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Abstract Tissue hypoxia results from an inadequate supply
of oxygen (O,) that compromises biological functions.
Structural and functional abnormalities of the tumour
vasculature together with altered diffusion conditions inside
the tumour seem to be the main causes of tumour hypoxia.
Evidence from experimental and clinical studies points to a
role for tumour hypoxia in tumour propagation, resistance
to therapy and malignant progression. This has led to the
development of assays for the detection of hypoxia in
patients in order to predict outcome and identify patients
with a worse prognosis and/or patients that would benefit
from appropriate treatments. A variety of invasive and non-
invasive approaches have been developed to measure
tumour oxygenation including oxygen-sensitive electrodes
and hypoxia marker techniques using various labels that
can be detected by different methods such as positron
emission tomography (PET), single photon emission com-
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puted tomography (SPECT), magnetic resonance imaging
(MRI), autoradiography and immunohistochemistry. This
review aims to give a detailed overview of non-invasive
molecular imaging modalities with radiolabelled PET and
SPECT tracers that are available to measure tumour
hypoxia.

Keywords Hypoxia-PET- SPECT - Nitroimidazole

Hypoxia in tumour biology

The prevalence of hypoxic areas is a characteristic feature
of locally advanced solid tumours and has been described
in a wide range of human malignancies, including cancer of
the breast, uterine cervix, vulva, head and neck, prostate,
rectum, pancreas as well as in brain tumours, soft tissue
sarcomas and malignant melanomas. Up to 50-60% of
locally advanced solid tumours may exhibit hypoxic and/or
anoxic tissue areas that are heterogeneously distributed
within the tumour mass. These hypoxic areas result from an
imbalance between oxygen supply and consumption which
is caused by abnormal structure and function of the
microvessels supplying the tumour (causing acute hypoxia),
increased diffusion distances between the nutritive blood
vessels and the tumour cells (causing chronic hypoxia), and
reduced O, transport capacity of the blood due to the
presence of disease- or treatment-related anaemia [1-3].
Recent studies have demonstrated a clear relevance of this
hypoxic microenvironment to tumour-associated metabolic
alterations, which are tightly linked to the biology of the
tumour. In this respect, tumour hypoxia has been associated
with an aggressive tumour phenotype, poor response to
radiotherapy and chemotherapy, increased risk of invasion
and metastasis, and worse prognosis in advanced squamous
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cell carcinoma of the cervix [4, 5], head and neck [6-8],
and soft-tissue sarcomas [9].

Many of the adaptations to tumour hypoxia seem to be
orchestrated by the transcription factor hypoxia-inducible
factor (HIF)-1, which has been verified as a master
regulator of oxygen homeostasis under hypoxic conditions.
Its oxygen-dependent activity is regulated in a delicate
interplay between several factors in which a family of
prolyl hydroxylase domain-containing proteins or PHDs 1—
3, the von Hippel-Lindau (VHL) tumour suppressor protein
(pVHL) and an E3 ubiquitin ligase complex, amongst many
others, play an important role. The HIF-1 pathway mediates
critical hypoxic adaptations by the induction of target genes
involved in glucose metabolism, angiogenesis, erythropoi-
esis and apoptosis. These target genes include vascular
endothelial growth factor (VEGF), facilitative glucose
transporters (GLUTs), hexokinases (HKSs), erythropoietin
(EPO), carbonic anhydrase IX (CAIX), ... The resulting
adaptive changes in the proteome and genome of the
tumour cells are believed to lead to more aggressive clones
which are better adapted to survive in their compromised
situation. Subsequent selection and clonal expansion of
these clones lead to a more adapted and aggressive tumour
cell population [1-3]. As noted above, the presence of
tumour hypoxia appears to impair the effectiveness of
common anticancer therapies like radiotherapy (RT) and
chemotherapy. Hypoxia-induced radioresistance is multi-
factorial. Besides the above-mentioned proteomic and
genomic changes that most likely contribute to resistance
by increasing the number of mutated cells that are more
resistant to apoptosis and by causing upregulation of
several stress proteins, the main reason for radioresistance
is the intrinsic dependence of RT on oxygen to cause
damage to the tumour cell. For damage to be inflicted on
tumour cells by ionizing radiation, the presence of oxygen
is necessary because it mediates DNA damage through
formation of free radicals by interaction of ionizing
radiation with intracellular water. Hypoxia has also been
shown to reduce chemotherapeutic efficacy by causing cells
within hypoxic regions to cycle more slowly and by
providing a selection mechanism for cells with reduced
susceptibility for apoptosis. Additionally, due to limited
drug penetration within solid tumours, hypoxic regions are
often protected from the cytotoxic effects of chemothera-
peutic agents further reducing drug efficacy [1-3].

All these mechanisms together ensure that tumour
hypoxia is a negative prognostic factor. In order to predict
outcome and identify patients with a worse prognosis and/
or patients that would benefit from appropriate treatments,
in vivo measurement of tumour hypoxia is required. At
present, the gold standard for direct in vivo determination
of tumour oxygenation is a commercially available oxygen
electrode, commonly referred to as the Eppendorf electrode.

As mentioned above, tumour oxygenation measurements
obtained with this technique correlated well with clinical
outcome in several clinical trials [4-9]. However, this
technically demanding procedure has a number of draw-
backs and limitations like its sensitivity for sampling errors,
its invasive nature and the fact that only easily accessible
tumours can be studied. Therefore, the search for a non-
invasive assay for tumour hypoxia continues. Non-invasive
measurement of tumour hypoxia with PET and SPECT will
be discussed below.

Non-invasive measurement of tumour hypoxia
with PET

1. Nitroimidazole compounds

These compounds are reduced into reactive intermediary
metabolites by intracellular reductases in a process which is
directly related to the level of oxygenation/hypoxia. This
causes a gradient which is favourable for detection of
hypoxic cells. Subsequently, these metabolites covalently
bind to thiol groups of intracellular proteins and thereby
accumulate within viable hypoxic cells. When labelled with
a PET tracer, these chemicals can be detected using PET
imaging methods. Several nitroimidazole compounds with
different properties and labelled with different PET radio-
nuclides have been described [10, 11].

(@) ['|FIFMISO (['®*F]fluoromisonidazole)

Pre-clinical data: Kubota et al. evaluated the tumour
imaging potential of ['*F]JFMISO in an AH109A tumour rat
xenograft and examined the correlation between intra-
tumoural distributions of ['*F]JFMISO, '*C-2-deoxyglucose
and "*C-methionine. Hypoxic and radioresistant tumours
could be identified by increased ['*FJFMISO uptake. A
large overlap in the distribution of ['*FJFMISO and '*C-2-
deoxyglucose and a small overlap in the distribution of
["*F]JFMISO and '*C-methionine were observed [12]. In a
study by Rasey et al., an attempt was made to define the
relationship between ['*FJFMISO uptake and radiobiolog-
ically hypoxic fraction in a 36B10 glioma rat xenograft.
Although the relationship between classically defined
radiobiologically hypoxic fraction and ['*FJFMISO time-
activity data remained to be clarified, ['*FJFMISO retention
provided useful correlations with the degree of hypoxia
[13]. Bentzen et al. compared ['*FJFMISO uptake with
invasive Eppendorf electrode pO, measurements in a C3H
mammary carcinoma mouse xenograft and found no direct
correlation between both methods [14].

A number of studies compared ['*F]FMISO uptake with
immunohistochemical staining techniques. In a study by
Dubois et al., ['"*FJFMISO uptake was compared with the
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exogenous hypoxia marker pimonidazole and the endoge-
nous hypoxia marker carbonic anhydrase IX (CA IX) in a
rhabdomyosarcoma rat xenograft. A statistically significant
correlation was obtained between the hypoxic volumes
defined with ['*FJEMISO PET and the volumes derived
from the pimonidazole- and CA IX-stained tumour
sections, indicating the value of ['*FJFMISO PET to
measure hypoxia [15]. Troost et al. tried to validate ['°F]
FMISO PET by comparing ['*F]FMISO uptake with
pimonidazole staining in several xenograft models in two
different studies. Both studies found a correlation between
['"®F]JFMISO uptake and pimonidazole immunohistochem-
istry [16, 17].

In a number of studies, ['*FJFMISO uptake was
compared with ['*F]JFDG uptake. Most of these studies
demonstrated the feasibility and utility of ['*FJFMISO PET
imaging to identify tumour hypoxia, whereas ['*F]JFDG
PET imaging seemed less suitable for this purpose [18-22].

Clinical data: Valk et al. were the first to demonstrate the
feasibility of ['*F]JFMISO PET to detect tumour hypoxia in
three patients with malignant glioma [23]. Rasey et al.
assessed pre-treatment hypoxia in a variety of human
tumours using ['*FJFMISO PET and concluded that human
tumour hypoxia is widely prevalent and highly variable
between different tumours with the same histology and also
between regions within the same tumour [24]. In a study by
Bruehlmeier et al. where hypoxia was measured in 11
patients with various brain tumours, it was concluded that
late ['®*F]FMISO PET images provide a spatial description
of tumour hypoxia which may develop irrespective of
the magnitude of perfusion as measured with '>O-H,O
PET [25].

A number of studies compared ['*F]JFMISO uptake with
invasive Eppendorf electrode pO, measurements. In some
of these studies, [ *FJFMISO uptake in renal cell carcinoma
and head and neck cancer correlated well with pO, mea-
surements from polarographic needle oxygen electrodes,
confirming the use of ['*FJFMISO PET to measure tumour
hypoxia [26-29]. Bentzen et al., however, found no
correlation between ['*FJFMISO uptake and pO, measure-
ments in human soft tissue tumours [30]. Some of the
above-mentioned studies also compared uptake of ['°F]
FDG and ["®F]JFMISO in patients with head and neck
cancer. They found no correlation between ['*F]JFDG
uptake and pO, measurements, whereas an association
between ['®F]JFMISO uptake and pO, measurements
existed [27-29]. Further comparison of ['*F]JFDG and
["®F]JFMISO indicated that no correlation exists between
both tracers as both represent different tumour charac-
teristics [31-35].

Several clinical studies have used ['*FJFMISO PET as a
prognostic indicator in oncology. In a study by Rajendran
et al., the prognostic effect of pre-therapy [ *FJFMISO PET
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on survival was investigated in 73 patients with head and
neck cancer, and pre-treatment ['*FJFMISO uptake proved
to be an independent prognostic factor [36]. Another study
of 12 patients with head and neck carcinoma who received
a pre-radiotherapy ['*FJFMISO PET scan concluded that
["*F]FMISO uptake was predictive of treatment response to
radiotherapy [35]. Similarly, in 40 patients with advanced
head and neck cancer and non-small cell lung cancer,
outcome after radiotherapy could be predicted on the basis
of kinetic behaviour of ['*FJFMISO in tumour tissue [37].
Two studies investigating the prognostic significance of
["®F]FMISO PET in patients with head and neck cancer
receiving chemoradiation in combination with the hypoxia
sensitizer tirapazamine concluded that ['*FJFMISO uptake
can predict prognosis and is associated with a high risk of
locoregional failure [38, 39]. Cher et al. showed that in
patients with malignant glioma ['*FJFMISO uptake is
prognostic for treatment outcome in the majority of patients
[34]. In a study with eight patients with non-small cell lung
cancer receiving chemotherapy and/or radiotherapy,
changes in ['®*FJFMISO uptake measured early response
to therapy and may predict freedom from disease as well as
overall survival [40]. A recent study that was conducted to
evaluate the reproducibility of ['®FJFMISO intratumour
distribution in 20 patients with head and neck cancer
showed considerable variability in the intratumour uptake
that can occur between repeated ['*FJFMISO PET scans
performed 3 days apart [41].

(b) ['|F]JFAZA (['®F]fluoroazomycin-arabinofuranoside)

Pre-clinical data: Sorger et al. compared the selective
uptake of ['"*FJFMISO and ['®*F]JFAZA in hypoxic cells in
vitro and in a Walker 256 rat sarcoma model. The in vitro
study showed that ['®F]JFAZA is able to indicate reduced
oxygen supply in the same order of magnitude of ['°F]
FMISO. The in vivo study, however, indicated that ['F]
FMISO displayed a slightly higher standardized uptake
value and tumour to muscle ratio compared to ['*FJFAZA
though the elimination of the latter was much faster [42].
Two other studies also compared ["*F]JFMISO and ['®F]
FAZA in various tumour mice xenografts and reported
superior biokinetics for ['*FJFAZA compared with ['*F]
FMISO. In both studies ['*FJFAZA displayed higher
tumour to background, tumour to muscle and tumour to
blood ratios due to its more rapid clearance from blood and
non-target tissues [43, 44]. Beck et al. evaluated the
predictive value of ['®*F]JFAZA PET for success of
radiotherapy in combination with tirapazamine in EMT6
tumour mice xenografts. High ['SFJFAZA uptake was
identified as an independent adverse prognostic factor for
tumour progression, and hypoxia imaging with ['*F][FAZA
PET was able to predict the success of radiochemotherapy
[45]. In a study by Busk et al., ['*F]JFAZA uptake was
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compared with Eppendorf electrode measurements and the
hypoxia marker pimonidazole. The distribution of ['*F]
FAZA proved to be consistent with tumour hypoxia, as
identified with the Eppendorf electrode measurements and
the hypoxia marker pimonidazole [46]. The same group
compared the in vitro hypoxia specificity of cellular ['*F]
FDG and ['®F]FAZA retention and tested tracer distribution
between hypoxic and non-hypoxic areas in different mice
xenografts. The in vitro as well as the in vivo experiments
indicated that ['®F]JFAZA is an excellent marker for tumour
hypoxia, whereas ['*FJFDG is not [47].

Clinical data: Souvatzoglou et al. evaluated the feasibil-
ity of ['*F]JFAZA PET for the imaging of tumour hypoxia
in 11 patients with head and neck cancer and concluded that
PET imaging with ['®F]JFAZA is feasible and that adequate
image quality is achieved [48]. Another study, which
included 18 patients with advanced squamous cell head
and neck cancer, evaluated the role of ['*F]JFAZA PET
imaging to identify hypoxia in order to plan radiation
treatment. It was concluded that radiation treatment
planning and intensity-modulated radiotherapy based on
['®F]FAZA uptake measurements are feasible [49].

(¢) ['SFJFETA (['®F]fluoroetanidazole)

In a study by Rasey et al., four cultured rodent cell lines
were incubated with ['®FJFETA for various times under
graded O, concentrations. The biodistributions of ['*F]
FETA and ['®F]fluoromisonidazole (FMISO) at 2 and 4 h
post-injection in C3H mice bearing KHTn tumours were
also compared. ['*FJFMISO and ['*F]JFETA demonstrated
similar oxygen dependency of binding in cultured cells.
However, differences in biodistribution suggested advan-
tages of ['*FJFETA over ['*F]JFMISO because ['*F]JFETA
appeared to be less metabolized in vivo than ['*F]JFMISO
[50]. In another study, the cellular transport and retention of
['"®F]FETA were determined in vitro under air and nitrogen
and the biodistribution and metabolism were determined in
mice bearing several different xenografts. It was concluded
that ['®F]JFETA has suitable physicochemical properties and
is stable to non-hypoxic degradation in vivo. It was also
demonstrated that the tumour retention of the radiotracer is
related to radiobiological hypoxia and pO, status as
determined with polarographic needle oxygen electrodes
[51].

(d) ['®*FJFETNIM (['*F]fluoroerythronitroimidazole)

Pre-clinical data: Yang et al. reported on the synthesis
and evaluation of ['"®*FJFETNIM. Their results indicated that
at 4 h after injection, tumour to blood and tumour to muscle
ratios in mammary tumour-bearing rats were significantly
higher with ['*FJFETNIM than with ['*F]FMISO [52]. In a
later study by Gronroos et al. where the pharmacokinetic
properties and metabolite formation of ['*F]JFETNIM were

studied, ['"*F]JFETNIM showed low peripheral metabolism,
little defluorination and possible metabolic trapping in
hypoxic tumour tissue [53]. In a pre-clinical study by the
same group, the hypoxia imaging ability of ['*F][FETNIM
was compared with that of ['*F]JFMISO in a C3H mammary
carcinoma mice xenograft under different oxygenation
conditions. Additionally, the biodistribution of both
markers in normal tissues was assessed under similar
conditions. Uptake of both tracers correlated with the
oxygenation status in the tumours, but ['*FJFETNIM
showed a low and favourable background signal in normal
tissues as compared with ['|FIFMISO [54].

Clinical data: Most of the clinical studies with ['*F]
FETNIM were performed in patients with head and neck
cancer. A study investigating the accurate radiation dosim-
etry in 27 patients with head and neck cancer concluded
that the effective dose of ['*FJFETNIM PET is well within
the range of several related nuclear medicine procedures
[55]. A lot of clinical studies were performed by researchers
at the University of Turku in Finland. They found that ['*F]
FETNIM uptake in the early phase of tissue accumulation,
as measured using ['>OJH,O and PET, was highly variable
and depended for the most part on perfusion [56]. Tumour
to plasma ratio provided the best estimate for tumour
hypoxia [57]. In another study, the radiotherapy response
was assessed by hypoxia imaging with ['*FJFETNIM PET
in 21 patients with head and neck cancer and high uptake of
["®FJFETNIM prior to radiation therapy was associated
with a trend towards poor overall survival [58].

(e) ['F]EF5

In a study by Ziemer et al., the biodistribution of ['*F]
EF5 was assessed using hepatoma and glioma rodent
tumour models. ['®*F]EF5 was rapidly and uniformly
distributed to all tissues. This together with its high drug
stability in vivo suggests that ['®*F]EF5 is a promising agent
for the non-invasive assessment of tumour hypoxia [59].
Another study investigated hypoxia in androgen-dependent,
androgen-independent and regressing Shionogi tumours
using ['®F]EF5. Differences in hypoxia between the
different types of tumours could be detected with ['*F]
EF5 [60]. Recently, the first human study with ['®F]EF5
was performed in 15 patients with squamous cell carcinoma
of the head and neck (HNSCC) in which the time course of
['®F]EF5 uptake after intravenous injection was evaluated
to determine the most suitable PET protocol [61].

(® ['*F]EF3

Pre-clinical data: In the framework of the pre-clinical
evaluation, Mahy et al. studied the pharmacokinetics,
biodistribution, metabolism and specificity for hypoxia of
["®F]EF3 in different tumour-bearing C3H mice breathing
carbogen (5% CO,, 95% 0O,), 21% oxygen and 10%
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oxygen. They also compared ['®*F]EF3 uptake and EF5
adducts detected by immunofluorescence in the same
model. ['®F]EF3 uptake was inversely correlated with
oxygen concentration, and a significant correlation was
found between the ['*F]EF3 tumour to muscle ratio and the
fluorescence intensity of EF5 [62, 63]. Pharmacokinetics,
biodistribution and metabolism of ['*F]EF3 were assessed
and compared with ['*FJFMISO uptake in rodent tumour
models. It was concluded that both exhibited similar
pharmacokinetics, biodistribution and metabolism and that
['®F]JFMISO was able to detect tumour hypoxia to a similar
extent as ['®F]EF3, although it seemed less specific than the
latter tracer [64]. The same group tried to increase the
tumour to noise ratio in C3H mice by increasing ['*F]EF3
elimination. Several chemicals increasing renal filtration
rate, decreasing tubular reabsorption or stimulating gastro-
intestinal elimination were tested. Only phenobarbital
induced a trend toward an increase in tumour to noise ratio
[65]. In another study, ['*F]EF3 was quantitatively com-
pared with ['*FJFMISO in rats bearing syngeneic rhabdo-
myosarcoma tumours. It was shown that ['®F]EF3 is
cleared faster from the blood compared to ['*FJFMISO.
Both had a similar tumour uptake at 4 h post-injection, a
similarly fast and uniform distribution in normal tissues and
a comparable intratumoural distribution, indicating that
["®F]EF3 is not superior to ['*F]JFMISO [66].

Clinical data: In a recent phase I study by Mahy et al.,
pharmacokinetics, biodistribution and metabolism of ['*F]
EF3 were assessed in ten patients with head and neck
squamous cell carcinoma. Administration of ['*F]EF3
seemed feasible and safe in head and neck cancer patients.
Uptake and retention of the tracer was observed in the
tumour, indicating the presence of hypoxia [67].

(2 ['*FIEF1

Imaging with this marker was studied in two rat tumour
types whereby the drug’s biodistribution was assessed and
optimized. ['®*F]EF1 proved an excellent radiotracer for
non-invasive imaging of tumour hypoxia [68].

(h) ["*IJIAZA (['**IJiodoazomycin arabinoside)

Although TAZA has been frequently labelled with
gamma rays-emitting isotopes of iodine (['*1] and ["*°1)),
several studies report on the use of IAZA labelled with
["**I]. In a recent study by Reischl et al., the hypoxia
imaging capacities of ['**IJIAZA, ["*F]JFAZA and ['®F]
FMISO were compared in female Balb/c nude mice bearing
A431 tumours with a small animal PET scanner. ['°F]
FAZA displayed significantly higher tumour to background
ratio compared to ['*F]MISO and ['**IJIAZA. Although the
tumour to background ratio for ["**IJIAZA increased with
time, ratios were still lower than those for ['*FJFAZA at
shorter time periods. The study demonstrated the superior
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biokinetics of ["*FJFAZA compared to ['*FJFMISO and
["**IJIAZA [44].

Newer agents based on the azomycin-nucleoside struc-
ture such as iodoazomycin galactoside (IAZG) [69, 70] and
iodoazomycin galactopyranoside (IAZGP) [71] have been
developed and evaluated. Two studies compared ['**I]
IAZG uptake with ['®FJFMISO uptake. Zanzonico et al.
studied the use of ['**IJIAZG as a hypoxia imaging agent in
MCa and Fsall tumour-bearing mice using microPET
imaging by comparing it with [ISF]FMISO imaging and
provided data showing the potential of this tracer for
hypoxia imaging [69]. A similar study by Riedl et al. in
Morris hepatoma (RH7777)-bearing nude rats, however,
found that although ['*F]JFMISO localized in the same
intratumoural regions as ['**IJIAZG, a superior diagnostic
image quality was obtained with ["*FIFMISO [70]. A
recent study evaluated hypoxia imaging using ['**IJTAZGP
in a Morris hepatoma RH7777 tumour rat model by
comparing it with fluorescence fiberoptic oxygen probe
measurements, pimonidazole and EF5 distribution and tried
to determine the optimal time after injection to depict
hypoxia. ['**IJIAZG distribution correlated positively with
pimonidazole and EF5 distributions, and the optimal ratio
between signal intensity and tumour to liver contrast
occurred 6 h after tracer administration [71].

2. Non-imidazole imaging agents
(@) ['®*FJFDG (2-deoxy-2-['*F]fluoro-p-glucose)

['®FIFDG-PET is a non-invasive functional imaging
method that is routinely used for cancer detection, staging
and monitoring of response in several tumour types.
Because the uptake of ['*F]JFDG during FDG PET imaging
relies largely on the expression of proteins that are under
control of HIF-1, the degree of ['*F]JFDG uptake by
tumours might indirectly reflect the level of hypoxia.
Reports trying to relate ['*FJFDG uptake with tumour
hypoxia have, however, given inconsistent results. In vitro
studies have suggested that FDG should be accumulated in
hypoxic cancer cells compared to normoxic cancer cells
because of changed metabolism [21, 47, 72—77]. However,
in vivo experiments (pre-clinical and clinical) have given
conflicting results when showing a correlation between the
uptake of ['®F]JFDG and the existence of hypoxia in
tumours [18-20, 22, 27-29, 32-35, 40, 78-84]. A recent
review by Dierckx et al. addresses this subject matter [85].

(b) Cu-ATSM

Another alternative PET agent for hypoxia imaging that
holds great promise is based on a metal complex of radio-
active copper with ATSM, diacetyl-bis(N*-methylthiosemi-
carbazone). Cu(I)-ATSM is a neutral lipophilic molecule,
which is highly membrane permeable. It can undergo reduc-
tion by cellular reducing equivalents and can be converted to
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[Cu(I)-ATSM] , which becomes entrapped in cells because
of its negative charge when cells are hypoxic. There are four
different positron-emitting copper isotopes that each have
their own decay scheme: 0Cy (t;,=0.40 h), lCu (t1p=
3.32 h), “*Cu (t;,=0.16 h), **Cu (t;,=12.7 h) [86].

Pre-clinical data: After reports on the use of Cu®>-ATSM
to detect hypoxia in hypoxic myocardial tissue [87],
numerous pre-clinical studies have evaluated and vali-
dated its use for imaging of hypoxia in tumours. In an in
vitro study by Dearling et al., several **Cu-labelled bis
(thiosemicarbazone) complexes were prepared and tested
for tumour hypoxia selectivity by incubation with CHO320
Chinese hamster ovary cells under normoxic and hypoxic
conditions. A number of molecules, including %4Cu-ATSM,
showed significant hypoxia selectivity [88]. Later, attempts
were made to improve the hypoxia selectivity of the copper
complexes by identification of the physicochemical proper-
ties that control hypoxia selectivity [89]. Lewis et al.
evaluated ®*Cu-ATSM in vitro in the EMT6 carcinoma cell
line under varying pO, and compared it with ['*F]FMISO
and further evaluated ®*Cu-ATSM in vivo in a murine
animal model. **Cu-ATSM was selectively trapped in vitro
in EMTG6 cells under hypoxic conditions and in vivo in solid
EMT6 tumours, confirming its role as an agent to success-
fully detect tumour hypoxia [90]. A study by Burgman et al.
indicated, after determining the in vitro uptake of ®*Cu-
ATSM as a function of oxygenation conditions and
incubation time in several tumour cell lines of rodent and
human origin, that the uptake and retention of **Cu-ATSM
and their relation to oxygenation conditions were cell line
dependent [91]. The pO, dependence of Cu-ATSM was
confirmed in a 9L gliosarcoma rat model by comparison of
Cu-ATSM uptake with direct oxygen measurements using
needle oxygen electrodes while tumour oxygen concentra-
tion was manipulated [92]. A study by Yuan et al., on the
other hand, concluded after comparing the autoradiographic
distributions of “*Cu-ATSM with the hypoxia markers EF5,
pimonidazole and CAIX in R3230 mammary adenocarcino-
mas, fibrosarcomas and 9L gliomas that **Cu-ATSM is a
suitable PET hypoxia marker in most tumour types, but not
for all [93].

A number of studies compared ®*Cu-ATSM uptake
with ["*FJFMISO uptake and ["*F]JFDG uptake in vivo.
O’Donoghue et al. reported that the uptake of **Cu-ATSM
4 h after injection in an R3327-AT anaplastic rat prostate
tumour model did not correlate with ['*FJFMISO uptake
and does not reflect the level of hypoxia, as assessed by
pimonidazole immunostaining and invasive oxygen needle
probes. ®*Cu-ATSM imaging at 16-20 h after injection,
however, corresponded with ['*FJFMISO uptake and
showed a good correlation with the distribution of tumour
hypoxia. In a FaDu tumour model, early and late **Cu-
ATSM images were in concordance with ['*FJFMISO

imaging, indicating a tumour-specific dependence of
4Cu-ATSM uptake and retention under hypoxic conditions
[94]. In another study, “*Cu-ATSM tumour uptake was
unable to predictably detect changes in varying amounts of
tumour hypoxia when oxygenation levels in SCCVII
tumours were modulated, whereas ['*FJFMISO tumour
uptake was more responsive to changing levels of hypoxia.
Tumour hypoxia was also assessed independently using
pimonidazole [95].

Two studies comparing **Cu-ATSM uptake with ['*F]
FDG uptake in different animal models concluded that both
tracers have a different distribution pattern [81, 82]. %4Cu-
ATSM accumulated in hypoxic but viable tumour cells,
whereas ['®F]FDG uptake was highest in pre-necrotic
regions where the cells were believed to lack the necessary
reductive mechanisms to accumulate **Cu-ATSM [81]. It
was also shown that regions with high **Cu-ATSM uptake
were hypovascular and consisted of tumour cells arrested in
the cell cycle, whereas regions with high ['*F]FDG uptake
were hypervascular and consisted of proliferating cells, as
confirmed by histological analysis with Ki67, CD34 and
TUNEL assay [82]. Finally Dence et al. compared the
regional distribution of **Cu-ATSM, ["*F]FDG and ['®F]
FMISO in 9L gliosarcoma tumours. It was shown that the
regional distribution of ['*F]JFMISO at 2 h correlates highly
with the distribution of **Cu-ATSM at 10 min or 24 h. A
poor correlation existed however between ®*Cu-ATSM
(10 min) and ['*F]JFDG [22].

Clinical data: In numerous studies, *®Cu-ATSM uptake
proved to be predictive of tumour behaviour and response
to therapy in patients with non-small cell lung cancer [83],
cervical cancer [96, 97] and rectal carcinoma [84]. In a
study by Dehdashti et al. in 14 patients with biopsy-proven
cervical cancer, an arbitrarily selected tumour to muscle
threshold of 3.5 was able to discriminate those patients that
were likely to develop recurrence so that °°Cu-ATSM
uptake was inversely related to progression-free survival
and overall survival. Additionally, no correlation was found
between *°Cu-ATSM uptake and ['*F]JFDG uptake [96]. To
confirm these results, a study with a larger group of patients
was performed by the same group. Tumour *°Cu-ATSM
uptake (T/M threshold of 3.5) in 38 patients with cervical
cancer was inversely related to progression-free survival
and cause-specific survival. Again, no correlation was
found between °°Cu-ATSM uptake and ['*F]JFDG uptake
[97]. Similar results were obtained in a study where
semiquantitative analysis of the *°Cu-ATSM tumour to
muscle ratio in 14 patients with non-small cell lung cancer
was able to discriminate responders from non-responders.
However, there was no significant difference in mean
tumour SUV of non-responders and responders. Again, no
correlation was found between ®°Cu-ATSM uptake and
["®F]FDG uptake [83]. In a recent study, an effort was made
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to predict the response of rectal cancers to neoadjuvant
chemoradiotherapy and prognosis in 17 patients. The
results of this small pilot study suggested that “°Cu-ATSM
tumour to muscle ratio may be predictive of survival and,
possibly, tumour response. Again, no correlation was found
between *°Cu-ATSM uptake and ['*F]JFDG uptake [84]. To
determine if hypoxia-related molecular markers were
associated with ®°Cu-ATSM retention, the PET imaging
data of 15 patients with cancer of the cervix were compared
with the expression of tissue molecular markers, which
included VEGF, cyclo-oxygenase-2 (COX-2), epidermal
growth factor receptor (EGFR), carbonic anhydrase IX
(CA-9) and apoptotic index. Hypoxia as identified with
%0Cu—ATSM imaging was correlated with overexpression
of VEGF, EGFR, COX-2, CA-9, an increase in apoptosis
and a poor outcome [98]. Chao et al. further demonstrated
the feasibility of using *°Cu—ATSM imaging to identify the
hypoxic tumour subvolume through coregistration of CT
and ®°Cu-ATSM PET images in order to plan a patient’s
course of radiotherapy and perform intensity-modulated
radiation therapy (IMRT) [99]. As most clinical Cu—ATSM
studies used the agent with the short-lived positron-emitting
radionuclide of copper, ®°Cu, a recent study compared the
image quality and tumour uptake of °°Cu—ATSM and
®Cu—ATSM in ten patients with cervical carcinoma to
evaluate the use of Cu—ATSM with one of the longer-lived
positron-emitting copper nuclides, **Cu. It was concluded
that **Cu—ATSM was a safe radiopharmaceutical that can
be used to obtain high quality images of tumour hypoxia in
human cancers [100].

Non-invasive measurement of tumour hypoxia
with SPECT

1. ["TIAZA and ['*TIAZA (['*'T)/ ['*TJiodoazomycin
arabinoside)

Pre-clinical data: In one of the first studies with IAZA,
its synthesis and labelling with ['*’I] was described. Its
elimination and biodistribution were also studied in vivo in
EMT-6 tumours in BALB/c mice, and it was shown that
TAZA undergoes hypoxia-dependent binding in EMT-6 cells
in vitro [101]. Moore et al. investigated the oxygenation
status and tumour perfusion of rats with Dunning R3327-AT
tumours who were treated with photodynamic therapy (PDT)
with ['ZIJIAZA and [*™Tc]JHMPAO. Increased retention of
['PIJIAZA was observed in tumours treated with PDT
together with an inverse correlation between tumour hypoxia
as measured with ['*IJIJAZA and tumour perfusion as
measured with [*”™TcJHMPAO [102].

Clinical data: The first clinical study assessing hypoxia
with IAZA investigated the uptake of ['**IJIAZA in patients
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with advanced malignancies. Radiotracer avidity was
observed in three of ten tumours, and it was concluded that
the use of gamma emitter-labelled 2-nitroimidazoles as
diagnostic radiopharmaceuticals is feasible and safe and that
metabolic binding of ['*’IJIAZA is observed in some, but
not all tumours [103]. In 22 patients, ['**IJIJAZA uptake
showed a significant inverse correlation with the perfusion
marker [*™Tc]JHMPAO, and severe perfusion deficits were
usually associated with an increased uptake of the hypoxic
marker [104]. After observing uptake of radioactivity in
the brain after administration of ['*IJIAZA, a study was
undertaken to investigate the proposed metabolites of IAZA
in normal and tumour-bearing murine models. Neither of
the proposed metabolites’ biodistribution did support its
involvement in brain radioactivity uptake in patients [105].
A study investigating the use of ['**IJIAZA in 51 human
patients with newly diagnosed malignancies demonstrated
hypoxia in small cell lung cancer and squamous cell
carcinoma of head and neck but not in malignant gliomas.
The study did, however, demonstrate the feasibility of ['**1]
IAZA imaging in a clinical setting [106]. Stypinski et al.
reported the clinical pharmacokinetics of IAZA, the radio-
pharmacokinetics of ['*’IJIAZA, total radioactivity kinetics
and the radiation dosimetry estimates for six healthy
volunteers and concluded that all supported its clinical use
for imaging tissue hypoxia [107, 108].

Newer agents based on the azomycin-nucleoside struc-
ture such as IAZG [109, 110], iodoazomycin pyranoside
(IAZP) [111], TAZGP [112, 113] and iodoazomycin
xylopyranoside (IAZXP) [109] have been developed and
evaluated. Iyer et al. demonstrated that microelectrode
measurements in R3327-AT tumour-bearing rats did not
correlate with ['"*’IJTAZGP uptake [112]. Furthermore, a
study by Saitoh et al. showed high accumulation of IAZGP
in FM3A mouse tumours 24 h after administration [113].

2. %™Tc-labelled agents
(a) BMS 181321

This was the first **™Tc-labelled 2-nitroimidazole to be
widely studied for imaging [114]. A number of experimental
studies have evaluated the use of BMS 181321 for the
detection of ischaemic and hypoxic myocardium [115-118].
Ballinger et al. showed selective accumulation in hypoxic
cells in vitro and in vivo but concluded that BMS 181321
was not optimal for tumour hypoxia imaging because of in
vitro and in vivo instabilities and a high partition coefficient,
resulting in slow clearance from the blood and high
background levels in normal tissues [119].

(b) BRUS59-21

Pre-clinical data: BRU59-21, previously known as BMS
194796, is a second-generation analogue of BMS 181321
which shows greater stability in vitro and more rapid
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clearance from the circulation in vivo, resulting in higher
tumour to blood and tumour to muscle ratios. It showed
selective localization in tumour cells incubated under
hypoxic conditions and following intravenous injection in
animal models representative of poorly perfused tumours
[120]. In a study by Zhang et al., BRU59-21 and HLII
were compared directly in the same in vitro systems. Both
tracers proved suitable for hypoxia imaging [121].

Clinical data: Hoebers et al. assessed the safety and
biodistribution of [*™Tc]BRU59-21 in ten patients with
head and neck cancer and correlated uptake in vivo with
pimonidazole staining. In vivo evaluation of tumour
hypoxia with [*™Tc]BRU59-21 appeared to be safe and
feasible, and uptake and retention of the marker seemed to
be indicative of tumour hypoxia, as confirmed by pimoni-
dazole staining [122].

(¢) [P™Tc]HL-91

Pre-clinical data: Zhang et al. evaluated the efficacy of
[*’™Tc]HL91 as a non-invasive marker of tumour hypoxia
in vitro (Chinese hamster ovary cells) and in vivo (C3H
mice bearing KHT-C tumours) and observed selective
accumulation of [*™Tc]HL91 in hypoxic cells and hypoxic
tumours [123]. A similar study assessed the retention of
[**™Tc]HLI1 in mice bearing three different tumours under
control and enhanced oxygenation conditions and correlated
these data with the oxygenation status as assessed by
Eppendorf pO, histograph measurements. A very good
correlation between [**™Tc]HL91 retention and hypoxia, as
measured by the Eppendorf histograph, was observed [124].
Yutani et al. found that [*™Tc]HL91 accumulated to
significantly higher levels in hypoxic tumour areas and that
[P™Tc]HL91 uptake was strongly correlated with the
expression of GLUT]1 in the viable cancer cell area [125].
In a study by Tatsumi et al., a dual-tracer autoradiography
was performed with HL91 and IAP ('*C-iodoantipyrine) in
Walker 256 tumour-bearing rats to elucidate the relationship
between hypoxia and blood flow. The study confirmed that
high HL91 uptake is related to low blood flow [126]. Kinuya
et al. reported on an increase in [**™TcJHL91 uptake after
exposure to X-ray radiation [127]. Siim et al. examined
whether [*™TcJHL91 uptake could be used as a marker for
the inhibition of tumour blood flow by the antivascular
agents DMXAA (5,6-dimethylxantenone-4-acetic acid) and
CA4P (combretastatin A4 phosphate) and observed that
tumour hypoxia as a result of the acute inhibition of blood
flow by antivascular agents caused increased tumour uptake
of [*™Tc]HLY1 [128]. Another study demonstrated that
microelectrode measurements in R3327-AT tumour-bearing
rats did not correlate with [*™Tc]HL91 uptake [112]. After
having determined the biodistribution of [**™Tc]HL91 [129],
Suzuki et al. investigated the relationship between [**™Tc]
HLO91 uptake and tumour response to radiation in athymic

mice bearing different human tumours. They concluded that
["™Tc]HL91 uptake did not always relate to their sen-
sitivities to radiation therapy [130]. In a study by Kinuya
et al., an attempt was made to determine whether oxygen-
ation status affected [*”™Tc]MIBI (sestamibi) uptake. They
observed enhanced [**™Tc]HL91 accumulation in hypoxic
tumour cells after treatment with N, gas (in vitro) and
hydralazine (in vivo) [131]. A recent study by Lee et al.
investigated the selectivity of [*™TcJHL91 for hypoxia in
vitro in A549 human lung cancer cells and LL2 murine
Lewis lung cancer cells under varying oxygen concentrations
and in vivo in different xenograft mouse models after
chemically altering the degree of tumour hypoxia with
hydralazine. The in vitro studies identified hypoxia-
selective uptake of [**™Tc]HL91, with significantly increased
uptake in the hypoxic state compared to the normoxic state.
The in vivo studies showed that [*™TcJHL91 was markedly
increased in mice treated with hydralazine compared with
controls [132].

Clinical data: Clinical studies concerning the clinical
evaluation of [*™Tc]HLI1 are limited. In a pilot study,
Cook et al. compared [**™Tc]HL91 uptake with ['*F]JFDG
PET imaging in ten patients with a variety of tumours and
showed visible [?*™Tc]HL91 tumour uptake in all seven
patients where the tumour could be clearly identified with
["®F]FDG PET [133]. Another phase I pilot study evaluated
the usefulness of [*”™Tc]HLI1 imaging for the visualization
of local recurrence in nine men with squamous cell
carcinoma of the head and neck (SCCHN) as compared to
CT and biopsy and concluded that [**™Tc]HLI1 is a safe
radioligand and that metabolic binding in a large fraction
but not all of local SCCHN recurrences may be expected
[134]. Finally, in a study with 32 patients with non-small
cell lung cancer, Li et al. showed that hypoxia imaging with
[*"Tc]HL91 before radiotherapy may predict tumour
response and patient survival [135].

Discussion

There are several prerequisites to which the ideal non-
invasive hypoxic marker should comply: (1) It should be
specific for hypoxia and thus distinguish normoxia,
hypoxia and anoxia or necrosis. (2) It should image acute
and chronic hypoxia and possibly distinguish between both.
(3) It should be simple, non-toxic, fast, easy to perform and
allow repeated measurements. (4) It should be lipophilic to
have a homogeneous biodistribution in all tissues including
tumours but at the same time hydrophilic to have a faster
elimination, thus allowing larger tumour to normal tissue
ratio of radioactivity. (5) It should have little hypoxia-
independent degradation in vivo leading to non-specific
tracer metabolites and/or little aspecific tissue binding, so
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that only oxygen-specific retention mechanisms determine
the amount of tracer that is temporarily or permanently
trapped. (6) It should reflect intracellular pO, rather than
blood flow or some consequence of subsequent biochem-
istry. (7) It should be sensitive at pO, levels relevant to
tumour therapy. (8) It should offer the ability to quantify.
Unfortunately, none of the present hypoxia tracers available
completely fulfils these requirements.

Although SPECT is more commonly used than PET,
and, in particular, 99MTc has a number of practical
advantages that include ready availability at low cost,
convenient half-life for hypoxia measurements and versatile
chemistry as compared with 'SF, the superior spatial
resolution and more accurate quantitation with PET makes
the latter a better candidate for detection of tumoural
hypoxia. Of all the PET tracers that are being evaluated as
possible markers of tumour hypoxia, only three have been
thoroughly evaluated in a clinical situation: ['*F]FMISO,
["®F]FDG and Cu-ATSM.

["*F]JFMISO is the most widely used and investigated
hypoxia marker and has been validated in multiple studies
both in humans and animals. Studies using ['*F]JFMISO
have demonstrated variable, but significant levels of
hypoxia in several tumour types. In addition, ['*F]FMISO
PET imaging has been used as a prognostic indicator in
several other studies. It has, however, failed to gain wider
acceptance for routine clinical application because of a
number of limitations such as: (1) slow accumulation in
hypoxic tumours; (2) a low target to background ratio due
to high non-specific binding resulting from its relatively
high lipophilicity; and (3) significant non-oxygen depen-
dent metabolism leading to a considerable amount of
radioactive metabolite products.

Several studies have tried to validate ['*F]JFDG as an
alternative marker for hypoxia imaging. The rationale
behind this is that ['*F]FDG uptake during FDG PET
imaging relies largely on the expression of proteins that are
under control of HIF-1. As a result, the degree of ['*F]JFDG
uptake by tumours might indirectly reflect the level of
hypoxia. This would obviate the need for more specific
radiopharmaceuticals for hypoxia imaging. Reports trying
to relate ['*FJFDG uptake with tumour hypoxia have given
inconsistent results. In vitro studies have suggested that
FDG is preferably accumulated in hypoxic cancer cells
compared to normoxic cancer cells because of changed
metabolism. However, in vivo experiments (pre-clinical and
clinical) have given conflicting results when showing a
correlation between the uptake of ['*FJFDG and the
existence of hypoxia in tumours. It appears that in those
tumours where HIF-1 activation is mainly hypoxia driven,
the degree of ['®F]FDG uptake may be a surrogate marker
of hypoxia. Further evaluation of ['*F]JFDG uptake by
various tumour types in relation with invasive and non-
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invasive markers of tumour hypoxia is needed to fully
elucidate the role of ['®FJFDG as a marker of tumour
hypoxia. Furthermore, most studies to date assessing the value
of FDG as a measure of hypoxia calculated SUV. Possibly,
dynamic PET studies and compartment analysis may offer an
advantage over standard uptake measurements.

The molecule that holds the greatest promise for the future
is Cu-ATSM. Although its mechanism of hypoxic retention
is not yet fully elucidated, numerous in vitro and in vivo
studies have shown its selectivity for hypoxic tissue. It has a
small molecular weight and a high cell membrane perme-
ability allowing it to diffuse easily from the bloodstream to
surrounding cells. This combined with a rapid blood
clearance and its rapid reduction and retention in hypoxic
tissues ensures that Cu-ATSM shows a rapid delineation of
tumour hypoxia and high tumour to background ratios.
Clinical results clearly suggest further clinical evaluation is
warranted and positive results are expected to follow.

Conclusion

As the importance of tumour hypoxia is being recognized,
so is the importance of its detection. Because of the
limitations of the current gold standard, a non-invasive
technique to predict outcome and identify patients with a
worse prognosis and/or patients that would benefit from
appropriate treatments is needed. Several candidates are
rapidly being developed and investigated. Of the several
candidate techniques and molecules, each has its advan-
tages and disadvantages, and it may be possible that a
particular technique or molecule is best suited for a certain
tumour type, grade or stage. Evaluation of the several
candidate molecules is taking place in patients at this
moment and it is hoped that this eventually will lead to
further characterization and optimization.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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