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Abstract

The presence of a pathology in the vertebral column of the early Permian mesosaurid speci-

men ZPAL R VII/1, being one of the oldest amniotic occurrences of congenital scoliosis

caused by a hemivertebra, was recently recognized. Here we provide CT data to further

characterize the phenomenon. The affected hemivertebra is wedged (incarcerated)

between the preceding and succeeding vertebrae. The neural canal is misshapen but con-

tinuous and the number of dorsal ribs on each side of the specimen corresponds with the

number of the vertebrae, documenting its congenital (homeobox-related) derivation.

Introduction

Hemivertebra is a type of congenital pathologies resulting either from an improper contralat-

eral fusion of the paired vertebral anlagen (hemimetameric segmental shift) or from failed

development of a vertebral anlage on one side of the body [1–4]. The Paleozoic record of con-

genital scoliosis remains scarce. Until recently, such malformations in the Paleozoic were

known only in temnospondyl amphibians [3] and a single occurrence reported, but never fully

described or figured, in an early Permian captorhinomorph [5]. Lately, Szczygielski et al. [6]

described an incarcerated hemivertebra in a similarly aged mesosaurid, ZPAL R VII/1 –the

first case known in that group and one of the oldest in amniotes. More recently, Turner and

Sidor [7] suggested a case of a block vertebra in the sacrum of a late Permian pareiasaurian,

and a possible case of a mild scoliosis in an aquatic procolophonoid reptile from the Permian-

Triassic boundary, Barasaurus besairiei Piveteau [8] was mentioned by McMenamin [9]. The

younger record of hemivertebrae is richer and includes a latest Permian or earliest Triassic

brachyopid temnospondyl [10], a Triassic undetermined stereospondyl [11], Late Jurassic

dryosaurid (hemimetameric segmental shift) [4] and plesiosaur [12], the Late Cretaceous

hadrosaurid [13] and salamander [14], and an Oligocene nimravid cat [15]. Here, we provide

new data concerning ZPAL R VII/1, including the images of the dorsal (sediment-encased)

surface of the pathological region obtained using Computed Tomography.
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Material and methods

ZPAL R VII/1 is a mostly complete, ventrally exposed skeleton of a mesosaurid from the early

Permian of Paraná state, Brazil, housed in the Institute of Paleobiology, Polish Academy of Sci-

ences. The specimen was identified in the unpublished Master’s thesis of Kapuścińska [16] as

Stereosternum tumidum Cope [17]. The specimen exhibits most of the S. tumidum diagnostic

characters proposed thus far, which include: the number of dorsal vertebrae (22), the maximal

dorsal rib diameter reaching approximately 50% of the vertebrae length, all haemal arches

wishbone-shaped and pachyostotic, the proximal and the distal head of the humerus set at an

angle of approximately 90˚, the lateral centrale separate, teeth likely oval in cross-section [18–

22]. No pisiforme was observed, but this may be a preservational or preparation artifact. Simi-

larly, no interclavicle is preserved. The pelvis is damaged, making interpretation of the obtura-

tor foramen enclosure uncertain. Additionally, the specimen ZPAL R VII/1 is preserved in

light beige tonstein, laminated sedimentary rock formed with volcanic ash cemented by carbo-

naceous matter deposited in shallow water under the wave base. This corresponds to the pre-

dominant occurrence of Stereosternum tumidum in shallow-water facies and its almost

complete preservation, rather than to Mesosaurus tenuidens Gervais [23] which occurs in mass

accumulation in deep-water black shales, mostly as fragmentary skeletons and isolated ele-

ments preserved as molds [18,22,24,25]. Since the exact specific identity of ZPAL R VII/1 is

irrelevant for the conclusions presented here, we consider detailed taxonomical study as being

beyond the scope of this contribution.

The specimen was scanned using Nikon/Metris XT H 225 ST computed tomograph housed

in the Military University of Technology, Warsaw, Poland, with 1000 expositions (750 ms per

exposition), using an Open Tube UltraFocus Reflection Target radiation source (approx. 3 μm

spot) and a 1 mm thick copper filter. Each of the two parts of the slab (anterior and posterior)

was scanned separately, and another scan focused on the pathological segment of the vertebral

column was performed for greater resolution. The complete right femur and the distal head of

the left femur are separate from the slab and thus were removed prior to scanning to avoid los-

ing or damaging them. The voltage and power used were 200 kV with 7 W (anterior part of the

slab) and 195 kV with 6.825 W (posterior part of the slab, close-up). The CT slices were visual-

ized using VGStudio MAX 2.1. with 126 μm (anterior part), 111 μm (posterior part), and

70 μm (close-up) voxels. Based on the CT slices, 3D volumetric renderings were produced

using programs Fiji [26], Drishti 2.4.6 [27], and MeshLab 2016 [28]. First, the contrast of CT

slices was increased and the slice data were exported as raw files in Fiji. Then, a triangulated

mesh was generated from the exported data and exported as a .PLY file in Drishti. The final

processing and scaling of the 3D models was done in MeshLab. To generate the interactive 3D

.PDF, the models were texturized and imported as .OBJ files into DAZ Studio (https://www.

daz3d.com/daz_studio), and then exported as .U3D files. The .U3D files where implemented

into 3D .PDF with Adobe Acrobat (https://acrobat.adobe.com). The CT scan slices and the 3D

models are provided in S1–S2 Models and S1–S10 Movies.

The elements were identified and counted using both the CT data (most useful in the dorsal

section of the vertebral column) and the actual specimen (most useful for the cervical section

of the vertebral column).

Results

The specimen ZPAL R VII/1, around the mid-length of its dorsum, exhibits a clear incarcer-

ated hemivertebra [2,3,29–34], in which only half of one of the vertebrae is present. It is

attached to a complete adjacent, but misshapen vertebrae [6]. As explained by Szczygielski

et al. [6], the resemblance between the hemivertebra of ZPAL R VII/1 and taphonomically-
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disturbed mesosaurid specimens is only superficial (i.e., in both cases only a part of the affected

vertebra can be observed in flattened, unilaterally exposed specimens). Closer inspection of the

contact between the abnormal vertebrae of ZPAL R VII/1 reveals that the morphology does

not result from post mortem dislocation or compression of the vertebrae: 1. The contact sur-

face between them is undulating. 2. They are perfectly interlocked. 3. Their superficial features

(such as fine pits) continue across the boundary. 4. Their ventral surfaces are confluent and

aligned in the same plane. 5. There is no evidence of significant compaction or tectonic folding

anywhere in the specimen [6]. The hemivertebra diagnosis is additionally confirmed by the

CT scans of the specimen, revealing that the contralateral part of the pathological vertebrae

(both the centrum and the neural arch) is completely missing (Figs 1 and 2A and 2C). Addi-

tionally, the neural canal within the conjoined vertebrae is malformed (Fig 1H). The observed

morphology is unambiguously identifiable as a hemivertebra. Specimen preserves nine com-

plete and a small fragment of a tenth cervical vertebra. At least one anteriormost cervical is

likely destroyed–the skull and the anterior section of the neck are heavily damaged (Fig 2A–

2D). The structures around the cervicodorsal transition are difficult to discern in the obtained

images due to accumulation of more radiopaque sediment and several disarticulated and/or

damaged bones at that level. Because of limited contrast and resolution, they are difficult to dif-

ferentiate in the obtained slices and even in the 3D rendering. The difference between the pos-

teriormost cervical and the anteriormost dorsal ribs is fortunately relatively prominent in

mesosaurids [19], and well visualized in our data (Fig 2C) making the distinction between the

neck and trunk unambiguous. The CT scans reveal 21 complete dorsal vertebrae. The hemi-

vertebra is the 22nd element of the column (Fig 2A and 2C). The nature of the contact between

the hemivertebra with the neighboring vertebrae is uncertain. The exposed ventral surface

shows a gently interdigitating, well-fitted, suture-like contact of the hemivertebra with the pre-

ceding centrum [6], but deeper inside, the division between these two elements is generally a

straight line, showing no interdigitation (Fig 1E–1H). On the other hand, the gap between

them is very narrow, so no cartilage space is evident. The obtained CT images show no obvious

increase in density or sclerosis on the surfaces that would suggest movement and eburnation

(polishing) of the opposing bone surfaces expected in cases of bone slippage. It is therefore

possible that any movement of both bones was constrained by ligaments. It must be kept in

mind, however, that the resolution and contrast of the available scans may obscure some

minor features of the junction. The gap between the hemivertebra and the following vertebra

is larger, more alike the normal intervertebral spaces (Fig 1E–1H), so the posterior joint might

have been developed more typically.

Only 21 and 20 dorsal ribs can be identified respectively on each side–the missing pair was

probably destroyed because it was associated with the second-to-last vertebra, which is located

right at the break of the specimen slab (Fig 2A–2C and 2F). Impressions in the sediment

around that vertebra (Fig 2F) might have originally accommodate these ribs. Likewise, the ribs

of the preceding vertebra are also preserved only partially, as short rods of bone. Given that

both ribs in that pair are missing, the left side of the specimen lacks a single rib compared to

the right side (with the hemivertebra). It must be kept in mind, however, that the rib number

alone is not the most reliable indicator for evaluation of vertebral pathologies (see below) and

the morphology of the pathological vertebrae themselves is considered conclusive.

Discussion

Identification of regions within the vertebral column of fossil amniotes is often difficult, espe-

cially in the basal taxa. The morphology and size of the ribs may change gradually, so no obvi-

ous distinctions between the cervical and dorsal region may be present and correspondence

Scoliosis in a Paleozoic reptile
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between isolated ribs and vertebrae may be difficult to ascertain [35–37]. Furthermore, signifi-

cant variation (pathological or not) in the number of ribs is found within amniote populations,

resulting from uni- or bilateral absence or hypoplasia of ribs [38–44], presence of supernumer-

ary ribs [40,41,43,45–49], or their co-ossification [40,41,46,50]. Various types of scoliosis may

or may not be correlated with rib aplasia, presence of additional ribs, rib malformation or

asymmetry [29–32,39,41,51,52]. In some cases, ribs may fail to form an articulation with a cor-

responding vertebra [38]. Taphonomy [53] or even compromised recovery or preparation

(e.g., accidental destruction of a bone, its removal from an otherwise complete skeleton,

under-preparation causing some elements to remain unexposed within the slab) may obscure

the rib count. For that reason, extreme caution must be exercised interpreting even partly

Fig 1. ZPAL R VII/1, patho0logical region of the vertebral column. (A-B) 3D volume render in ventral view, as physically exposed in the specimen (A) and dorsal

view (B). (C-F) 3D surface render with highlighted hemivertebra in ventral view, as physically exposed in the specimen (C), lateral left (D), dorsal (E), and lateral right

(F) view. (G-J) Coronal CT sections (ventral towards dorsal, 3.4 mm apart, cranial towards the top of the page, right side towards the right side of the page) showing

malformed neural canal and the pathological vertebra (indicated by red arrowheads) missing its left half. Ribs and other surrounding bones removed in D and F to

reveal the vertebrae.

https://doi.org/10.1371/journal.pone.0212416.g001
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Fig 2. ZPAL R VII/1. (A-C) Whole specimen in ventral view (A) and as it is physically preserved (B), and in dorsal view as a volumetric render (C). (D-E)

Close-ups of the cervicodorsal transition in ventral (D) and anterolateroventral (E) view. (F) Close-up of the posterior end of the dorsal region showing the

break of the slab. All preserved cervical vertebrae and ribs colored using the same shade of blue, each of the dorsal vertebrae and their respective ribs colored

using separate hue, the hemivertebra and the associated rib colored white. Abbreviations: C–clavicle; M–mandible. D-F not to scale.

https://doi.org/10.1371/journal.pone.0212416.g002
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disarticulated specimens. Estimation of vertebrae number based solely on the number of

exposed ribs, especially in only partially prepared specimens in which some elements may be

covered by other bones or sediment, may therefore be misleading [36]. Nuñez Demarco et al.’s

[25] indirect (rib counting)-based claim of taphonomic origin for the published image [6]

exemplifies the fallacy of such a limited approach.

Additionally, an accurate rib count for ZPAL R VII/1 cannot actually be derived (without

CT assessment) from a surface image, because of incomplete preparation and pectoral girdle

obscuration of the anterior rib cage. As most of the ribs are shifted to intervertebral positions

and four or five left ribs are completely disarticulated, establishing correspondence with partic-

ular vertebrae cannot be performed in isolation, but requires consideration of the entire dorsal

region.

Since ZPAL R VII/1 has 22 dorsal vertebrae including the hemivertebra, and the number of

22 or 23 dorsal vertebrae is considered diagnostic for Stereosternum tumidum [18] (specific

attribution also supported for ZPAL R VII/1 by other characters), it seems evident that the

hemivertebra of that specimen is an effect of an unilateral failure of a growth center rather

than a supernumerary formation. According to our knowledge, no reports of a spontaneous

development of supernumerary hemivertebrae are present in the literature, supporting the

count of 22 dorsal vertebral segments as initial for the studied individual. Because there is only

one hemivertebra present in the complete vertebral column, with all certainty the hemimeta-

meric segmental shift was not involved.

The presence of a hemivertebra cannot simply be considered only a postural disturbance. It

can directly impinge on the spinal cord with resultant weakness, paralysis and gait disturbance

[54,55], but may be associated with other congenital phenomenon, in the form of arachnoid

webs [56] or even diastematomyelia [57], wherein the spinal cord is split or duplicated longitu-

dinally by a bone or cartilage spur. ZPAL R VII/1 is one of the very few fossil specimens that

show a hemivertebra (not only vertebral body, but also the neural arch) in a complete vertebral

column and with associated ribs. Thus, it was possible to visualize the effect of this malforma-

tion on the neural canal for the first time in a fossil. Since the individual in question attained

relatively large size and advanced stage of osseous development, it seems likely that serious

neurological problems did not occur in that animal, possibly due to the relieving effect of

buoyancy in aquatic environment [6].

Conclusions

The new CT data of ZPAL R VII/1 reveal a typical incarcerated hemivertebra and support the

status of that specimen as the oldest case of a congenital scoliosis in an aquatic amniote (or one

of the oldest, depending on the ecology and relative age of the captorhinomorph reported by

Johnson [5]), as proposed by Szczygielski et al. [6].

Supporting information

S1 Model. ZPAL R VII/1. 3D model of the complete specimen.

(PDF)

S2 Model. ZPAL R VII/1. 3D model of the pathological section of the vertebral column.

(PDF)

S1 Movie. ZPAL R VII/1. CT slices, anterior part of the slab, caudal towards cranial (ventral

surface towards the top).

(MP4)
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S2 Movie. ZPAL R VII/1. CT slices, anterior part of the slab, dorsal towards ventral (cranial

end towards the top).

(MP4)

S3 Movie. ZPAL R VII/1. CT slices, anterior part of the slab, lateral right towards lateral left

(cranial end towards the top, ventral surface towards the right).

(MP4)

S4 Movie. ZPAL R VII/1. CT slices, pathological section of the vertebral column, caudal

towards cranial (ventral surface towards the bottom).

(MP4)

S5 Movie. ZPAL R VII/1. CT slices, pathological section of the vertebral column, ventral

towards dorsal (cranial end towards the top).

(MP4)

S6 Movie. ZPAL R VII/1. CT slices, pathological section of the vertebral column, lateral right

towards lateral left (cranial end towards the top, ventral surface towards the left).

(MP4)

S7 Movie. ZPAL R VII/1. CT slices, posterior part of the slab, caudal towards cranial (ventral

surface towards the top).

(MP4)

S8 Movie. ZPAL R VII/1. CT slices, posterior part of the slab, dorsal towards ventral (cranial

end towards the top).

(MP4)

S9 Movie. ZPAL R VII/1. CT slices, posterior part of the slab, lateral left towards lateral right

(cranial end towards the top, ventral surface towards the right).

(AVI)

S10 Movie. ZPAL R VII/1. Spinning 3D volumetric model of the pathological section of the

vertebral column.

(MP4)
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tions of the Karoo and Paraná basins. Gondwana Six Stratigr Sedimentol Paleontol. 1987; 41: 131–

138.

25. Nuñez Demarco P, Meneghel MD, Michel L, Piñeiro G. Was Mesosaurus a fully aquatic reptile? Front

Ecol Evol. 2018; 6: 109. https://doi.org/10.3389/fevo.2018.00109

26. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji—an open source

platform for biological image analysis. Nat Methods. 2012; 9: 676–682. https://doi.org/10.1038/nmeth.

2019 PMID: 22743772

27. Limaye A. Drishti, a volume exploration and presentation tool. Proc SPIE. 2012; 8506: 85060X. https://

doi.org/10.1117/12.935640

28. Cignoni P, Callieri M, Corsini M, Dellepiane M, Ganovelli F, Ranzuglia G. MeshLab: An open-source

mesh processing tool. Sixth Eurographics Italian Chapter Conference. 2008. pp. 129–136. https://doi.

org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136

29. Eckalbar WL, Fisher RE, Rawls A, Kusumi K. Scoliosis and segmentation defects of the vertebrae.

Wiley Interdiscip Rev Dev Biol. 2012; 1: 401–423. https://doi.org/10.1002/wdev.34 PMID: 23801490

30. Jaskwhich D, Ali RM, Patel TC, Green DW. Congenital scoliosis. Curr Opin Pediatr. 2000; 12: 61–66.

https://doi.org/10.1097/00008480-200002000-00012 PMID: 10676776

31. Erol B, Kusumi K, Lou J, Dormans JP. Etiology of congenital scoliosis. Univ Pennsylvania Orthop J.

2002; 15: 37–42. https://doi.org/10.1053/j.semss.2010.03.001

32. Besalti O, Ozak A, Pekcan Z, Eminaga S. Nasca classification of hemivertebra in five dogs. Ir Vet J.

2005; 58: 688–690. https://doi.org/10.1186/2046-0481-58-12-688 PMID: 21851666

33. Hensinger RN. Congenital scoliosis. Etiology and associations. Spine (Phila Pa 1976). 2009; 34: 1745–

1750. https://doi.org/10.1097/BRS.0b013e3181abf69e PMID: 19602997

34. Rothschild BM, Schultze H-P, Pellegrini R. Herpetological osteopathology. Annotated bibliography of

amphibians and reptiles. New York, Dordrecht, Heidelberg & London: Springer Science+Business

Media; 2012.

35. Müller J, Scheyer TM, Head JJ, Barrett PM, Werneburg I, Ericson PGP, et al. Homeotic effects, somito-

genesis and the evolution of vertebral numbers in recent and fossil amniotes. Proc Natl Acad Sci U S A.

2010; 107: 2118–2123. https://doi.org/10.1073/pnas.0912622107 PMID: 20080660

36. Szczygielski T. Homeotic shift at the dawn of the turtle evolution. R Soc Open Sci. 2017; 4. https://doi.

org/10.1098/rsos.160933 PMID: 28484613

37. Head JJ, Polly PD. Evolution of the snake body form reveals homoplasy in amniote Hox gene function.

Nature. Nature Publishing Group; 2015; 520: 86–89. https://doi.org/10.1038/nature14042 PMID:

25539083

38. Fredeen HT, Newman JA. Rib and vertebral numbers in swine. I. Variation in a large population. Can J

Anim Sci. 1962; 42: 232–239.

39. Mathur PS, Dave DS, Khan BA. Congenital absence of the ribs with malformed vertebrae. Indian J

Pediatr. 1967; 34: 416–418. PMID: 5594844

40. Guttentag AR, Salwen JK. Keep your eyes on the ribs: The spectrum of normal variants and diseases

that involve the ribs. RadioGraphics. 1999; 19: 1125–1142. https://doi.org/10.1148/radiographics.19.5.

g99se011125 PMID: 10489169

41. Wattanasirichaigoon D, Prasad C, Schneider G, Evans JA, Korf BR. Rib defects in patterns of multiple

malformations: A retrospective review and phenotypic analysis of 47 cases. Am J Med Genet. 2003;

122A: 63–69. https://doi.org/10.1002/ajmg.a.20241 PMID: 12949975

42. Chen H-J. Congenital absence of multiple ribs. World J Pediatr. 2007; 3: 71–73.

43. Khodair SA, Hassanen OA. Abnormalities of fetal rib number and associated fetal anomalies using

three dimensional ultrasonography. Egypt J Radiol Nucl Med. Elsevier B.V.; 2014; 45: 689–694. https://

doi.org/10.1016/j.ejrnm.2014.03.009

44. Zhang C, Wang J. Congenital absence of ribs: A case report and review of the literature. Pediatr Neona-

tol. Elsevier Taiwan LLC; 2018; 59: 100–101. https://doi.org/10.1016/j.pedneo.2017.07.001 PMID:

28803832

Scoliosis in a Paleozoic reptile

PLOS ONE | https://doi.org/10.1371/journal.pone.0212416 February 27, 2019 9 / 10

https://doi.org/10.5194/fr-21-109-2018
https://doi.org/10.3389/fevo.2018.00109
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/nmeth.2019
http://www.ncbi.nlm.nih.gov/pubmed/22743772
https://doi.org/10.1117/12.935640
https://doi.org/10.1117/12.935640
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.1002/wdev.34
http://www.ncbi.nlm.nih.gov/pubmed/23801490
https://doi.org/10.1097/00008480-200002000-00012
http://www.ncbi.nlm.nih.gov/pubmed/10676776
https://doi.org/10.1053/j.semss.2010.03.001
https://doi.org/10.1186/2046-0481-58-12-688
http://www.ncbi.nlm.nih.gov/pubmed/21851666
https://doi.org/10.1097/BRS.0b013e3181abf69e
http://www.ncbi.nlm.nih.gov/pubmed/19602997
https://doi.org/10.1073/pnas.0912622107
http://www.ncbi.nlm.nih.gov/pubmed/20080660
https://doi.org/10.1098/rsos.160933
https://doi.org/10.1098/rsos.160933
http://www.ncbi.nlm.nih.gov/pubmed/28484613
https://doi.org/10.1038/nature14042
http://www.ncbi.nlm.nih.gov/pubmed/25539083
http://www.ncbi.nlm.nih.gov/pubmed/5594844
https://doi.org/10.1148/radiographics.19.5.g99se011125
https://doi.org/10.1148/radiographics.19.5.g99se011125
http://www.ncbi.nlm.nih.gov/pubmed/10489169
https://doi.org/10.1002/ajmg.a.20241
http://www.ncbi.nlm.nih.gov/pubmed/12949975
https://doi.org/10.1016/j.ejrnm.2014.03.009
https://doi.org/10.1016/j.ejrnm.2014.03.009
https://doi.org/10.1016/j.pedneo.2017.07.001
http://www.ncbi.nlm.nih.gov/pubmed/28803832
https://doi.org/10.1371/journal.pone.0212416


45. Chernoff N, Rogers JM. Supernumerary ribs in developmental toxicity bioassays and in human popula-

tions: Incidence and biological significance. J Toxicol Environ Heal—Part B Crit Rev. 2004; 7: 437–449.

https://doi.org/10.1080/10937400490512447 PMID: 15586878

46. Davran R, Bayarogullari H, Atci N, Kayali A, Ozturk F, Burakgazi G. Congenital abnormalities of the

ribs: Evaluation with multidetector computed tomography. J Pakistan Med Assoc. 2017; 67: 178–186.

47. Jeannotte L, Lemieux M, Charron J, Poirier F, Robertson EJ. Specification of axial identity in the

mouse: Role of the Hoxa-5 (Hox1.3) gene. Genes Dev. 1993; 7: 2085–2096. https://doi.org/10.1101/

gad.7.11.2085 PMID: 7901120
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