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Abstract

The ability to categorize stimuli – predator or prey, friend or foe – is an

essential feature of the decision-making process. Underlying that ability is the

development of an internally generated category boundary to generate deci-

sion outcomes. While classic temporal difference reinforcement models

assume midbrain dopaminergic neurons underlie the prediction error required

to learn boundary location, these neurons also demonstrate a robust response

to nonreward incentive stimuli. More recent models suggest that this may

reflect a motivational aspect to performing a task which should be accounted

for when modeling dopaminergic neuronal behavior. To clarify the role of

substantia nigra dopamine neurons in uncertain perceptual decision making,

we investigated their behavior using single neuron extracellular recordings in

patients with Parkinson’s disease undergoing deep brain stimulation. Subjects

underwent a simple auditory categorical decision-making task in which they

had to classify a tone as either low- or high-pitched relative to an explicit

threshold tone and received feedback but no reward. We demonstrate that the

activity of human SN dopaminergic neurons is predictive of perceptual cate-

gorical decision outcome and is modulated by uncertainty. Neuronal activity

was highest during difficult (uncertain) decisions that resulted in correct

responses and lowest during easy decisions that resulted in incorrect

responses. This pattern of results is more consistent with a “motivational” role

with regards to perceptual categorization and suggests that dopamine neurons

are most active when critical information – as represented by uncertainty – is

available for learning decision boundaries.

Introduction

Decision making is frequently thought of as a combina-

tion of several processes including signal detection,

response selection, outcome, or state evaluation and out-

come prediction (Bach and Dolan 2012). The ability to

categorize a sensory stimulus is a decision-making process

that requires attention to the relevant stimulus dimension,

comparison of the stimulus to a category boundary, and

selection of an appropriate response. Classically, temporal

difference reinforcement learning models of action selec-

tion posit that the dopaminergic midbrain system encodes

a prediction error which is used by the striatum and

higher level cortical regions to learn a reward-based cog-

nitive task (Suri 2002). After an unexpected reward is

presented, SN neurons release dopamine in a phasic fash-

ion. When a stimulus is conditioned to predict this

reward, the phasic increase in neuronal firing rate shifts

to occur reliably after stimulus presentation (Schultz

1986, 1998; Schultz et al. 1997). On the other hand, pha-

sic dopaminergic activity after conditioned stimuli can be

seen following a variety of nonreward based, incentive
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stimuli (Strecker and Jacobs 1985; Horvitz 2000), and

modern reinforcement-learning models typically include a

specific bonus for motivationally relevant stimuli to

account for this (Lesaint et al. 2014).

The ability to categorize sensory stimuli also depends,

in part, on the confidence one has in placing the stimulus

into a category. The uncertainty surrounding the

stimulus, or categorization uncertainty, can influence the

subsequent behavioral choice. Data from human fMRI

studies have linked categorization uncertainty with a fron-

to-thalamocortical-basal ganglia loop involving the medial

frontal cortex, dorsomedial thalamus, anterior insula, and

ventral striatum (Grinband et al. 2006; Daniel et al.

2011). Midbrain dopamine (DA) neurons (Fiorillo 2003)

and ventral striatum (Preuschoff et al. 2006) have been

proposed to encode reward uncertainty, specifically. How-

ever, both task-based fMRI and single-neuron, non-

human primate recordings have also implicated this sys-

tem in encoding other aspects of uncertainty including

categorization (Aron 2004) and sensory uncertainty (De

Lafuente and Romo 2011).

In this study, we chose to examine the activity of

human substantia nigra (SN) dopaminergic neurons while

subjects performed a simple auditory categorization task

in which they received verbal feedback in order to attempt

to clarify the role of postsensory stimulus dopaminergic

release in the decision-making process. The two major

goals of the study were to examine the effect of human

midbrain dopaminergic output on decision outcome and

uncertainty in a simple perceptual categorization task.

Materials and Methods

Patients with medically intractable Parkinson’s disease

(PD) who were considered candidates for surgical therapy

were approached for participation in the study. To be con-

sidered surgical candidates, patients had to be free of major

neurological comorbidities (e.g., Parkinson’s-plus syn-

dromes), including dementia. Six consecutive patients (3

males, 3 females) receiving deep brain stimulation surgery

for PD targeting the subthalamic nucleus (STN) were

enrolled. They had a mean age of 58.0 � 6.2 years and

mean disease duration of 10.8 � 4.7 years (Table 1). All

consent and study procedures were conducted with

Columbia University Medical Center Institutional Review

Board approval, in accordance with state and federal guide-

lines. All patients provided their own informed consent.

The STN was identified on preoperative volumetric T1

and T2 MRI using standard neurosurgical techniques.

These included direct anatomical visualization of the STN

on T2 weighted coronal volumetric images, combined

with targeting relative to the midpoint of the plane

between the anterior and posterior commissures

(Table 1). Microelectrode recordings were carried out

with paired 1-lmol/L tungsten-tip electrodes with a

power-assisted microdrive. STN and substantia nigra

(SN) were then mapped based on characteristic firing pat-

terns. Table 1 shows patient and microelectrode mapping

details. A neural signal processor (CerberusTM, Blackrock

Microsystems, Salt Lake City, UT) recorded from the

microelectrode at 30 kilosamples/sec. The auditory output

Table 1. Subject demographics and operative characteristics. Unified Parkinson’s Disease Rating Scale (UPDRS) scores were derived from a

standard set of five items of the motor examination portion of the UPDRS (rest tremor, action tremor, hand rigidity, finger taps, hand grip)

performed in the office preoperatively (UPDRS Preoperative), after electrode placement in the operating room (UPDRS OR) and in the office

postoperatively with the electrodes turned on (UPDRS Postoperative). Each item has a maximum score of 4 points and thus the highest possi-

ble score is 20. Not every item was always able to be tested in the operating room and, in those cases, the corresponding item was excluded

from the pre and Postoperative total scores to allow for fair comparison. # of passes refers to the total number of passes required for the

placement of electrodes. Coordinates refers to the stereotactic mapping coordinates of the subthalamic nucleus in reference to the intercom-

missural line connecting anterior and posterior commissures (lateral to intercommissural line, posterior to the midcommissural point, and infe-

rior to intercommisural line, respectively.

Patient Side Age UPDRS Preoperative UPDRS OR UPDRS Postoperative # of Passes Coordinates (mm)

1 Bilateral 52 8 7 4 5 L 9.5, 5, 3

R 9.5, 5, 2

2 Bilateral 66 9 N/A 6 6 L 12, 4, 2

R 12, 4, 4

3 Right 54 6 5 1 1 11, 4, 2

4 Bilateral 61 4 1.5 1.5 4 L 11, 5, 2

R 9, 5, 2

5 Bilateral 52 7 6.5 2.5 2 L 10, 5, 2

R 12.4, 5, 4

6 Bilateral 62 2.5 2 0.5 2 L 11, 4, 4

R 11, 4, 2
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of the presentation computer was also recorded on one

channel of the neural signal processor to allow for accu-

rate comparison of stimulus times and neural activity.

Patients’ responses (i.e., hand movements) were recorded

by an infrared motion capture recording system (ProRe-

flex, Qualisys, Gothenberg, Sweden) recording at 120

samples/sec via three, infrared reflective stickers placed on

the subjects’ hand contralateral to the microelectrode

recording. The auditory output of the presentation com-

puter was also recorded by the computer running the

infrared camera so that movement was synchronized with

neuronal activity and stimulus onset. This system is more

flexible than a simple button press and allows us to pre-

cisely define response time, hesitations, and changes in

decisions when made (Fig. 1B).

During recording of the SN, we utilized an auditory,

decision-making task (Fig. 1A). Subjects were instructed

to listen for a randomly generated frequency tone (dura-

tion, 200 msec; logarithmic range, 320–660 Hz (440-Hz

threshold condition) or 367–825 Hz (550-Hz threshold

Figure 1. Task schematic and apparatus. (A) Auditory decision-making task. Subjects are instructed to signal whether the tone was high or

low compared to an explicitly provided threshold tone with hand opening or closing, respectively. They are then presented with a random tone

(Epoch 1, 200 msec) and are given 3.5 sec to respond (Epoch 2). Subjects are subsequently given verbal feedback for 2.7 sec about the correct

response (Epoch 3) and have a 1.5 sec rest period before the next tone (Epoch 4). (B) Experimental Apparatus. The apparatus consisted of a

presentation computer, headphones, a microelectrode, a neural signal processor, and an infrared camera to record subject response. Although

not pictured, the auditory cues and motor responses were also recorded on the same computer for offline analysis.
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condition) and to categorize the tone as either higher or

lower than an explicitly pre-experimentally provided

threshold tone with an opening or closing, respectively, of

the hand contralateral to the side of microelectrode

recording. Subjects were given up to 3.5 sec to respond

after which subjects were verbally informed of the correct

response. (Prerecorded audio, interval 2.7 sec: “The cor-

rect response was to [open or close] your hand.”). Sub-

jects subsequently were provided a resting period of

1.5 sec to prepare for the subsequent trial. The number

of trials was undertaken on a voluntary basis, so as to

maximize the number of trial recordings.

The stimuli consisted of ten to fifteen tones, that were

repeated semirandomly so as to ensure an equal presenta-

tion of higher- or lower than threshold tones. We used

two different threshold frequencies (440 and 550 Hz).

Three patients experienced stimuli at one threshold and

three patients at the other in order to ensure no percep-

tual range-dependent effects. The uncertainty value asso-

ciated with a given tone was derived by creating an

uncertainty function (Grinband et al. 2006). The uncer-

tainty function is modeled as a transformation of the psy-

chometric function for the average proportion of open

hand response as a function of tone frequency bin

(Fig. 2A). The function is rectified around the point of

subjective equivalence (PSE) and normalized such that

values range from 0 (minimal uncertainty) to 1 (maximal

uncertainty). The PSE is set to maximum uncertainty,

and the lowest point of uncertainty is set to a value of

zero (Fig. 2B). “Difficult” trials were those that included

a tone in the two frequency bins immediately flanking

threshold (bins �1, 1), and “easy” trials were those

included a tone in the two bins furthest from threshold

(bins �5, 5).

The recorded microelectrode signals were analyzed off-

line. A clustering algorithm (Wave Clus, Leicester, U.K.)

A B

C D

Figure 2. Behavioral results. (A) Proportion of open-hand responses as a function of tone frequency relative to threshold. As the threshold

frequency varied for different subjects, frequencies were standardized by sorting them into five logarithmically equally-spaced frequency bins

above and below the threshold frequency. Each point represents mean proportion correct for the six subjects for each frequency bin. The

vertical black lines represent � SEM. The black curve represents the psychometric function. The hashed vertical black line represents threshold

frequency. (B) To create an uncertainty function (inverted V), the average psychometric function was rectified around the point of subjective

equivalence (PSE) and normalized to the range 0 to 1. The PSE is the maximum uncertainty (uncertainty = 1), and the lowest point of

uncertainty was set to zero. (C) Response times were greater for near-threshold frequency tone trials, but the effect was not statistically

significant. (D) Subject trials were divided into ten equally sized blocks to create a line representing proportion correct response (black line) as a

function of cumulative experience across all six subjects. The black vertical lines are � SEM. Across all subjects, no significant learning occurred

throughout the experiment (F(9) = 0.67; R2 = 0.08; P = 0.44).
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was used to detect neural spikes and sort them into clus-

ters representing putative neurons (Quiroga et al. 2004).

We will hereon refer to clusters as neurons. We defined

neurons as dopaminergic in a manner as previously

described (Schultz 1986; Mink 1996; Fiorillo et al. 2008).

Neurons were considered putatively dopaminergic if their

baseline firing rates were between 1.5 and 12 Hz, baseline

width (beginning of spike waveform until return to base-

line) exceeding 2 msec, peak-to-peak width (distance

between two positive waveform peaks) exceeding

0.8 msec, and average waveform consistent with extracel-

lular action potential morphologies from previous mam-

malian SN neuronal studies (Schultz et al. 1983; Schultz

1986). Patients underwent recording with two electrodes

simultaneously and thus multiple neurons were often

recorded simultaneously. Activity was measured for each

neuron recorded during each stimulus throughout each

trial.

We a priori sought to analyze spike activity in the time

epoch from 50 to 500 msec after tone onset – an interval

that is consistent with response latencies shown in non-

human primate single-neuron studies (Schultz et al. 1997;

De Lafuente and Romo 2011), and subject response

times. To create single-neuron peristimulus time histo-

grams (PSTHs), spike activity was calculated in 1 ms

bins, averaged over the total number of trials and then

convoluted with a Gaussian kernel (r = 40 msec). We

next created neuronal population histograms by calculat-

ing the firing rate for each trial, normalizing for baseline

activity during the 500 msec prior to tone onset, and

averaging over the total number of neurons. To compare

across the putatively dopaminergic neurons, the average

firing rate was calculated within the 50–500 msec time

window for each cell. As the threshold tone frequency

was different for different subjects, we standardized fre-

quencies by binning them into five logarithmically equally

spaced bins above and below the threshold frequency in

order to ensure equal pitch perceptual conditions were

represented.

We hypothesized that the neuronal response encodes a

linear signal, with higher firing predicting both correct

outcome and increasing level of uncertainty. We first ana-

lyzed the firing rates of all individual neurons with two-

way ANOVA utilizing Matlab software (MATLAB and

Statistics Toolbox Release 2011a, The MathWorks, Inc.,

Natick, MA, 2011 package) in order to classify the neu-

rons as either predictive of outcome, uncertainty, both, or

neither (P < 0.05). Next, we performed a generalized lin-

ear regression analysis on the neuronal population data

(MATLAB, glmlab [P. Dunn, 1999]) with the dependent

variable being raw firing rate (50-500 ms), and the inde-

pendent variables being (1) outcome, (2) uncertainty, (3)

informed versus uninformed trial, (4) trial number, and

(5) motor response (open/closed hand). Outcome,

informed versus uninformed trials and motor response

were coded as binary variables. Uncertainty and trial

number were coded as continuous variables. We utilized

an alpha level of 0.05 for statistical significance. We

repeated this linear model with nondopaminergic neurons

and for the time interval 500–1000 msec after tone onset.

Subsequent analyses of variance, chi-squared analyses,

simple linear regressions, Wilcoxon rank-sum tests, and

descriptive statistics were calculated utilizing Matlab soft-

ware. Results are reported � SEM.

Results

Behavioral data

Across all recording sessions, the percentage of tones in

the 10 frequency bins was uniformly represented

(v2(9) = 8.24, P = 0.51). Subjects performed the task with

a mean accuracy of 77.5% correct. We examined uncer-

tainty as a function of frequency bin. Trials were sorted

into frequency bins to create a line representing propor-

tion open-hand response as a function of tone frequency

distance from threshold frequency (Fig. 2A). On average,

the maximal uncertainty for the subjects occurred in fre-

quency bins immediately flanking threshold frequency

(Fig. 2A, bins 1, �1; proportion correct categorization =
0.37 � 0.08, 0.62 � 0.11). Tones with minimal uncer-

tainty occurred in frequency bins furthest from threshold

frequency with a left skew (Fig. 2A, bins �4, �5, �3, and

5; proportion correct categorization = 0.96 � 0.04,

0.85 � 0.08, and 0.85 � 0.05, and 0.79 � 0.06, respec-

tively).

The performance data were fit with a Naka-Rushton

function. We plotted the psychometric function for aver-

age proportion open-hand response as a function of fre-

quency bin (Fig. 2A) and the uncertainty function by

rectifying around the point of subjective equivalence (PSE,

bin 1) and normalized such that the range varied from 0

to 1. The PSE is set to maximum uncertainty (bin 1), and

the lowest point of uncertainty was set to zero (bin �5)

(Fig. 2C). Using this uncertainty function, we were able to

assign an uncertainty value to each tone frequency,

referred to in subsequent analysis as “uncertainty.”

Average response time over all trials was 1.21 � 0.08

sec (range, 0.31–2.37 sec). We modeled response time as

a function of frequency quartile (Fig. 2B). Frequency

quartiles were constructed by bisecting the frequency

range above and below threshold tone into two equal

bins, respectively. Average response time for the frequency

quartiles flanking the threshold frequency, the 2nd and

3rd frequency quartiles, were 1.31 � 0.09 sec and 1.24 �
0.15 sec, respectively. These times were nonsignificantly
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longer than average response times for the 1st and 4th

frequency quartiles (1.19 � 0.29 sec and 1.08 � 0.10 sec,

respectively).

To determine whether behavior was modulated by

feedback and experience, we sought to determine the

extent of learning during each testing session. Subject

mean percent correct response (range, 0.65–0.83, mean,

0.73 � 0.07) did not change significantly over experimen-

tal blocks (Fig. 2D). In addition, there were no significant

differences in percent of near-threshold frequencies in a

given block (range, 0.42–0.59, mean, 0.53 � 0.06), ensur-

ing an even distribution of “easy” and “difficult” tone fre-

quencies. Finally, we performed a linear regression

adjusting percent correct response by a correction multi-

plier to account for variability in frequency type per block

(correction multiplier = proportion 2nd/3rd quartile fre-

quencies per block/average 2nd/3rd quartile frequencies

per block) and the results remained nonsignificant. Thus,

our experimental design measures the outcome and

uncertainty of an internally constructed stimulus repre-

sentation without a significant contribution from learning

or differences in task difficulty.

Although we found no significant evidence of learning,

we sought to determine if outcome or uncertainty was

modulated by recent feedback (i.e., the time-order effect).

The time-order effect (TOE) posits that exposure to a

previous trial that includes a tone in the same category as

the current trial, but closer to threshold, is informative

because the correct response on the previous trial is the

same as the current trial. “Informed” trials were thus

defined as those where the tone on the previous trial was

between the threshold and the tone on the current trial.

If the prior tone was outside the range defined by the

threshold and the current tone, the trial was labeled as

“uninformed.” In our analysis, we found that subjects

had a significantly greater percentage of correct responses

on “informed” trials (mean, 89%) relative to “unin-

formed” trials (mean, 69%) (v2(1) = 11.83, P < 0.001).

Neurophysiological data

We extracted and sorted single-unit neuronal activity

from SN microelectrode recordings yielding 57 spike clus-

ters (3.35 � 0.37 (SEM) clusters per recording) and

retained 34 putatively dopaminergic neurons based on the

aforementioned criteria. Figure 3A demonstrates a repre-

sentative putatively dopaminergic SN neuron with average

waveform, PSTH, and its associated raster plot.

A B

Figure 3. SN dopamine neurons increase their firing rates following cue presentation. (A) Raster plot and peristimulus time histogram (PSTH)

for a characteristic SN dopaminergic neuron. The action potential waveform is depicted in the bottom-right inset in blue. This neuron

demonstrates a characteristic increase in firing rate 50–500 msec following cue presentation, the a priori period of interest. (B) Mean

normalized population histogram firing rate for nondopaminergic and dopaminergic SN neurons. While the population of dopamine neurons

demonstrate an increase in firing rate following cue presentation, nondopaminergic neurons show no such increase.
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We next decided to examine the entire dopaminergic

SN neuronal population data. The period from 50 to

500 msec showed significantly elevated raw neuronal fir-

ing rate of the entire dopaminergic SN population com-

pared to the baseline period 500 msec prior to tone onset

(2.70 � 0.18 and 2.09 � 0.14 spikes/sec, respectively;

P = 0.009) consistent with a general response to the tone

stimulus. After normalizing for baseline firing rate, we

compared the population of putatively dopaminergic to

nondopaminergic neurons and found that, in contrast to

putative dopaminergic neurons, nondopaminergic neuro-

nal firing rate did not appear to increase after tone onset

(Fig. 3B).

In order to examine the dopaminergic SN firing rate

profile in more detail with respect to our task, we

related firing rate to outcome and uncertainty. Figure 4

demonstrates that increased dopaminergic SN neuronal

firing rate during the period of interest (50–500 msec

postcue) was associated with the correct outcome under

conditions of both low and high uncertainty (unpaired

t-test; P = 0.05 low uncertainty, P = 0.03 high uncer-

tainty). When examining the effect of uncertainty on

firing rate, the effect size appeared to increase, indicat-

ing that these cells fired most under conditions of both

increased uncertainty while correctly predicting out-

come. While firing rate did increase to a greater extent

for correct trials under conditions of high uncertainty,

this effect (interaction) was not statistically significant

although the effect size of outcome did increase with

the inclusion of uncertainty (change in firing rate =
1.73 vs. 0.89 (norm spikes/sec); one-way ANOVA for

outcome F = 4.67, P = 0.03; two-way ANOVA including

outcome and uncertainty F = 8.39, P = 0.0039 for out-

come only).

We next compared neural responses to the extremes of

uncertainty, that is, firing rates from the frequency bins

closest to threshold (-1, 1) to those furthest from thresh-

old (�5, 5). Figure 5A represents the mean normalized

SN dopaminergic firing rate from �400 msec to 1 sec rel-

ative to tone onset, while Figure 5B demonstrated a non-

significant trend for higher SN dopaminergic firing rates

with increasing uncertainty. Thus, outcome appeared to

affect SN dopaminergic firing rate most significantly while

uncertainty did not appear to have a statistically signifi-

cant effect on firing rate. Because neurons in the SN

could be subject to other influences, we next proceeded

to perform linear regression analyses to account for other

potential modulators of firing rate.

Figure 4. SN dopamine neuronal firing rate correlates with outcome under conditions of both high and low uncertainty. Normalized SN

dopaminergic neuronal firing rate is higher for correct decisions under conditions of both high (P < 0.03, unpaired t-test) and low uncertainty

(P < 0.05). When accounting for both outcome and uncertainty using a 2-way ANOVA, outcome remained the only significant effect on firing

rate (F = 8.39, P = 0.0039). While the difference in firing rate was increased under highly uncertain conditions (1.73 spikes/sec) relative to low

uncertainty (0.89 spikes/sec), this effect (interaction) was not statistically significant although the effect size on outcome was larger when

including uncertainty (F = 8.39, P = 0.0039 vs. F = 4.67, P = 0.03, respectively).
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We conducted generalized linear model analyses to

ascertain the effect of outcome and stimulus uncertainty

(our a priori independent predictors of interest) and other

potential modulators of neuronal firing rate including trial

number in experiment, prior trial experience (informed vs.

uninformed), and motor response (open vs. closed hand).

We found that, when examining each variable individually,

outcome was the only variable that significantly predicted

increased dopaminergic neuron firing rate (P < 0.03,

n = 577). When uncertainty was included with outcome,

the model explained firing rate significantly better than

outcome alone (P = 0.0008, n = 577). A regression model

incorporating outcome, uncertainty, and prior trial effects

(i.e., informed vs. uninformed trial type) as predictors of

DA neuronal firing rate provided the best fit to the data

(P < 0.0001, outcome b = 0.66 � 0.073, uncertainty

b = 0.79 � 0.083, informed b = �0.154 � 0.062). We

repeated our analysis for the nondopaminergic neurons

and for the time interval 500–1000 msec, which were both

nonsignificant.

Because we wanted to ensure that this effect was pres-

ent in individual neurons, we analyzed individual dopa-

minergic neuronal activity during the period of interest

(50–500 msec postcue) by performing two-way ANOVAs

with outcome and uncertainty as the main factors.

Neurons were then classified into three types based on

this analysis: outcome, uncertainty, and outcome–uncer-
tainty. Outcome neurons demonstrated a significant main

effect of outcome, but not uncertainty. Uncertainty neu-

rons only demonstrated a significant main effect of uncer-

tainty, while outcome–uncertainty neurons either

demonstrated a significant interaction or a significant

main effect of both outcome and uncertainty. Overall, 4/

34 (12%) neurons were classified as outcome, 6/34 (18%)

as uncertainty, and 2/34 (6%) as outcome–uncertainty
demonstrating that this effect was not just seen in a

model of our dopaminergic SN neuronal population, but

in individual neurons as well.

Discussion

In this auditory decision-making task, subjects had to

internally estimate category boundaries to determine the

correct response to an auditory tone. The task was

designed to examine the choice outcome and uncertainty

in categorizing the auditory stimulus in comparison to

the internal boundary. Subjects correctly classified tones

in 78% of trials with decision uncertainty evident in

decreased accuracy as the tone frequency got closer to the

defined threshold. A phasic SN dopaminergic neuronal

response was seen beginning ~50 msec after the auditory

stimulus and peaking at ~400 msec. Decision outcome

A B

Figure 5. Comparison of SN dopamine neuronal firing rate during uncertain conditions. (A) Mean normalized putative dopaminergic firing rate

from �400 msec to 1 sec relative to tone onset for the highest (>0.7; red) and lowest (<0.3; blue) uncertainty trials. The curves depict the

mean normalized firing rate across all dopaminergic neurons (n = 34) per 50-msec interval by trial type for the period 400 msec to 1 sec

relative to tone onset. The shaded area represents � SEM. (B) Mean normalized firing rate for all dopaminergic neurons for three levels of

uncertainty [low (uncertainty < 0.3), medium (0.7 > uncertainty > 0.3), and high (uncertainty >0.7)] in the interval 50–500 msec following

tone onset. The bars reflect � SEM. Average normalized neuronal firing rate reveals a nonsignificant trendwise increase with uncertainty

(ANOVA; Low: 0.56 � 0.23; Medium, 0.63 � 0.25; High: 1.52 � 0.82 normalized spikes/sec; F(2) Uncertainty = 1.47; P = 0.23).
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significantly predicted this phasic response while inclusion

of uncertainty and prior trial experience significantly

improved the fit of a general linear model when added as

explanatory variables.

The role of dopamine signaling in decision making has

mainly been investigated in terms of reinforcement learn-

ing and reward theory. SN neurons release dopamine in a

phasic fashion when presented with an unexpected

reward. After conditioning, in the absence of reward, SN

dopaminergic neurons reduce their firing during the time

of expected reward presentation (Schultz et al. 1997;

Schultz 1998). This reward prediction error is thought to

be the signal encoded by SNPc projections to dorsal stria-

tum in order to learn a cognitive task and underlies tem-

poral difference reinforcement learning models of action

selection (Sutton and Barto 1990; Schultz et al. 1997;

Guthrie et al. 2009). While the phasic dopaminergic neu-

ronal response has been well described in reward studies,

our task allows us to make some observations about this

response in the context of a perceptual categorization

task. First, this response was seen with a neutral, unpre-

dictable auditory stimulus, confirming prior animal stud-

ies examining salient, nonrewarding sensory stimuli

(Strecker and Jacobs 1985; Horvitz 2000). In addition,

this response is unlikely to be related to novelty as the

time and presentation of our auditory stimulus did not

vary. Only the tone frequency varied along a relatively

restricted auditory spectrum and repetition of stimuli is

known to quickly extinguish the novelty response (Ljung-

berg et al. 1992).

The phasic response was correlated with outcome and

occurred prior to action selection, indicating that it was a

predictive signal. Non-human primate studies have dem-

onstrated that poststimulus midbrain dopaminergic neu-

ronal firing rate can predict decision choice (Satoh et al.

2003; Morris et al. 2006), activity often described as “cho-

sen value” coding. Prior studies have typically considered

decision prediction to be based on reinforcement or

machine-learning models of reward-based action selection

which use temporal difference errors (reflected in the

midbrain dopaminergic firing rate) between predicted

states and actual responses to continuously update an

algorithm to either directly determine the decision itself

(Sutton and Barto 1990; Suri and Schultz 2001) or

develop state–response pairs (Q values) to predict behav-

ior (Morris et al. 2006). Our study extends this finding

by demonstrating this activity during a perceptual catego-

rization task in which no learning was demonstrated

throughout the duration of the task.

Why do dopamine neurons continue to produce a pha-

sic response during a task which requires no learning?

The most parsimonious explanation is through a motiva-

tional or attentional enhancement signal. While reward

prediction error can account for the dopaminergic phasic

response in reward-based learning tasks, as discussed

above, this response is also seen in a variety of tasks

related to incentive stimuli and motivation (Redgrave

et al. 1999; Horvitz 2000; Robinson and Flagel 2009; Le-

saint et al. 2014). Indeed, phasic dopaminergic activity –
not reward probability – has been shown to predict

choice behavior (Morris et al. 2006). In addition, the

phasic dopaminergic response coding for decision out-

come is correlated with motivation (as reflected in reac-

tion time) for choices with identical reward expectations

in non-human primates (Satoh et al. 2003). Modern rein-

forcement learning models have incorporated this motiva-

tional factor as a bonus for each presenting stimulus

(Dayan et al. 2006; Lesaint et al. 2014) to help explain

individual differences in the predictive and motivational

aspects of conditioned stimuli (Robinson and Flagel

2009). Thus, we propose that this response reflects the

intrinsic motivation of subjects to successfully complete

the task.

Although we explicitly did not provide a reward such

as monetary compensation for correct answers, we did

provide feedback after each decision indicating the correct

answer for each trial. Thus, positive feedback in this sce-

nario could certainly be construed as a reward, and con-

versely, negative feedback as punishment. In this manner,

our data may be compatible with the conditioning stage

of reward prediction theory. During conditioning, phasic

dopaminergic output is seen both after the conditioned

stimulus and after the presentation of reward (Schultz

1986), similar to the response in our study (Fig. 2B). In

the postconditioning stage of reward prediction theory,

non-human primates trained to predict reward after a

conditioned stimulus do not show an increase in firing

rate when that reward is later presented (Schultz 1998).

In our study, we continued to see an increase in dopami-

nergic firing rate when positive feedback was presented

(Figure S1). Thus, if we consider the lack of learning in

this task to be attributable merely to constraints on time

(i.e., subjects would eventually improve with hundreds

more trials), then this response may simply be a reflection

of the conditioning stage of reward prediction error the-

ory. On the other hand, if subjects’ task performance rep-

resents a relatively simple task that was quickly learned

and conditioned, this possibility is less likely.

While not statistically significant itself, including uncer-

tainty in our generalized linear model improved the model

prediction. Functional imaging studies examining various

types of decision uncertainty (e.g., reward, categorization)

demonstrate a common set of structures activated during

uncertain decisions. Midbrain, dorsomedial thalamus, stri-

atum, insula, orbitofrontal, and medial frontal cortex in

humans have shown a BOLD response correlated with

ª 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of
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uncertainty (Grinband et al. 2006; Preuschoff et al. 2006;

Abler et al. 2009). Prior non-human primate electrophysi-

ogical studies have demonstrated a slower, sustained tonic

dopaminergic output correlated with reward uncertainty

(Fiorillo 2003). Interestingly, when examining the neurons

only classified as “uncertain” by ANOVA, we saw a similar

slower, sustained rise in firing rate during our period of

interest when compared to the entire dopaminergic neuro-

nal population (figure not shown). We did not, however,

find a statistically significant effect of uncertainty on dopa-

minergic SN neuronal firing rate overall. Because our study

was performed in humans, we were limited in the number

of neuronal recordings. Thus, it may be that we were

unable to detect a statistically significant tonic dopaminer-

gic signal because there were simply too few neurons from

which to record. On the other hand, including uncertainty

in our linear model of firing rate clearly improved the fit of

the model and increased the effect size of outcome (Fig. 4).

Thus, an alternative explanation is that uncertainty

increases the overall gain of the outcome signal, enhancing

outcome prediction. It is tempting to speculate that this

increased signal gain is due to an increase in allocation of

attentional resources as subjects need to “pay more atten-

tion” to tones closer to the category boundary. In fact,

enhanced allocation of attentional resources is a major

hypothesis as to the origin of the time order effect (TOE),

an important modulator of categorization uncertainty.

The TOE is a well-described phenomenon in stimulus

discrimination tasks in which subjects are biased by the

order of presentation (Hellstrom 1985; Hairston and Nag-

arajan 2007). For example, when subjects attempt to cate-

gorize a perceptual stimulus, particularly during a two-

alternative forced choice task, they tend to be more accu-

rate when the prior stimulus lies closer to the global

mean of all presented stimuli than the current stimulus.

Subjects are less accurate when the prior stimulus is far-

ther from the global mean than the current stimulus (Ka-

rim et al. 2012). This effect suggests that there is greater

uncertainty about stimuli that are near the mean, and

therefore feedback about responses to these stimuli is

more informative. While the neural mechanisms underly-

ing this phenomenon remain poorly understood, some

studies have implicated the attentional M3 (or P3 in EEG

studies) signal in association with the TOE (Shapiro et al.

2006; Hairston and Nagarajan 2007). Indeed, recent find-

ings by our group have implicated midbrain DA neurons

underlying the M3/P3 signal in an auditory oddball task

(Mikell et al. 2014). The TOE may thus be a reflection of

greater attentional resources being devoted to the more

recent stimulus. Subjects in our study did demonstrate

the TOE, more accurately classifying tones when the

prior trial was “informative.” While including the

“information” of the previous trial in our model

improved the model fit of firing rate, this seemed to have

the weakest effect of all variables included and we cannot

conclude that the phasic DA response is related to the

TOE.

We observed that an increased SN dopaminergic firing

rate correlated with correct decision outcome and was

modulated by higher uncertainty despite subjects per-

forming more poorly on more uncertain trials. However,

given the likely distinct efferent signals for outcome and

uncertainty described above, this result is not unexpected.

In fact, SN dopaminergic firing rate was highest during

correct, uncertain trials and lowest during incorrect, cer-

tain trials. From a functional perspective, this is consis-

tent as trials in which the subject is uncertain but correct

likely contains the most relevant information for future

trials, whereas trials in which the subject is certain (and

therefore the stimulus should be much easier to classify)

but incorrect are likely to be errors related to inattention.

There are possible alternative interpretations of this

data. Sensory uncertainty could contribute to uncertainty

in decision making in this task. However, the tone fre-

quencies were highly discriminable and prior studies have

shown that even untrained subjects can detect an approx-

imately 3% difference in auditory frequency (Banai and

Ahissar 2004; Bitterman et al. 2008). In addition, in a

human fMRI study employing a similar task, using an

explicit sensory stimulus as the reference did not change

the uncertainty function, suggesting uncertainty was a

reflection of internally generated categories (Grinband

et al. 2006). We attempted to minimize sensory uncer-

tainty by limiting the frequency of tones to a relatively

narrow region. We also changed the threshold tone from

440 to 550 Hz for half of our subjects and saw no differ-

ence in subject performance, minimizing the likelihood of

sensory uncertainty impacting our results. In addition,

though most of the prior literature has examined catego-

rization in terms of learning (Ashby and Ell 2001; Ashby

and Maddox 2005; Daniel et al. 2011), we were most

interested in determining the role of the midbrain DA

system’s role in categorical decision making and uncer-

tainty itself rather than the learning process and sought

to design a task sufficiently simple that subjects were

quickly able to achieve peak performance. We found no

evidence that learning affected our results (Fig. 2D). Nev-

ertheless, we cannot exclude a small effect of category

learning. Finally, one major limitation of this dataset is

that it comes from PD patients. These patients have an

underlying degenerative disease process which causes

dopaminergic substantia nigra cells to die over time.

Thus, the responses seen here may be attenuated com-

pared to healthy subjects or different altogether, given the

potentially abnormal underlying neurocircuitry. Neverthe-

less, these patients represent the only available human
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subjects who can undergo single neuron recording in the

substantia nigra and represent our best efforts at under-

standing human dopaminergic neurophysiology.

The ability to categorize sensory stimuli represents one

of the most fundamental cognitive processes, giving our

perceptions meaning. Underlying that ability is the devel-

opment of an internally generated category boundary and

the confidence with which one can place stimuli on either

side of that boundary. Our results demonstrate that the

activity of human SN dopamine neurons is predictive of

perceptual categorical decision outcome and is modulated

by uncertainty. Neuronal activity was highest during diffi-

cult (uncertain) decisions that resulted in correct

responses and lowest during easy decisions that resulted in

incorrect responses. This pattern of results suggests that

dopamine neurons in the substantia nigra are most active

when critical information – as represented by uncertainty

– is available for learning decision boundaries.
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Supporting Information

Additional Supporting Information may be found in the

online version of this article:

Figure S1. SN dopamine neuronal population firing rate

following feedback.
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