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Abstract: Dengue fever is a dangerous infectious endemic disease that affects over 100 nations
worldwide, from Africa to the Western Pacific, and is caused by the dengue virus, which is transmitted
to humans by an insect bite of Aedes aegypti. Millions of citizens have died as a result of dengue
fever and dengue hemorrhagic fever across the globe. Envelope (E), serine protease (NS3), RNA-
directed RNA polymerase (NS5), and non-structural protein 1 (NS1) are mostly required for cell
proliferation and survival. Some of the diterpenoids and their derivatives produced by nature possess
anti-dengue viral properties. The goal of the computational study was to scrutinize the effectiveness
of diterpenoids and their derivatives against dengue viral proteins through in silico study. Methods:
molecular docking was performed to analyze the binding affinity of compounds against four viral
proteins: the envelope (E) protein, the NS1 protein, the NS3 protein, and the NS5 protein. Results:
among the selected drug candidates, triptolide, stevioside, alepterolic acid, sphaeropsidin A, methyl
dodovisate A, andrographolide, caesalacetal, and pyrimethamine have demonstrated moderate
to good binding affinities (−8.0 to −9.4 kcal/mol) toward the selected proteins: E protein, NS3,
NS5, and NS1 whereas pyrimethamine exerts −7.5, −6.3, −7.8, and −6.6 kcal/mol with viral
proteins, respectively. Interestingly, the binding affinities of these lead compounds were better than
those of an FDA-approved anti-viral medication (pyrimethamine), which is underused in dengue
fever. Conclusion: we can conclude that diterpenoids can be considered as a possible anti-dengue
medication option. However, in vivo investigation is recommended to back up the conclusions of
this study.
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1. Introduction

Dengue (pronounced Den’gee) is a viral disease caused by one of the dengue virus
strains, namely DEN1, DEN2, DEN3, and DEN 4 [1,2]. Viral transmission to humans occurs
by the infected mosquito bite of an Aedes aegypti type. Dengue virus (DENV) is an RNA
virus, otherwise known as arboviruses, and belongs to the Flaviviridae family [3]. The
DENV genome has 11,000 nucleotide bones. They have three different protein molecules,
C, prM, and E, that form virus particle. They also contain seven other types of protein
molecules (NSI, NS2a, NS2b, NS3, NS4a, NS4b, and NS5) found in infected host cells and
are instrumental for viral replication [1].

DENV is an enveloped, single-stranded, positive-sense virus with a 10.7 kb RNA
genome [4,5], which is translated as a single polyprotein and then cleaved into three
structural proteins, e.g., capsid (C), remembrance/membrane (prM/M), and envelope (E)
and seven non-structural (NS) proteins, by a virus- and host-encoded proteases. The three
structural proteins are important for capsid formation (C) and assembly into viral particles
(prM and E). The non-structural proteins contain a serine protease and ATP-dependent
helicase (NS3), which is required for virus polyprotein processing, a methyltransferase,
and RNA-dependent RNA polymerase (NS5), and a cofactor for the NS3 protease (NS2B).
NS4B has been implicated in blocking the interferon (IFN) response. NS1, NS2A, and NS4A
have unknown or incompletely understood functional activities of dendritic cell-specific
intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) on dendritic cells [6],
followed by viral uptake by receptor-mediated endocytosis. Endosomal acidification causes
fusion of the viral and endosomal membranes and nucleocapsid. These NS proteins may
be necessary for replication. In primary infection, the virus (DENV) enters target cells by
the adherence of E protein to cell surface receptors, such as release into the cytoplasm [7,8].
Virus genome replication occurs in discrete domains within the endoplasmic reticulum (ER),
assembly occurs in the ER, and virions come out via Golgi-derived secretory vesicles [9].

After being bitten by a mosquito of A. aegypti or A. albopictus type [10], DENV can
cause a range of mild-to-severe illnesses. Each year it is believed to infect 50 to 100 million
people worldwide (https://www.who.int/denguecontrol/epidemiology/en/, accessed
on 20 June 2021), having a mortality rate of 1–5% without treatment and less than 1% with
treatment. Severe illness (dengue hemorrhagic fever, D. S. S) has a mortality rate of 26%.
The dengue rate has climbed to a 30-fold increase between 1960 and 2010. The reason is
believed to be factors such as rapid urbanization, population growth, international travel
from endemic areas, and global warming. The geographical area around the equator,
mainly Asia and the Pacific, is mostly affected [1]. Initial global estimates of total dengue
infections were based on an assumption of a constant annual infection rate among a crude
approximation of the population at risk (10% of one billion [10] or 4% of two billion [11],
resulting in several 80–100 million infections per year worldwide in 1988 [10,11]. Later,
with more information regarding the ratio of dengue hemorrhagic fever to dengue fever
cases, and the ratio of deaths to dengue hemorrhagic fever cases, the global infection was
revised to 50–100 million infections per year [12–15].

In research by da Silva and his co-workers, it is indicated that labdane diterpenes
isolated from the oil-resin fractions of Copaifera reticulata exhibit considerable larvicidal
activity (median lethal concentration (LC50 = 0.8 ppm) towards the mosquito [16]. Labdane
diterpenoid of the same species (C. reticulata) caused the death of A. aegypti larvae by
cell destruction in the midgut [17]. The diterpene content of the essential oil of Lantana
montevidensis also showed a larvicidal effect against A. aegypti [18]. Methyl dodovisate A
and B, isolated from the aerial parts of Dodonaea viscose, is reported to exhibit a larvicidal
effect (LC50 > 30 µg/mL) on A. albopictus larvae [19]. On the other hand, caesalacetal
and caesaljapin isolated from Sulcobrachus sauteri also displayed anti-A. albopictus activity
with LC50 values of 3 and 9 µg/mL, respectively [20]. The lipophilic nature of diterpenes
and their derivatives enables them to cross the biological membranes which include the
blood-brain barrier (BBB). Additionally, they can induce oxidative stress, increase levels of
nitric oxide (NO) in the infected host, reduce the anti-viral resistance to reactive oxygen
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species (ROS), increase lipid peroxidation, and induce chronic inflammatory responses and
cell membrane damage [21].

As a result, there are two major strategies for developing new DENV agents. To
begin, the compound must (i) precisely inhibit the host behavior involved in viral repli-
cation while not affecting the cell’s normal function, and (ii) be able to adequately inhibit
the host factor in vivo throughout physiological conditions [22]. Some of the natural
diterpenes/diterpenoids and their derivatives were shown to exert a prominent effect
on DENV vectors and exhibit cytotoxic effects on DENV as well. Moreover, these diter-
penes/diterpenoids exert their anti-viral viral effects through different mechanisms of
action, including the anti-DENV effect and larvicidal activity [23]. In this regard, this
research aimed to look into the in silico ability of diterpenoids and their derivatives against
the proteins that make up viral proteins.

2. Results and Discussion
2.1. Attribution of Proteins’ Active Sites and Validation

The binding sites of receptor proteins of dengue virus envelope (E) protein, NS3,
NS5, and NS1 were predicted through the CASTp server using default parameters of the
webserver [24]. In envelope (E) protein has 74 binding pockets that were characterized
to attain residues probe radius 1.4 Å. Moreover, NS3, NS5, NS1. The amino acid residues
involved in the conformation of binding pockets are depicted in Figure 1.
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Figure 1. The estimated active sites, which make up the amino acids, are shown in the active site identification (red pocket) 
findings from the CASTp network and structure validation (by Procheck). (A) Viral envelope (E) protein (PDB ID: 1OKE); 
(B) serine protease (NS3) protein (PDB ID: 2VBC); (C) RNA-directed RNA polymerase (NS5) (PDB ID: 4V0Q); (D) non-
structural protein 1(NS1) (PDB ID: 4O6B)]. 

Figure 1. The estimated active sites, which make up the amino acids, are shown in the active site identification (red pocket)
findings from the CASTp network and structure validation (by Procheck). (A) Viral envelope (E) protein (PDB ID: 1OKE);
(B) serine protease (NS3) protein (PDB ID: 2VBC); (C) RNA-directed RNA polymerase (NS5) (PDB ID: 4V0Q); (D) non-structural
protein 1(NS1) (PDB ID: 4O6B). [Some errors (letters in Ramachandran plot) are generated by automated software which can’t
be changed maually].

2.2. Computational Virtual Screening of Diterpenoids and Their Derivatives
ADMET Analysis

For the analysis and optimization of pharmacokinetic properties, the pkCSM and
Swiss ADME approach confer a platform. The ADMET study of diterpenoids and their
derivatives are shown in Table 1 and Figure 2.
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Table 1. ADMET and drug likeliness properties for molecules.

Properties Triptolide Stevioside AlepterolicAcid Sphaeropsidin A Methyl
DodovisateA Andrographolide Caesalacetal Pyrimethamine

Formula C20H24O6 C38H60O18 C20H32O3 C20H26O5 C22H28O2 C20H30O5 C21H28O5 C12H13ClN4

Molecular weight
(g/mol) 360.40 804.87 320.47 346.42 324.46 350.45 360.44 248.71g/mol

H-Bond
Acceptors 6 18 3 5 2 5 5 2

H-Bond Donors 1 11 2 2 0 3 1 2

Num. Rotatable
Bonds 1 10 4 1 5 3 2 2

TPSA (Å2) 84.12 294.98 57.53 83.83 26.30 86.99 68.90 77.82

Fraction Csp3 0.85 0.92 0.75 0.70 0.50 0.75 0.76 0.17

Molar
Refractivity 88.54 188.26 95.49 91.95 100.18 95.21 95.30 71.06

LogPo/w
(XLOGP3) 0.22 −1.20 4.74 2.64 5.31 2.16 3.08 2.69

LogS (ESOL) −2.15 −3.41 −4.55 −3.58 −4.87 −3.18 −4.03 −3.47

Max. tolerated
dose (human)

(logmg/kg/day)
−0.321 −1.524 −0.297 −0.074 −0.159 0.128 −0.14 0.113

Oral Rat Acute
Toxicity (LD50;

mol/kg)
3.107 2.597 2.28 1.92 1.779 2.162 2.581 2.912

Hepatotoxicity No No No No No No Yes No

Minnow toxicity
(logmM) 1.983 9.202 0.459 1.606 −0.525 1.37 0.418 0.919

Blood brain
barrier (logBB) −0.362 −2.029 −0.018 0.016 0.629 −0.598 −0.163 0.278

HIA (%) 83.195 0 94.672 95.753 97.808 95.357 97.564 92.738

CaCo2
Permeability 0.401 −1.087 1.432 1.135 1.64 1.07 1.145 0.927

Total Clearance
(logml/min/kg) 0.484 0.691 1.122 0.541 1.381 1.183 0.538 −0.033
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Figure 2. Summary of physiochemical, pharmacokinetics, and toxicological properties of selected ligand candidates (the
color space is a suitable physiochemical space for oral bioavailability; LIPO (Lipophility): –0.7 < XLOGP3 < 5.0; SIZE:
150 g/mol < MW < 500 g/mol; POLAR (Polarity): 20 Å2 < TPSA < 130 Å2; INSOLU (insolubility): 0 < LogS(ESOL) < 6;
INSATU (in saturation): 0.25 < FractionCsp3 < 1; FLEX (Flexibity): 0 < Num. rotatable bonds < 9).

2.3. Molecular Docking
2.3.1. Docking Approach of Natural Bioactive against DENV Receptor Proteins
Interaction with Viral Envelope (E) Protein

The best docking energy for the viral envelope (E) protein is the natural ligands
triptolide, stevioside, alepterolic acid, and sphaeropsidin A with the binding energies of
−8.1, −8.4, −8.3, and −8.7 kcal/mol, respectively. The binding mode study was carried out
on the next four active compounds, and the results are shown in Table 2. Additionally, the
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existence of hydrogen bonds between the phytochemicals and the viral E protein stabilizes
the ligand within its binding locations. The docking complexes were visually inspected
in-depth for the interactions and binding mechanisms of each ligand with the functional
residues of the DENV E protein (Figure 3).

Table 2. The four best results for the docking of natural bioactive ligands with viral envelope (E)
protein (PDB ID: 1OKE) proteins target.

Compounds Target Interact
Residues

No. of
H-Bond

H-Bond
Residues

H-Bond
Length

Binding
Energy

(kcal/mol)

Triptolide

1OKE

Leu253
Thr236
Thr262

1 Thr265 1.76 −8.1

Stevioside
Ala259
Ala263
Trp212

2 Gln256
Hios209

2.09
2.16 −8.4

Alepterolic
acid

Leu253
Pro217 2 Gln256

Thr265
2.31
1.87 −8.3

Sphaeropsidin
A

His261
Thr265
Trp206

0 - - −8.7
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Triptolide, a component of the medicinal plant Tripterygium wilfordii Hook, displays
energy and is known to be useful against a variety of diseases, including lupus, cancer,
rheumatoid arthritis, and nephrotic syndrome [25,26]. Triptolide has been demonstrated
to suppress dengue reproduction [27], HIV1 replication [28], and herpes virus viral titer
in recent research [29]. At 0.5–4 nM, it (triptolide) showed anti-DENV activity in a DENV
model [27]. Whereas stevioside is a natural sweetener [30], Stevia rebaudiana displayed
−9.3 kcal/mol against NS1 proteins and exhibited an anti-rota viral effect in combination
with Sophora flavescens plant extract [31]. Along with the anti-viral effect of stevioside
demonstrated anti-inflammatory effect [32], anti-hyperglycemic effect [33], and so on.

Furthermore, sphaeropsidin A, a fungal metabolite (phytotoxin), was found from
Diplopia cupressi, which has a larvicidal effect (LD50: 36.8 ppm) on A. aegypti [34]. Moreover,
sphaeropsidin A has the potential ability to include anti-biofilm activity, anti-microbial
activity [35], and anti-cancer activity [36]. In our molecular docking study, sphaeropsidin
A displayed good binding energy with DENV NS1 receptor protein through two hydrogen
bonds and some other conventional hydrogen bonds, pi-pi, pi-alkyl bonds (Table 2).

Alepterolic acid is an ent-labdane diterpene found as a major metabolite from Aleuri-
topteris argentea (S. G. Gmél.) Fée is a medicinal fern. Alepterolic acid exhibited dengue
larvicidal properties with an LC50 of 87.3 ppm. Additionally, it has shown potential
selectivity towards Trypanosoma brucei with a median inhibitory concentration (IC50) of
3.42µM [37]. Incorporation of the amino moiety into alepterolic acid can inhibit the prolifer-
ation of the cervical cancer cell line HeLa and induce apoptosis through the mitochondrial
pathway [38].
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Interaction with Viral NS3

Natural ligands stevioside, sphaeropsidin A, methyl dodovisate A, and caesalacetal
showed the best binding energies for the viral NS3 protein with −8.0, −8.3, −9.2, and
−8.0 kcal/mol, respectively. The binding mode study was carried out on the next four
active compounds, and the results are shown in Table 3. The existence of hydrogen bonds
between the phytochemical and the viral E protein additionally stabilizes the ligand within
its binding locations. The docking complexes were visually inspected in-depth for the
interactions and binding mechanisms of each ligand with the functional residues of the
DENV E protein (Figure 4).

Table 3. The four best results for the docking of natural bioactive ligands with viral proteins target.

Compounds Target Interact
Residues

No. of
H-Bond

H-Bond
Residue

H-Bond
Length

Binding Energy
(kcal/mol)

Stevioside

Asp192
Ile203

Met191
His194

7

Arg202
Asn175
Glu173
Glu177
Gly198
His194
Pro174

2.33
2.29
1.96
2.59
2.17
2.39
2.60

−8.0

Sphaeropsidin A 2VBC
Ala197
Ile203

Leu193
1 Asp175 2.57 −8.3

Methyldodovisate
A

Asp258
Arg215
Arg217
His251
Ile256

3
Arg254
Gly253
Thr252

2.17
2.17
2.94

−9.2

Caesalacetal
Ala197
His194
Leu193

1 Asp175 2.59 −8.0

Stevioside is a natural sweetener [30]; Stevia rebaudiana, displayed −9.3 kcal/mol
against NS1 proteins and showed inhibitory activity against NS2B-NS3pro of DENV4, with
IC50 values of 14.1 ± 0.2, 24.0 ± 0.4, and 15.3 ± 0.4 µg/mL, respectively, where it is present
in a mixture or similar compounds such as rebaudioside A (Reb-A), or steviol glycosides
(SG), etc. [31,32]. It also has been associated with anti-hyperglycemic properties [33], and
so on. Sphaeropsidin A was also found to have a larvicidal impact on Aedes aegypti (LD50:
36.8 ppm) [34]. Furthermore, anti-biofilm activity, antibacterial activity [35], and anti-cancer
activity are all possible with sphaeropsidin A. [36]. Sphaeropsidin A showed good binding
energy with dengue viral NS1 receptor protein in molecular docking research, thanks to
two hydrogen bonds and additional traditional hydrogen bonds, pi–pi, and pi–alkyl bonds
(Table 3).

On the other hand, methyl dodovisate A is isolated from the aerial parts of D. viscosa.
It showed a larvicidal effect with an LC50 > 30 µg/mL on A. albopictus [38]. Furthermore,
caesalacetal, isolated from S. sauteri also displayed anti-A. albopictus activity with LC50
values of 3 µg/mL [20].



Molecules 2021, 26, 6821 9 of 29

Molecules 2021,26, x FOR PEER REVIEW 8 of 29 
 

 

Table 3. The four best results for the docking of natural bioactive ligands with viral proteins target. 

Compounds Target Interact 
Residues 

No. of  
H-bond 

H-Bond 
Residue 

H-bond 
Length 

Binding Energy 
(kcal/mol) 

Stevioside  

Asp192 
Ile203 

Met191 
His194 

7 

Arg202 
Asn175 
Glu173 
Glu177 
Gly198 
His194 
Pro174 

2.33 
2.29 
1.96 
2.59 
2.17 
2.39 
2.60 

−8.0 

Sphaeropsidin 
A 

2VBC 
Ala197 
Ile203 

Leu193 
1 Asp175 2.57 −8.3 

Methyldodovi
sate A 

 

Asp258 
Arg215 
Arg217 
His251 
Ile256 

3 
Arg254 
Gly253 
Thr252 

2.17 
2.17 
2.94 

−9.2 

Caesalacetal  
Ala197 
His194 
Leu193 

1 Asp175 2.59 −8.0 

 

 
 

 

(A) 

 
  

(B) 

Molecules 2021,26, x FOR PEER REVIEW 9 of 29 
 

 

   

(C) 

   

(D) 

Figure 4. Binding poses of four top-ranked compounds at the binding site of dengue viral NS3 (PDB ID: 2VBC) and 2D 
and 3D interaction diagrams. (A) Stevioside-NS3; (B)sphaeropsidin A-NS3; (C) methyl dodovisate A-NS3, and (D) caesa-
lacetal-NS3. 

Interaction with viral NS5 
With DENV protein NS5, phytochemicals, triptolide, stevioside, andrographolide, 

and caesalacetal demonstrated good to moderate binding energies of -8.8, -9.4, -8.4, and -
8.4 kcal/mol, respectively (Table 4). The existence of hydrogen bonds between the phyto-
chemical and the viral NS5 protein additionally stabilizes the ligand within its binding 
locations. The docking complexes were visually inspected in-depth for the interactions 
and binding mechanisms of each ligand with the functional residues of the DENV protein 
(Figure 5). 

Andrographolide is a lactone diterpene, isolated from Andrographis paniculata, and 
possesses many biological effects, including antioxidant [39], anti-inflammatory [40], neu-
roprotective [41], hepatoprotective [42], anti-viral [43–45], anti-thrombotic [46], anticancer 
[47], and others. This diterpene lactone at 100 and 200 μM concentration showed an anti-
DENV effect via GRP78 interaction pathway and at 5, 10, 15, and 25 ppm, a concentration 
larvicidal effect by inducing cytopathic effects in the midgut epithelium (LC50: 12 ppm) 
[23]. 

Table 4. The four best results for the docking of natural bioactive ligands with viral NS5 pro-
teins target. 

Compounds Target Interact 
Residues 

No. of H-
bond 

H-bond 
Residues 

H-bond 
Length 

Binding 
Energy 

(kcal/mol) 

Triptolide  

Glu356 
Gly258 
His52 

Tyr119 

2 
Ala259 
Arg540 

2.28 
3.10 

−8.8 

Figure 4. Binding poses of four top-ranked compounds at the binding site of dengue viral NS3 (PDB ID: 2VBC) and
2D and 3D interaction diagrams. (A) Stevioside-NS3; (B)sphaeropsidin A-NS3; (C) methyl dodovisate A-NS3, and (D)
caesalacetal-NS3.
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Interaction with Viral NS5

With DENV protein NS5, phytochemicals, triptolide, stevioside, andrographolide,
and caesalacetal demonstrated good to moderate binding energies of −8.8, −9.4, −8.4,
and −8.4 kcal/mol, respectively (Table 4). The existence of hydrogen bonds between
the phytochemical and the viral NS5 protein additionally stabilizes the ligand within
its binding locations. The docking complexes were visually inspected in-depth for the
interactions and binding mechanisms of each ligand with the functional residues of the
DENV protein (Figure 5).
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Table 4. The four best results for the docking of natural bioactive ligands with viral NS5 proteins target.

Compounds Target Interact
Residues

No. of
H-Bond

H-Bond
Residues

H-Bond
Length

Binding Energy
(kcal/mol)

Triptolide

Glu356
Gly258
His52
Tyr119
Val687

2 Ala259
Arg540

2.28
3.10 −8.8

Stevioside 4V0Q Asp663
Ile797 3

Lys401
Ser661
Ser710

2.23
2.83
2.53

−9.4

Andrographolide Ile797
Val603 4

Asp663
Gly604
Thr605
Tyr606

2.25
2.39
2.56
1.82

−8.4

Caesalacetal

Cys82
Gly148
Ile147
Trp87

4

Arg84
Asp146
Gly85
Gly86

2.63
2.36
2.29
2.25

−8.4

Andrographolide is a lactone diterpene, isolated from Andrographis paniculata, and pos-
sesses many biological effects, including antioxidant [39], anti-inflammatory [40], neuropro-
tective [41], hepatoprotective [42], anti-viral [43–45], anti-thrombotic [46], anticancer [47],
and others. This diterpene lactone at 100 and 200 µM concentration showed an anti-DENV
effect via GRP78 interaction pathway and at 5, 10, 15, and 25 ppm, a concentration larvicidal
effect by inducing cytopathic effects in the midgut epithelium (LC50: 12 ppm) [23].

Interaction with Viral NS1

The natural ligands triptolide, stevioside, sphaeropsidin A, and caesalacetal have the
best docking energy for the viral NS1 protein, with binding energies of −8.3, −9.3, −8.5,
and −8.5 kcal/mol, respectively. The binding mode study was carried out on the next
four active compounds, and the results are shown in Table 5. Furthermore, the existence
of hydrogen bonds between the NS1 receptor protein and the phytochemical stabilizes
the ligand in its binding locations. By visually inspecting the docking complexes, the
interactions and binding mechanisms of each ligand with the functional residues of the
DENV NS1 protein were investigated in-depth (Figure 6).
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Table 5. The four best results for the docking of natural bioactive ligands with viral proteins
target (NS1).

Compounds Target Interacting
Residues

No. of
H-Bond

H-Bond
Residue

Bond
Length

(A)

Binding Energy
(Kcal/mol)

Triptolide
Lys174
Phe178
Pro226

3

Lys227
Ser181
Ser227

2.28
2.52
2.69

−8.3

Stevioside

Lys174
Lys227
Phe178
Pro226

5

Asn234
Asp176
Glu154
Ser181
Trp232

2.72
2.41
1.99
2.14
2.06

−9.3

Sphaeropsidin A 4O6B

Lys172
Lys227
Phe178
Pro226
Trp232

2 Asp176
Ser181

2.21
2.16 −8.5

Caesalacetal

Glu173
Lys227
Phe178
Ser181
Trp232

2 Ser228
Trp210

2.33
2.39 −8.5

Triptolide, a component of the medicinal plant Tripterygium wilfordii Hook, displays
energy and is known to be useful against a variety of diseases, including lupus, cancer,
rheumatoid arthritis, and nephrotic syndrome [26,48]. Triptolide has been demonstrated
to suppress DENV reproduction [27], HIV1 replication [28], and herpes virus viral titer
in recent research (Long et al., 2016) [49]. At 0.5-4 nM, it showed anti-DENV activity
in a DENV model [27]. On the other hand, stevioside displayed −9.3 kcal/mol against
NS1 proteins and exhibits an anti-rota viral effect in combination with S. flavescens plant
extract [31]. Along with its anti-viral effect, it also demonstrated an anti-inflammatory
effect [32], anti-hyperglycemic effect [33], and so on.

Besides its larvicidal effect [34], sphaeropsidin A possess the potential ability to include
anti-biofilm, anti-microbial [35], and anti-cancer activity [36]. In our molecular docking
study, this gamma-lactone fungal metabolite displayed good binding energy with DENV
NS1 receptor protein through two hydrogen bonds and some other conventional hydrogen
bonds, pi-pi, pi-alkyl bonds (Table 6).

Caesalacetal, a cassane-type furanoditerpenoids, is mostly found in S. sauteri [20]. It is
also isolated from the roots of C. decapetala var [50]. It exhibited larvicidal activities with
an LC50: 3 µg/mL in the DENV vector [20]. It further demonstrated anti-viral activity
against the protein NS1 (Table 5). The 2D and 3D structures of non-bond interactions of
triptolide, stevioside, sphaeropsidin A, and caesalacetal with the target protein NS1 are
shown in Figure 6.
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Table 6. Results for the docking of pyrimethamine with all four dengue viral protein target proteins.

Compounds Target Interacting
Residues

No. of
H-Bond

H-Bond
Residue

Bond Length
(Å)

Binding Energy
(kcal/mol)

Pyrimethamine

E protein
(1OKE)

Asp203
Lys202
Lys204
Val252

5
Glu257
His261
Met201

2.55
2.60
2.44

−7.5

NS3(2VBC) Tyr354 6

Asp469
Asp470
Gln471
Glu468

2.15
2.83
2.56
2.63

−6.3

NS5(4V0Q)

Arg352,
Arg581,
Asn297,
Lys355,
Pro298,
Val66

3
Glu296
Asn69
Glu351

2.04
2.60
2.55

−7.8

NS1(4O6B) Phe178
Ser181 3

Asp176
Asp180
Cys179

2.32
2.42
2.43

−6.6

2.3.2. Docking Approach of Chemical Analog (Pyrimethamine) against DENV Proteins

The chemical compound (pyrimethamine), a DENV NS2B/3 protease inhibitor that
has been shown to impede DENV translation and polyprotein processing [51], specifi-
cally at one intramolecular cleavage site within NS3 [52]. In molecular docking study,
pyrimethamine has demonstrated good binding energies with four DENV receptor pro-
teins E protein, NS3, NS5, and NS1 (Table 6) to be −7.5, −6.3, −7.8, and −6.6 kcal/mol,
respectively. In Figure 7, the docked postures are shown. The results showed that when
each receptor was docked with certified natural ligands, it had superior docked scores
and binding energies than when the outcome was anticipated using a chemical equivalent.
Pyrimethamine [5-(4-chlorophenyl)-6-ethylpyrimidine-2,4-diamine Chloridine], an FDA-
approved chemical molecule, is highly selective against the proteins that cause dengue
fever. Its efficacy against DENV has been previously documented [53]. As a result, it has
been recommended that various natural ligands be used to attack certain infectious and
dangerous targets. Furthermore, using natural substances to treat a variety of recently
emerging infections has become a popular method in medicinal chemistry since these
molecules are unlikely to induce adverse effects that would otherwise be induced by phar-
maceuticals [54]. Moreover, these bioactive natural ligands are major components of widely
available plants with significant therapeutic potential, which are still utilized in traditional
medicine to treat a variety of viral infections [55].
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2.4. Molecular Dynamic Simulation Analysis

The binding of a compound to the binding site of a protein can lead to observable
conformational changes in the dynamics of the targeted protein. Root mean square devia-
tion (RMSD) is one of the most important fundamental properties for establishing whether
the protein is stable and close to the experimental structure [56] According to the RMSD
plot, native, alepterolic acid, sphaeropsidin A, and stevioside binding kept the dynamics of
targeted proteins at less than 0.3 nm, whereas triptolide binding resulted in more structural
deviations from its native conformation (Figure 8A). In the case of the native-bound 1OKE
and alepterolic acid, sphaeropsidin A, and stevioside-bound 1OKE complexes, the nature
of their dynamics was the same during 100 ns of MD simulation.
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In another case, the dynamics of caesalacetal, methyl dodovisate A, and stevioside-
bound 2VBC were less than native-bound 2VBC, while the dynamics of sphaeropsidin
A-bound 2VBC increased dramatically after 60 ns (Figure 8). For 4O6B, all of the selected
compounds had a good dynamical effect on 4O6B, where all RMSD values of selected
compound-bound 4O6B fluctuated less than 0.3 nm during the 100 nm. It can also be
observed that caesalacetal and triptolide diminished the degree of fluctuation less than the
native-bound 4O6B (Figure 8C).

For another targeted protein (4V0Q), the average value for the RMSD of native-bound
4V0Q was ≈ 0.287 as shown in Figure 8D. Further, we can observe that caesalacetal and
stevioside reduced the dynamics of 4V0Q when they bound to it. Triptolide, on the other
hand, increased the overall RMSD fluctuation by 100 ns more than the native ligand
(Figure 8D). Moreover, the dynamics of understudied drugs inside the active site were
compared and presented in Figure 8B. It can be observed that all of these ligands have
nearly the same nature of movements inside the active site.
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To investigate the dynamics of the protein’s backbone residues in the protein-ligand
complexes compared to the Native-bound protein, the root means square fluctuations
(RMSF) of the backbone atoms of the protein were depicted in Figure 9. Figure 9A reveals
that the alepterolic acid, sphaeropsidin A, stevioside, and triptolide reduced the RMSF
values of 1OKE when compared with native-bound protein. For the second target (2VBC)
methyl dodovisate A and stevioside had a significant impact on increasing the fashion of
fluctuation of RMSF of 2VBC when compared with native (Figure 9B). Whilst the third
target (4O6B), the overall average RMSF value for native-bound 4O6B (Figure 9C), is higher
than the caesalacetal, sphaeropsidin A, stevioside, and triptolide-bound 4O6B, and for the
fourth target (4V0Q), as shown in Figure 9D, stevioside nearly fluctuated higher than the
dynamics of native-bound 4V0Qand rest compound-bound 4V0Q complexes.
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2.5. MM-PBSA Analysis

Hydrogen bond number and distribution in the selected targets with the selected
compounds were studied to determine the stability of the protein-drug interactions inside
the binding site during the 100 ns simulation period (Table 7). The hydrogen bond number
results showed that stevioside had the highest number of hydrogen bonds (2.116988301)
with 1OKE when compared with native, alepterolic acid, sphaeropsidin A, and triptolide
Figure 10. Again, stevioside exhibited the highest average number of hydrogen bonds
(3.206679332) compared to native, caesalacetal, methyl dodovisate A, and sphaeropsidin
compounds as presented in Figure 10B. Further, stevioside, showed very strong interaction
(average number of hydrogen bonds is 4.02439756) with 4OBE (Figure 10C). Most interest-
ingly, the behavior in which stevioside again established the highest number of hydrogen
bonds with 4V0Q (average is 2.765623438) is illustrated in Figure 10D. The hydrogen
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bond results help in understanding the functionality and ability of stevioside to work as a
multi-target binder.

Table 7. Calculation of MMPBSA energy (∆EMMPBSA) of the selected proteins and the nominated ligands.

Target Name Compound Name
Vander Waals

Energy
(kJ/mol)

Electrostatic
Energy

(kJ/mol)

Polar Solvation
Energy (kJ/mol)

SASA Energy
(kJ/mol)

Binding
Energy

(kJ/mol)

1OKE

Native −96.764 314.382 −253.723 32.344 −3.761
Alepterolicacid −88.371 −14.159 68.7155 −12.475 −46.2895
SphaeropsidinA −122.068 −5.756 71.871 −14.922 −70.875
Stevioside −83.430 −12.410 73.405 −11.170 −33.605
Triptolide −130.551 −13.742 66.847 −13.472 −90.918

2VBC

Native −149.888 −15.821 87.180 −16.847 −94.556
Caesalacetal −148.616 −24.435 104.966 −16.718 −84.309
MethyldodovisateA −138.175 −14.924 118.165 −14.918 −49.852
SphaeropsidinA −115.183 3.982 43.248 −13.188 −81.141
Stevioside −195.236 −22.923 144.028 −22.388 −96.519

4O6B

Native −60.911 −32.869 89.094 −9.556 −14.602
Caesalacetal −139.283 −33.117 81.796 −13.614 −104.281
SphaeropsidinA −90.141 −8.125 43.680 −9.868 −64.454
Stevioside −162.844 −110.614 151.263 −22.976 −145.171
Triptolide −116.724 −75.279 100.616 −13.566 −104.953

4V0Q

Native −135.681 −41.363 131.823 −14.601 −59.822
Andrographolide −0.036 4.881 58.619 −2.893 60.571
Caesalacetal −108.493 3.610 35.992 −12.449 −81.34
Stevioside −270.746 −68.928 236.892 −28.205 −130.987
Triptolide −178.301 −24.621 210.824 −19.300 −11.398
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2.6. Network Pharmacology of Diterpenoids
2.6.1. Gene Set Enrichment Analysis

Enrichment analysis is a versatile method to gain insight into the pathways whose
activity is influenced by a particular gene group. As seen in Figure 11A, our biological
process enrichment analysis indicated that the list of genes targeted by our medicinal plant
compounds was most significantly associated with DNA metabolic process, DNA repair,
and replication, cellular response to DNA damage stimulus, nucleocytoplasmic transport,
regulation of translational initiation, protein localization to nuclear envelope, regulation
of translation, and spliceosomal snRNP assembly regulation of cell cycle G2/M phase
transition pathways. The top 10 molecular function enrichments are mismatched DNA
binding, damaged DNA binding, ribosomal small subunit binding, nucleoside diphos-
phate kinase activity, phosphatidylinositol phospholipase C activity, phospholipase C
activity, nucleobase-containing compound kinase activity, phosphoric diester hydrolase
activity, double-stranded DNA binding, and snRNA binding, as shown in Figure 11B.
Figure 11C illustrates the cellular components that include the spindle pole centrosome,
methylosome, centrosome, small nuclear ribonucleoprotein complex, microtubule orga-
nizing center, U4/U6 x U5 tri-snRNP complex, replication fork, spliceosomal tri-snRNP
complex, centriole, and nuclear body. The KEGG pathway annotation showed that path-
ways in cytosolic DNA-sensing pathway, longevity regulating pathway, prion diseases,
epithelial cell signaling in Helicobacter pylori infection, tumor necrosis factor (TNF) signal-
ing pathway, RNA transport, vasopressin-regulated water reabsorption, ErbB signaling
pathway, spliceosome and cysteine, and methionine metabolism were at the top of the list,
as shown in Figure 11D.
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2.6.2. Construction of “Drug-Target-Pathway” Network

The seven drug candidates, 313 gene targets, and the top 10 pathways were imported
into Cytoscape (V.3.8.2) software, and the “Drug-Target-Pathway” network was obtained
as shown in Figure 12. Light green hexagonal symbols represent the chosen drugs, the
blue circle represents potential targets, and the red triangle represents pathways. Through
the software, the node is visualized by degree value, and the node size is proportional
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to degree value. According to the requirements of topological parameters, the key nodes
were determined by degree values greater than twice the median to obtain potential active
components for later molecular docking tests.
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3. Materials and Methods
3.1. Protein/Macromolecule Structure Preparation

The crystal structural protein of DENV envelope (E) protein (PDB ID: 1OKE, resolu-
tion: 2.40 Å) [57], a serine protease, and ATP-dependent helicase (NS3) (PDB ID: 2VBC.
resolution: 3.15Å) [58], RNA-dependent RNA polymerase (NS5) (PDB ID: 4V0Q, resolution:
2.3 Å) [59], NS1 (PDB ID: 4O6B, resolution: 3 Å) [60] (Figure 1). Three-dimensional crystal
enzyme structures in PDB format for Structural Bioinformatics were downloaded from the
Protein Data Bank (PDB) (https://www.rcsb.org/, accessed on 1 June 2021) and for energy
minimization in the crystal structure, we utilized the Swiss-PDB Viewer software package
(version 4.1.0), and then all the heteroatoms and water molecules of proteins were removed
by usingPyMOl (V.2.4.) before docking [61]. These structures were examined critically
using Ramachandran Plot by ProCheck [62] to inspect the superior quality of the target
protein structures selected for docking studies. All the crystallographic water molecules
and associated heteroatoms were eliminated from the original crystal structures, and polar
hydrogen atoms were added along with the Kollman charges. The geometry of the original
moiety was rectified and visualized by PyMol (V.2.4) [63].

3.2. Active Site Prediction

For efficient docking, CASTp [24] has been used to approximate viral receptor active
sites, and PyMol (V.2.4) was used to describe the Cartesian coordinates x, y, and z (active
sites). Auto Dock Vina also used these regions to create grid boxes for molecular dock-
ing [64]. The active sites with the highest scores were characterized as a required precursor
for the production of a grid in identified viral and vector receptors. CASTp was used
to characterize and measure the active sites, binding sites, internal inaccessible cavities,
surface accessible structural pockets and structure, and protein cavities [65].

https://www.rcsb.org/
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3.3. Selection and Preparation of Ligands

There are 160 diterpenes/diterpenoids that were collected and selected from natural
resources and mentioned by the literature-screening procedure [66–68]. From them, nearly
20 diterpenoids are available and showed anti-DENV activity in several in vivo experimen-
tal systems (Table 8) [23] as well as the FDA-approved drug, pyrimethamine, were obtained
from the PubChem repository sample in the “sdf” file format. Pyrimethamine (Pubchem
ID: 4993), a DENV NS2B/3 protease inhibitor, could block the translation and polyprotein
processing in DENV [51], particularly at one intramolecular cleavage site within NS3 [52].
All internal energies of the ligands were optimized by using Chem3D Pro12.0 program
packages [69]. The chemical structures were drawn using Chemsketch [70]. The final
optimized and prepared ligands were used for molecular docking (Table 8).

Table 8. Diterpenes/diterpenoids and their derivatives with bioactivity against DENV and DENV-infected experimental
animals or cell lines.

Compounds Source PubChem ID Chemical Structure

Phorbol ester Jatropha curcas 22833501
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Alepterolic acid Copaifera reticulata 13858188
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3.4. In Silico Pharmacokinetic Study

For identification of drug likeliness of diterpene ligands, a study has been utilized
similar to the way that Lipinski’s rule of five [71], Ghose filters [72], CMC 50 like rule [73],
Veber filter [74], MDDR like rule [75], BBB likeness (Clark, 2003) [76], and QED [77] were
used to gauge the compounds. Lipinski’s filter was used to measure hydrophobicity.
Many of the ligands in the active compounds had their pharmacokinetic profile and
physicochemical descriptors expected. In drug development, these guidelines have been
used to preselect bioactive molecules [78].

ADME (Adsorption, Distribution, Metabolism, and Excretion) is important to an-
alyze the pharmacodynamics of the proposed molecule that could be used as a drug.
SWISS-ADME tool [79] is a website (https://www.swissadme.ch, accessed on 5 June
2021) which allows the user to draw their respective ligand or drug molecule or in-
clude SMILES data from PubChem and provides the parameters, such as lipophilic-
ity (iLOGP, XLOGP3, WLOGP, MLOGP, SILICOS-IT, Log P0/w), water solubility-Log
S (ESOL, Ali, SILICOS-IT), drug-likeness rules (Lipinski, Ghose, Veber, Egan, and Muegge)
and Medicinal Chemistry (PAINS, Brenk, Leadlikeness, Synthetic accessibility) meth-
ods [79]. Data from PubChem, which consists of SMILES of diterpene ligands (https:
//pubchem.ncbi.nlm.nih.gov/compound, accessed on 5 June 2021) was entered into the
search bar and was analyzed.

Toxicology prediction of small molecules is important to predict the tolerability of
the small molecules before being ingested by human and animal models. pkCSM is an
online database in which the small molecule can be drawn virtually or can be analyzed by
submitting the SMILES of the same. The website can provide details of toxicology effects
in the fields of human maximum tolerated dose, LD50, hepatotoxicity, and Minnow toxicity.
The website was logged on and SMILES of the diterpene ligands data from PubChem was
searched and submitted into the website, and toxicity mode was selected [80].

3.5. Molecular Docking Protocol

In medicinal chemistry, molecular docking is a numerical tool for drug design. The
Auto Dock Vina tool uses this approach to predict the pharmacodynamic profile of drug
candidates by ranking and orienting them to receptor binding sites [81]. The docking
outcome specifies the degree of ligand interaction with the desired protein’s active site.
The active binding sites of the target protein are the locations of the ligand in the initial
target protein grids (40 × 40 × 40) [82], with PyMol, Auto dock Vina, and Drug Discovery
Studio (v.20.1.0.19295) being used to examine them [83].

https://www.swissadme.ch
https://pubchem.ncbi.nlm.nih.gov/compound
https://pubchem.ncbi.nlm.nih.gov/compound
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3.6. Molecular Dynamics (MD) Simulation Study

MD modeling is now considered a decisive step in computer-aided research for drug
discovery at the atomic level. By studying the internal movement of proteins, many
mysterious biological functions of proteins and their deep dynamic mechanisms can be
revealed [56]. Regarding the dynamically changing time scale, we can use this time scale
to judge whether the protein-ligand complex is stable [84]. In this study, we performed
MD simulations on the four proteins with docked ligands in addition to cocrystal ligands,
produced by molecular binding on a time scale of 100 ns. We used the GROMACS 2018.1
package [85] to run the MD simulation. The CHARMM 27 force field [86] was used to
parameterize the ligand-protein complex of all atoms. The intermolecular three-point
transfer potential (TIP3P) was chosen as the solvent [87], adding Na + or Cl-ions to adjust
the charge to simulate the physiological environment. Then we used the steepest descent
algorithm [56] with an allowable value of 1000 kJ/mol·nm to minimize the energy of these
systems. In the next step, the NVT and NPT pools canceled out the positionally restricted
complexes on the protein molecule within 0.1 ns. Then, MD simulations with no restrictions
on protein molecules or ligands were performed to determine the stability within 100 ns.
Finally, some Gromacs modules were used to analyze MD trajectories, such as gmx rms,
gmxrmsf, and gmxhbond.

3.7. Molecular Mechanics Poisson–Boltzmann Surface Area (MMPBSA) Analysis

We utilized the g_mmpbsa tool to estimate the binding free energies of the protein-
ligand systems [88]. One of the popular methods to estimate the interaction energies
are Molecular Mechanics Poisson–Boltzmann Surface Area (MMPBSA) analysis. This
method uses molecular dynamics simulation trajectories to predict binding free energies
(∆EMMPBSA) of protein-protein, protein-ligand, or protein–DNA systems. We performed
the MMPBSA analysis on the last 20 ns of the MD trajectory of each protein-ligand system
at an interval of 50 ps. Total binding energies of the protein-ligand complexes are presented
in Table 1. It can be observed that binding free energies of the chosen compounds with
selected targeted proteins alter between different values, owing to differences in the mode
of binding. However, the most promising results which can be obtained from this table
are those related to binding affinities of stevioside with viral envelope (E) protein (PDB
ID: 1OKE), serine protease (NS3) protein (PDB ID: 2VBC), RNA-directed RNA polymerase
(NS5) (PDB ID: 4V0Q), and non-structural protein 1 (NS1) (PDB ID: 4O6B).

3.8. Network Pharmacology of Diterpenoid

Three main stages are included in network pharmacology assessment: (a) target
estimation for selected bioactive ligands; (b) amplification study for predicted targets,
and (c) network construction and analysis for selected ligands, targets, and pathways.
Briefly, targets of chosen drugs were predicted using DIGEP-Pred [89] at the pharma-
cological activity (Pa) of 0.5. Next, the predicted proteins of chosen drugs were en-
riched using STRING (V.11.0) [90] to generate the protein-protein interaction. All proteins
which are obtained from the STRING database were submitted to the Enricher database
(https://maayanlab.cloud/Enrichr/, accessed on 9 July 2021) to enrich their biological
processes, molecular function cellular components, and KEGG pathways. Finally, the
network between chosen drugs, their targets, and pathways was constructed using Cy-
toscape(V.3.8.2.) [91].

4. Conclusions and Final Considerations

Dengue fever is a severe infectious endemic illness that affects over 100 countries
across the globe, from Africa to the Western Pacific. It is caused by DENV, which is trans-
mitted to people by an A. aegypti mosquito bite. Dengue fever and dengue hemorrhagic
fever have killed millions of people across the world. Natural phytocompounds have a
potential anti-viral effect. Among them, diterpenes/diterpenoids are the most prominent
bioactive lead compounds. In this study, among the selected drug candidates, triptolide,

https://maayanlab.cloud/Enrichr/
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stevioside, alepterolic acid, sphaeropsidin, methyl dodovisate, andrographolide, caesalac-
etal, and pyrimethamine have good to moderate binding affinities compared with the
FDA-approved anti-viral medication (pyrimethamine). Our findings will benefit future
nonclinical, preclinical, and clinical investigations using these compounds, as well as
encourage medicinal chemistry specialists to perform relevant studies on these potential
natural lead compounds and their derivatives.
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