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Synaptic inhibition is chiefly mediated by GABAA recep-
tors (GABAARs). GABAARs form pentameric anion chan-
nels that typically assemble from two α, two β, and one 
tertiary (γ, δ, ε, θ, π, ρ) subunit, with different subunit 
combinations conferring different biophysical properties. 
GABAAR-mediated inhibition of action potential (AP) firing 
results from hyperpolarization and/or an increase in mem-
brane conductance shunting excitatory inputs. Therefore, to 
ensure efficient inhibition, most mature neurons maintain a 
low chloride concentration ([Cl−]i). In contrast, immature 
neurons accumulate chloride [12], thus favoring depolar-
izing GABA responses in vivo [7, 14]. Whether excitatory 
or inhibitory actions of depolarizing GABA predominate 
is difficult to predict. This is due to complex interactions 
between the membrane (Vm) and chloride reversal potentials, 
the GABAAR conductance, and the timing and location of 
synaptic inputs [4, 6, 8, 10]. However, in vivo studies con-
firmed that depolarizing GABA can effectively inhibit AP 
firing already in developing neurons [7, 13]. Although these 
observations suggest that immature neurons can prevent 
excess excitation through depolarizing GABA, the underly-
ing mechanisms are not fully understood.

In their elegant recent study, Lodge and colleagues 
[9] discovered a crucial role for α5 subunit-containing 
GABAARs (α5-GABAARs) in this process. Focusing on 
adult-born hippocampal granule cells (GCs), the authors 
analyzed GABAergic inputs mediated by soma-targeting 
parvalbumin (PV) and dendrite-targeting somatostatin 
(SOM) interneurons. In acute hippocampal slices, in which 

young GCs are depolarized by GABA [4], both somatic and 
dendritic synapses were found to use similar GABAARs with 
a striking non-linear voltage-dependence, pharmacologically 
identified as α5-GABAARs. Their conductance at depolar-
ized potentials close to AP threshold (− 35 mV) was fourfold 
larger than at resting Vm (− 80 mV). Previous work demon-
strated that α5-GABAARs are high-affinity, slowly desensi-
tizing receptors that can dynamically redistribute between 
extrasynaptic and synaptic sites in an activity-dependent 
manner [2, 3], thus mediating both tonic [5] and phasic [11] 
inhibition.

What are the functional consequences of outwardly rec-
tifying α5-GABAARs? It has long been known that, under 
certain conditions, depolarizing GABA can enhance the 
activation of NMDA receptors (NMDARs) and might also 
facilitate AP firing. This could be of developmental impor-
tance, since NMDARs are required for several forms of syn-
aptic plasticity, such as synapse unsilencing [1]. However, 
as the number of active GABAergic synapses increases, 
facilitation shifts to inhibition due to increased shunting of 
glutamatergic currents. Using a rigorous electrophysiologi-
cal approach in combination with detailed biophysical mod-
eling, the authors demonstrated that outward rectification of 
α5-GABAARs results in a dominance of the shunting effect 
at considerably lower levels of GABAergic activity. Conse-
quently, voltage-dependent α5-GABAARs inhibit NMDAR-
dependent currents and AP firing in a broader range of 
GABAergic activity. Collectively, the voltage-dependent 
increase in conductance of α5-GABAARs around AP thresh-
old is crucial for preventing excess synaptic excitation in 
young GCs, when GABA is depolarizing.

Comparing the properties of GABAergic synapses in 
young with those in mature GCs, the authors discovered an 
intriguing example of developmental regulation. Whereas 
SOM-GC synapses utilize non-linear α5-GABAARs 
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throughout development, α5-GABAARs become develop-
mentally excluded from PV-GC contacts. Thus, as steady-
state [Cl−]i declines during development [4], PV interneu-
rons transition to targeting linear GABAARs lacking α5 
subunits. These results extend previous work indicating that, 
during the circuit integration of GCs, α5-GABAARs redis-
tribute from synaptic to extrasynaptic sites, which strength-
ens their contribution to tonic inhibition [2].

The study by Lodge and colleagues [9] raises excit-
ing questions. (1) What is the impact of non-linear 
α5-GABAARs in dendritic synapses of mature neurons? The 
authors’ modeling results indicate that both linear and non-
linear GABAARs can mediate effective inhibition if steady-
state [Cl−]i is low. However, this analysis did not consider 
activity-dependent chloride loads, which could cause sub-
stantial [Cl−]i shifts, especially in dendritic compartments 
(due to their high surface-to-volume ratio). (2) How is the 
abundance of outwardly rectifying vs. linear GABAARs reg-
ulated? Such a regulation may represent a powerful mecha-
nism by which (developing) neurons can tune inhibition, 
independent of changes in [Cl−]i. (3) Does the use of out-
wardly rectifying α5-GABAARs reflect a general principle 
by which developing neurons prevent excessive excitation? 
Since α5-GABAARs inhibit spontaneous cortical network 
activity in neonatal mice in vivo [7], this seems plausible. 
In sum, by showing that non-linear α5-GABAARs promote 
synaptic inhibition with depolarizing GABA, Lodge and col-
leagues [9] bring us one step closer to understanding how 
developing neurons prevent runaway excitation during syn-
aptogenesis and circuit integration.
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