, enrolled 35 CRT-indicated patients who
“failed” conventional CRT and underwent implantation of
leadless pacing (21). The procedure was successfully performed
in 34 (97.1%) patients. Of them, 84.8% (N = 28) showed an
improved clinical composite score and 66% (N = 21) gained
a ≥ 5% absolute increase in the LVEF at 6 months. Of note,
serious procedure/device-related complications were observed
in 8.6% of patients (N = 3) within 24 h and 22.9% of patients
(N = 8) between 24 h and 1 month. A real-world experience
with the WiSE-CRT system was shared in an international
trial (ClinicalTrials.gov identifier: NCT02610673) (74) in which
procedural success and the delivery of biventricular endo-pacing
occurred in 85 of 90 patients (94.4%). The acute (within 24 h),
1- to 30-day, and 1- to 6-month complication rates were 4.4%
(N = 4), 18.8% (N = 17), and 6.7% (N = 6), respectively.
A total of five deaths (5.6%) occurred within 6 months. HF

Frontiers in Cardiovascular Medicine 06 frontiersin.org

https://doi.org/10.3389/fcvm.2022.923394
https://clinicaltrials.gov
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-923394 September 21, 2022 Time: 15:51 # 7

Hua et al. 10.3389/fcvm.2022.923394

symptoms improved in 70% of patients. Subsequently, the
Stimulation of the Left Ventricular Endocardium for Cardiac
Resynchronization Therapy (SOLVE-CRT) trial assessed the
short-term outcomes of the WiSE-CRT system in cases without
prior implant experience (75). WiSE-CRT was successful in
all 31 patients. Of them, 30 completed the 6-month follow-
up. In total, 14 (46.7%) patients achieved ≥ 1 NYHA class
improvements and an improved LVEF, decreased LVESV, and
increased LV end-diastolic volume (LVEDV); three (9.7%)
device-related complications occurred: insufficient LV pacing
(N = 1), embolization of an unanchored LV electrode (N = 1),
and skin infection (N = 1). These results indicated that
biventricular endo-pacing from the WiSE-CRT system was
effective in cases of failed conventional CRT or non-response,
but complications must be noted.

Totally leadless cardiac
resynchronization therapy

The aforementioned trials of leadless LV endocardial pacing
were combined with a traditional pacemaker or ICD instead
of a totally leadless CRT. The successful coexistence of Micra
and the WISE-CRT system was first reported in 2019 (76).
Also, two other cases were published in the same year or
later (77, 78). The patients in these case reports have a

common characteristic, that is, they have a complex history
including old age, infection, valvular replacement surgery, or
venous occlusion. These patients achieved a narrower QRSd
and satisfactory clinical outcomes without serious complications
after leadless CRT. These cases raised the possibility of
completely leadless CRT. Subsequently, multiple European
centers shared their experiences with totally leadless CRT
(79). A total of eight patients from six centers underwent
combination treatment with Micra and WiSE-CRT systems. The
QRSd reduction immediately after WiSE-CRT implantation was
significant (204.38 ± 30.26, 137.5 ± 24.75 ms, P = 0.012),
and it was maintained at the 6-month follow-up. Only a
significant improvement in the LVEF was achieved after WiSE-
CRT implantation (28.43 ± 8.01% vs. 39.71 ± 11.89%, P = 0.018)
without evidence of LV reverse remodeling and improved
NYHA class. A current meta-analysis of leadless LV pacing
for CRT (80) included five studies (four with RV leads of
conventional devices and one with Micra) involving 181 total
patients in the final analysis. The success rate of the procedure
was 90.6%. It generated a mean increase in the LVEF with an
MD of 6.3% and NYHA class improvement of 0.43. Notably, the
procedure-related complications and mortality rates were 23.8%
and 2.8%, respectively. However, this new pacing modality was
used in only a small number of patients, and further studies are
needed to confirm its feasibility and safety.

TABLE 1 Comparison of BVP, HBP, LBBAP, and leadless LV pacing.

BVP HBP LBBAP Leadless LV pacing

Since (year) 1990 2000 2017 2014

Lead LV lead,
RV lead,

(RA lead)

His lead,
(RA lead)

LBB lead,
(RA lead)

RV lead/none

LV or His or LBB lead
position

CS Proximal to His-bundle or in
the His-bundle

Distal to His-bundle Into the LV cavity

LV or His or LBB lead
threshold

Generally high (15–17, 60) Generally high and unstable
(43, 44, 60)

Generally lower and stable
(13–17, 60)

Generally high (20, 78)

Stim-LVAT Mildly shortened Significantly shortened LBBP: shortest and constant
LVSP: longer than LBBP

Theoretically near normal

Implant success rate 92.4%∼97% (23–25) 79.8% (50) 81.1%∼97% (15, 16, 19, 56,
65)

90.6% (80)

1LVEF + 3.7%∼5.9% (23–25) +10.87∼14.32% (50) + 14.31∼ 22.69% (58) +4.35∼8.19% (80)

1QRSd −20∼−12 ms (23) −50.67∼−36.34 ms (50) −61.64∼−53.72 ms (58) −67∼−27.3 ms (21, 79)

Procedure-related
complication rate

6.1∼12.6% (23–25) 6% (50) 1.5% (65) 23.8% (80)

Battery life 5–6.5 years Comparable to BVP Relative longer than HBP Mean of 18 months
(9–42 months)

Advantages Conventional approach with
high level of evidence,

well managed technique

Physiological stimulation,
narrower paced QRSd

Physiological stimulation,
narrower paced QRSd,

low and stable threshold

No transvenous lead,
endocardial pacing,

no need for long-term
anticoagulation

Disadvantages Electrical constraint,
high threshold,

limited location possibility,
phrenic stimulation

Transvenous lead,
high threshold,

technical and challenging
procedure

Risk of IVS perforation,
long-term safety and lead

extraction need further
evaluated

Recent technique with little
evidence,

need for an acoustic window,
complex procedure

BVP, biventricular pacing; CS, coronary sinus; HBP, His bundle pacing; LBBAP, left bundle branch area pacing; LBBP, left bundle branch pacing; LV, left ventricular; LVEF, left ventricular
ejection fraction; LVSP, left ventricular septal pacing; QRSd, QRS duration; RA, right atrium; RV, right ventricle; stim-LVAT, stimulus to left ventricular activation time. 1 represents an
absolute increase from baseline after pacing.
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Limits of leadless left ventricular pacing

Taken together, these data support the efficacy of leadless LV
pacing as an alternative in patients in whom CRT is impossible
or ineffective. It significantly reduces diaphragm stimulation,
avoids mitral regurgitation, and can be performed at multiple
physiological pacing positions. In addition, the receiver
electrode was completely endothelialized for approximately
4 weeks; therefore, long-term anticoagulation was not required
(74). However, leadless LV pacing has several limitations.
First, it is challenging to choose a suitable acoustic window
(distance < 10 cm and angulation < 30◦) to effectively transmit
ultrasound. Second, some regions of the left lateral free wall
of the enlarged LV may be difficult to reach owing to the
current delivery sheath. Third, the battery life projections
averaged 18 months (range, 9–42 months) (20), which is
often overestimated and should be improved. Moreover, the
procedure is complex and has a relatively high complication
rate. However, security issues are a common problem in the
early stages of any novel technique. Improvements in the safety
profile, such as different delivery sheaths, increased operator
experience, and practice modifications, would reduce its
complication rates and increase its widespread use. Additionally,
pre-procedural cardiac computed tomography can be used to
identify the optimal positioning of the receiver electrode based
on indicators such as scar burden, simulated latest activation
(81), and hemodynamic assessment (82).

Conclusion

In summary, HBP, LBBAP, and leadless LV pacing have been
demonstrated as potential alternatives for optimal CRT when
conventional CRT fails. Each technique has its advantages and
disadvantages (Table 1). HBP and LBBAP have shown more
effective electrical resynchronization than conventional BVP.
Accordingly, they provided equivalent or even superior clinical
outcomes in some challenging cohorts. However, transvenous
leads remain a major limitation of these pacing modalities. Thus,
leadless LV pacing has been developed and demonstrated to

provide more physiological LV endocardial activation coupled
with clinical benefits. Furthermore, the advantage of leadless
LV pacing would become more pronounced in cases of venous
occlusion or lead infection. With a better understanding of HBP,
LBBAP, leadless LV pacing, and their appropriate candidates, it
is more likely that the most suitable alternative will be chosen
when conventional CRT is impossible or ineffective.
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